Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
 - multiresolution analysis (an additive decomposition)
 - wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

Qualitative Description of DWT

- let $\mathbf{X} = [X_0, X_1, \ldots, X_{N-1}]^T$ be a vector of N time series values (note: T denotes transpose; i.e., \mathbf{X} is a column vector)
- assume initially $N = 2^J$ for some positive integer J (will relax this restriction later on)
- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W} = \mathcal{W}\mathbf{X}$
 - \mathbf{W} is vector of DWT coefficients (jth component is W_j)
 - \mathcal{W} is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^T \mathcal{W} = I_N$ ($N \times N$ identity matrix)
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}^T \mathcal{W}^T = I_N$ also

Implications of Orthonormality

- let $W_{j \bullet}^T$ denote the jth row of \mathcal{W}, where $j = 0, 1, \ldots, N - 1$
- let $W_{j,l}$ denote lth element of $W_{j \bullet}$
- consider two rows, say, $W_{j \bullet}^T$ and $W_{k \bullet}^T$
- orthonormality says
 \[
 \langle W_{j \bullet}, W_{k \bullet} \rangle \equiv \sum_{l=0}^{N-1} W_{j,l} W_{k,l} = \begin{cases}
 1, & \text{when } j = k, \\
 0, & \text{when } j \neq k
 \end{cases}
 \]
 - $\langle W_{j \bullet}, W_{k \bullet} \rangle$ is inner product of jth & kth rows
 - $\langle W_{j \bullet}, W_{j \bullet} \rangle = \|W_{j \bullet}\|^2$ is squared norm (energy) for $W_{j \bullet}$

Example: the Haar DWT

- $N = 16$ example of Haar DWT matrix \mathcal{W}

 \[
 \begin{pmatrix}
 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]

- note that rows are orthogonal to each other
Haar DWT Coefficients: I

- obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathbf{W}:
 $$\mathbf{W} = \mathbf{WX}$$
- jth coefficient W_j is inner product of jth row \mathbf{W}^T_j and \mathbf{X}:
 $$W_j = \langle \mathbf{W}^T_j, \mathbf{X} \rangle$$
- can interpret coefficients as difference of averages
- to see this, let
 $$\bar{X}_t(\lambda) = \frac{1}{\lambda} \sum_{t=0}^{\lambda-1} X_{t-\lambda} = \text{‘scale } \lambda \text{’ average}$$
 - note: $\bar{X}_t(1) = X_t$ = scale 1 ‘average’
 - note: $\bar{X}_{N-1}(N) = \bar{X} = \text{sample average}$

Haar DWT Coefficients: II

- consider form $W_0 = \langle \mathbf{W}_0, \mathbf{X} \rangle$ takes in $N = 16$ example:
 $$\mathbf{W}_0$$
 $$\mathbf{X}_t$$
 - sum $\bar{X}_1(1) - \bar{X}_0(1)$
- similar interpretation for W_1, \ldots, W_{N-1}:
 $$\mathbf{W}_i$$
 $$\mathbf{X}_t$$
 - sum $\bar{X}_i(1) - \bar{X}_{i-1}(1)$

Haar DWT Coefficients: III

- now consider form of $W_{N/2} = W_8 = \langle \mathbf{W}_8, \mathbf{X} \rangle$:

 $$\mathbf{W}_8$$

 $$\mathbf{X}_t$$

 - sum $\bar{X}_2(2) - \bar{X}_1(2)$

- similar interpretation for $W_{N/4}, \ldots, W_{N/16}$

Haar DWT Coefficients: IV

- $W_{3N/4} = W_{12} = \langle \mathbf{W}_{12}, \mathbf{X} \rangle$ takes the following form:

 $$\mathbf{W}_{12}$$

 $$\mathbf{X}_t$$

 - sum $\bar{X}_4(4) - \bar{X}_3(4)$

- continuing in this manner, come to $W_{N-2} = \langle \mathbf{W}_{N-2}, \mathbf{X} \rangle$:

 $$\mathbf{W}_{N-2}$$

 $$\mathbf{X}_t$$

 - sum $\bar{X}_{8}(8) - \bar{X}_7(8)$
Haar DWT Coefficients: V

- final coefficient $W_{N-1} = W_{15}$ has a different interpretation:

 $W_{15,t} \propto \sum X_{15} = \sum X_{15}(16)$

 $X_t \propto W_{15,t} X_t$

- structure of rows in W

 - first $\frac{N}{2}$ rows yield W_j:s \propto changes on scale 1

 - next $\frac{N}{4}$ rows yield W_j:s \propto changes on scale 2

 - next $\frac{N}{8}$ rows yield W_j:s \propto changes on scale 4

 - next to last row yields $W_j \propto$ change on scale $\frac{N}{2}$

 - last row yields $W_j \propto$ average on scale N

Two Basic Decompositions Derivable from DWT

- additive decomposition

 - reexpresses X as the sum of $J + 1$ new time series, each of which is associated with a particular scale τ_j

 - called multiresolution analysis (MRA)

- energy decomposition

 - yields analysis of variance across J scales

 - called wavelet spectrum or wavelet variance

Structure of DWT Matrices

- $\frac{N}{2^j}$ wavelet coefficients for scale $\tau_j \equiv 2^{j-1}$, $j = 1, \ldots, J$

 - $\tau_j \equiv 2^{j-1}$ is standardized scale

 - $\tau_j \Delta$ is physical scale, where Δ is sampling interval

- each W_j localized in time: as scale \uparrow, localization \downarrow

- rows of W for given scale τ_j:

 - circularly shifted with respect to each other

 - shift between adjacent rows is $2\tau_j = 2^j$

- similar structure for DWTs other than the Haar

- differences of averages common theme for DWTs

 - simple differencing replaced by higher order differences

 - simple averages replaced by weighted averages

Partitioning of DWT Coefficient Vector W

- decompositions are based on partitioning of W and W

- partition W into subvectors associated with scale:

$$W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_j \\ \vdots \\ W_J \\ V_J \end{bmatrix}$$

- W_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes)

 - note: $\sum_{j=1}^{J} \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \cdots + 2 + 1 = 2^J - 1 = N - 1$

- V_J has 1 element, which is equal to $\sqrt{N \cdot X}$ (scale N average)
Example of Partitioning of \(W \)

- consider time series \(X \) of length \(N = 16 \) & its Haar DWT \(W \)

\[
\begin{array}{cccccccccccccccc}
W_1 & W_2 & W_3 & W_4 & V_1 & V_2 & V_3 & V_4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
X & | & | & | & | & | & | & | & | & | & | & | & | & | & | & \hline
\end{array}
\]

Example of Partitioning of \(W \)

- \(N = 16 \) example of Haar DWT matrix \(W \)

\[
\begin{array}{cccccccccccccccc}
W_1 & W_2 & W_3 & W_4 & V_1 & V_2 & V_3 & V_4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
X & | & | & | & | & | & | & | & | & | & | & | & | & | & | & \hline
\end{array}
\]

- two properties: (a) \(W_j = W_j X \) and (b) \(W_j W_j^T = I_N \)

Partitioning of DWT Matrix \(W \)

- partition \(W \) commensurate with partitioning of \(W \):

\[
W = \begin{bmatrix}
W_1 \\
W_2 \\
\vdots \\
W_j \\
V_j
\end{bmatrix}
\]

- \(W_j \) is \(\frac{N}{2^j} \times N \) matrix (related to scale \(\tau_j = 2^{j-1} \) changes)

- \(V_j \) is \(1 \times N \) row vector (each element is \(\frac{1}{\sqrt{N}} \))

DWT Analysis and Synthesis Equations

- recall the DWT analysis equation \(W = W X \)

- \(W^T W = I_N \) because \(W \) is an orthonormal transform

- implies that \(W^T W = W^T W X = X \)

- yields DWT synthesis equation:

\[
X = W^T W = \begin{bmatrix} W_1^T, W_2^T, \ldots, W_j^T, V_j^T \end{bmatrix} \begin{bmatrix} W_1 \\
W_2 \\
\vdots \\
W_j \\
V_j
\end{bmatrix}
\]

\[
= \sum_{j=1}^{J} W_j^T W_j + V_j^T V_j
\]
Multiresolution Analysis: I

- synthesis equation leads to additive decomposition:
 \[X = \sum_{j=1}^{J} W_j^T W_j + V_j^T V_j \equiv \sum_{j=1}^{J} D_j + S_j \]
- \(D_j \equiv W_j^T W_j \) is portion of synthesis due to scale \(\tau_j \)
- \(D_j \) is vector of length \(N \) and is called \(j \)th ‘detail’
- \(S_j \equiv V_j^T V_j = X 1 \), where 1 is a vector containing \(N \) ones (later on we will call this the ‘smooth’ of \(j \)th order)
- additive decomposition called multiresolution analysis (MRA)

Energy Preservation Property of DWT Coefficients

- define ‘energy’ in \(X \) as its squared norm:
 \[\|X\|^2 = \langle X, X \rangle = X^T X = \sum_{t=0}^{N-1} X_t^2 \]
- energy of \(X \) is preserved in its DWT coefficients \(W \) because
 \[\|W\|^2 = W^T W = (WX)^T WX = X^T W^T WX = X^T I_N X = X^T X = \|X\|^2 \]
- note: same argument holds for any orthonormal transform

Multiresolution Analysis: II

- example of MRA for time series of length \(N = 16 \)

Wavelet Spectrum (Variance Decomposition): I

- let \(\bar{X} \) denote sample mean of \(X_t \)'s: \(\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t \)
- let \(\sigma_X^2 \) denote sample variance of \(X_t \)'s:
 \[\sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \bar{X}^2 \]
 \[= \frac{1}{N} \|X\|^2 - \bar{X}^2 = \frac{1}{N} \|W\|^2 - \bar{X}^2 \]
- since \(\|W\|^2 = \sum_{j=1}^{J} \|W_j\|^2 + \|V_j\|^2 \) and \(\frac{1}{N} \|V_j\|^2 = \bar{X}^2 \),
 \[\sigma_X^2 = \frac{1}{N} \sum_{j=1}^{J} \|W_j\|^2 \]
Wavelet Spectrum (Variance Decomposition): II

- define discrete wavelet power spectrum:
 \[P_X(\tau_j) = \frac{1}{N} \left\| W_j \right\|^2, \text{ where } \tau_j = 2^j - 1 \]
- gives us a scale-based decomposition of the sample variance:
 \[\hat{\sigma}_X^2 = \sum_{j=1}^{J} P_X(\tau_j) \]
- in addition, each \(W_{j,t} \) in \(W_j \) associated with a portion of \(X \);
 i.e., \(W_{j,t}^2 \) offers scale- & time-based decomposition of \(\hat{\sigma}_X^2 \)

Defining the Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant ‘pyramid’ algorithm
- defines \(W \) for non-Haar wavelets (consistent with Haar)
- computes \(W = WX \) using \(O(N) \) multiplications
 - ‘brute force’ method uses \(O(N^2) \) multiplications
 - faster than celebrated algorithm for fast Fourier transform!
 (this uses \(O(N \cdot \log_2(N)) \) multiplications)
- can formulate algorithm using linear filters or matrices
 (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters

Wavelet Spectrum (Variance Decomposition): III

- wavelet spectra for time series \(X \) and \(Y \) of length \(N = 16 \),
 each with zero sample mean and same sample variance

 Fourier Theory for Sequences: I

- let \(\{a_t\} \) denote a real-valued sequence such that \(\sum_t a_t^2 < \infty \)
- discrete Fourier transform (DFT) of \(\{a_t\} \):
 \[A(f) = \sum_t a_t e^{-i2\pi ft} \]
- \(f \) called frequency: \(e^{-i2\pi ft} = \cos(2\pi ft) - i\sin(2\pi ft) \)
- \(A(f) \) defined for all \(f \), but \(0 \leq f \leq 1/2 \) is of main interest:
 - \(A(\cdot) \) periodic with unit period, i.e., \(A(f + 1) = A(f) \), all \(f \)
 - \(A(-f) = A^*(f) \), complex conjugate of \(A(f) \)
 - need only know \(A(f) \) for \(0 \leq f \leq 1/2 \) to know it for all \(f \)
- ‘low frequencies’ are those in lower range of \([0, 1/2] \)
- ‘high frequencies’ are those in upper range of \([0, 1/2] \)
Fourier Theory for Sequences: II

- can recover (synthesize) \{a_t\} from its DFT:
 \[\int_{-1/2}^{1/2} A(f) e^{i 2\pi ft} df = a_t; \]
- left-hand side called inverse DFT of \(A(\cdot) \)
- \{a_t\} and \(A(\cdot) \) are two representations for one ‘thingy’
- large \(|A(f)|\) says \(e^{i 2\pi ft} \) important in synthesizing \(\{a_t\} \); i.e.,
 \{a_t\} resembles some combination of \(\cos(2\pi ft) \) and \(\sin(2\pi ft) \)

Basic Concepts of Filtering

- convolution & linear time-invariant filtering are same concepts:
 - \{b_t\} is input to filter
 - \{a_t\} represents the filter
 - \{c_t\} is filter output
- flow diagram for filtering: \{b_t\} \rightarrow \{a_t\} \rightarrow \{c_t\}
- \{a_t\} is called impulse response function for filter
- its DFT \(A(\cdot) \) is called transfer function
- in general \(A(\cdot) \) is complex-valued, so write \(A(f) = |A(f)| e^{i \theta(f)} \)
 - \(|A(f)|\) defines gain function
 - \(A(f) \equiv |A(f)|^2\) defines squared gain function
 - \(\theta(\cdot)\) called phase function (well-defined at \(f \) if \(|A(f)| > 0\))

Convolution of Sequences

- given two sequences \{a_t\} and \{b_t\}, define their convolution by
 \[c_t \equiv \sum_{n=-\infty}^{\infty} a_n b_{t-n} \]
- DFT of \(\{c_t\} \) has a simple form, namely,
 \[\sum_{t=-\infty}^{\infty} c_t e^{-i 2\pi ft} = A(f) B(f), \]
 where \(A(\cdot) \) is the DFT of \{a_t\}, and \(B(\cdot) \) is the DFT of \{b_t\};
 i.e., just multiply two DFTs together!!!

Example of a Low-Pass Filter

- consider \(b_t = \frac{3}{16} \left(\frac{4}{5} \right)^{|t|} + \frac{1}{20} \left(-\frac{4}{5} \right)^{|t|} \) & \(a_t = \begin{cases} \frac{1}{4} & t = 0 \\ \frac{1}{2} & t = -1 \text{ or } 1 \\ 0 & \text{otherwise} \end{cases} \)
- note: \(A(\cdot) \& B(\cdot) \) both real-valued (\(A(\cdot) \) is its gain function)
Example of a High-Pass Filter

- consider same \(\{b_t\} \), but now let \(a_t = \begin{cases} \frac{1}{2}, & t = 0 \\ -\frac{1}{2}, & t = -1 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases} \)

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let \(\{h_t : l = 0, \ldots, L - 1\} \) be a real-valued filter of width \(L \)
 - both \(h_0 \) and \(h_{L-1} \) must be nonzero
 - for convenience, will define \(h_1 = 0 \) for \(l < 0 \) and \(l \geq L \)
 - \(L \) must be even \((2, 4, 6, 8, \ldots) \) for technical reasons (hence ruling out \(\{a_t\} \) on the previous overhead)

The Wavelet Filter: II

- \(\{h_t\} \) called a wavelet filter if it has these 3 properties
 1. summation to zero:
 \[
 \sum_{l=0}^{L-1} h_l = 0
 \]
 2. unit energy:
 \[
 \sum_{l=0}^{L-1} h_l^2 = 1
 \]
 3. orthogonality to even shifts: for all nonzero integers \(n \), have
 \[
 \sum_{l=0}^{L-1} h_l h_{l+2n} = 0
 \]
- 2 and 3 together are called the orthonormality property

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve
- orthogonality to even shifts is key property & hardest to satisfy
- define transfer and squared gain functions for wavelet filter:
 \[
 H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i 2\pi f l} \quad \text{and} \quad \mathcal{H}(f) \equiv |H(f)|^2
 \]
- orthonormality property is equivalent to
 \[
 \mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2 \quad \text{for all } f
 \]
 (an elegant – but not obvious! – result)
Haar Wavelet Filter

- simplest wavelet filter is Haar ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$, $h_1 = -\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent

\[
\begin{align*}
&h_0 & h_1 & h_{l-2} & \text{sum} = 0 \\
&h_0 & h_1 & h_{l-2} & \text{sum} = 0
\end{align*}
\]

D(4) Wavelet Filter: I

- next simplest wavelet filter is D(4), for which $L = 4$:
 \[h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}} \]
- ‘D’ stands for Daubechies
- $L = 4$ width member of her ‘extremal phase’ wavelets
- computations show $\sum h_l = 0$ and $\sum h_l^2 = 1$, as required
- orthogonality to even shifts apparent except for ± 2 case:

\[
\begin{align*}
&h_0 & h_1 & h_{l-2} & \text{sum} = 0 \\
&h_0 & h_1 & h_{l-2} & \text{sum} = 0
\end{align*}
\]

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t - X_{t-1} = a_0X_t + a_1X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:
 \[
 \{X_t\} \rightarrow \{1, -1\} \rightarrow \{X_t^{(1)}\}
 \]
 - Haar wavelet filter is normalized 1st difference filter
 - $X_t^{(1)}$ is difference between two ‘1 point averages’
- consider filter ‘cascade’ with two 1st difference filters:
 \[
 \{X_t\} \rightarrow \{1, -1\} \rightarrow \{1, -1\} \rightarrow \{X_t^{(2)}\}
 \]
- by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single ‘equivalent’ (2nd difference) filter:
 \[
 \{X_t\} \rightarrow \{1, -2, 1\} \rightarrow \{X_t^{(2)}\}
 \]

D(4) Wavelet Filter: III

- renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:
 \[
 a_t = \begin{cases}
 \frac{1}{7}, & t = 0 \\
 -\frac{1}{4}, & t = -1 \text{ or } 1 \\
 0, & \text{otherwise}
 \end{cases}
 \]
- consider ‘2 point weighted average’ followed by 2nd difference:
 \[
 \{X_t\} \rightarrow \{a, b\} \rightarrow \{1, -2, 1\} \rightarrow \{Y_t\}
 \]
- convolution of $\{a, b\}$ and $\{1, -2, 1\}$ yields an equivalent filter, which is how the D(4) wavelet filter arises:
 \[
 \{X_t\} \rightarrow \{h_0, h_1, h_2, h_3\} \rightarrow \{Y_t\}
 \]
D(4) Wavelet Filter: IV

- using conditions
 1. summation to zero: \(h_0 + h_1 + h_2 + h_3 = 0 \)
 2. unit energy: \(h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1 \)
 3. orthogonality to even shifts: \(h_0h_2 + h_1h_3 = 0 \)
 can solve for feasible values of \(a \) and \(b \)
- one solution is \(a = \frac{1 + \sqrt{3}}{4\sqrt{2}} \approx 0.48 \) and \(b = \frac{-1 + \sqrt{3}}{4\sqrt{2}} \approx 0.13 \)
 (other solutions yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
 - ‘change’ now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one

Another Popular Daubechies Wavelet Filter

- LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)
 \[
 \begin{align*}
 h_1 & \quad \hat{h}_{h_{t-2}} \quad \text{sum} = 0 \\
 h_{t-2} & \quad \hat{h}_{h_{t-4}} \quad \text{sum} = 0 \\
 h_{t-4} & \quad \hat{h}_{h_{t-6}} \quad \text{sum} = 0
 \end{align*}
 \]
 - resembles three-point high-pass filter \(\left\{ -\frac{1}{3}, \frac{1}{2}, -\frac{1}{3} \right\} \) (somewhat)
- can interpret this filter as cascade consisting of
 - 4th difference filter
 - weighted average filter of width 4, but effective width 1
- output can be interpreted as changes in weighted averages

First Level Wavelet Coefficients: I

- given wavelet filter \(\{h_t\} \) of width \(L \) & time series of length \(N = 2^J \), obtain first level wavelet coefficients as follows
- circularly filter \(X \) with wavelet filter to yield output
 \[
 \sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \mod N}, \quad t = 0, \ldots, N - 1;
 \]
 i.e., if \(t - l \) does not satisfy \(0 \leq t - l \leq N - 1 \), interpret \(X_{t-l} \)
 as \(X_{t-l \mod N} \); e.g., \(X_{-1} = X_{N-1} \) and \(X_{-2} = X_{N-2} \)
- take every other value of filter output to define
 \[
 W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1;
 \]
 \(\{W_{1,t}\} \) formed by downsampling filter output by a factor of 2

First Level Wavelet Coefficients: II

- example of formation of \(\{W_{1,t}\} \)
 \[
 h_l \quad \hat{h}_l \quad X_{15-l \mod 16} \quad X_{15-l \mod 16} \quad \sum = \downarrow 2 \quad W_{1,t}
 \]
- \(\{W_{1,t}\} \) are unit scale wavelet coefficients – these are the elements of \(W_1 \) and first \(N/2 \) elements of \(\mathbf{W} = \mathbf{W}\mathbf{X} \)
- also have \(\mathbf{W}_1 = \mathbf{W}_1 \mathbf{X} \), with \(\mathbf{W}_1 \) being first \(N/2 \) rows of \(\mathbf{W} \)
- hence elements of \(\mathbf{W}_1 \) dictated by wavelet filter
Upper Half \mathcal{W}_1 of Haar DWT Matrix \mathcal{W}

- consider Haar wavelet filter ($L = 2$): $h_0 = \frac{1}{\sqrt{2}}$ & $h_1 = -\frac{1}{\sqrt{2}}$
- when $N = 16$, \mathcal{W}_1 looks like

\[
\begin{bmatrix}
h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_1 & h_0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

- rows obviously orthogonal to each other

Orthonormality of Upper Half of DWT Matrix: I

- can show that, for all L and even N, $W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \text{ mod } N}$, or, equivalently, $\mathcal{W}_1 = \mathcal{W}_1 \mathbf{X}$
forms half an orthonormal transform; i.e.,

\[
\mathcal{W}_1 \mathcal{W}_1^T = I_N
\]

- Q: how can we construct the other half of \mathcal{W}?

The Scaling Filter: I

- create scaling (or ‘father wavelet’) filter $\{g_l\}$ by reversing $\{h_l\}$ and then changing sign of coefficients with even indices

\[
\begin{array}{ccc}
\{h_l\} & \{h_l\} \text{ reversed} & \{g_l\} \\
\text{Haar} & \includegraphics[width=1cm]{haar} & \includegraphics[width=1cm]{haar-reversed} \\
\text{D(4)} & \includegraphics[width=1cm]{d4} & \includegraphics[width=1cm]{d4-reversed} \\
\text{LA(8)} & \includegraphics[width=1cm]{la8} & \includegraphics[width=1cm]{la8-reversed} \\
\end{array}
\]

- 2 filters related by $g_l \equiv (-1)^{l+1} h_{L-1-l} \land h_l = (-1)^l g_{L-1-l}$
The Scaling Filter: II

- \{g_l\} is ‘quadrature mirror’ filter corresponding to \{h_l\}
- properties 2 and 3 of \{h_l\} are shared by \{g_l\}:
 2. unit energy:
 \[
 \sum_{l=0}^{L-1} g_l^2 = 1
 \]
 3. orthogonality to even shifts: for all nonzero integers \(n\), have
 \[
 \sum_{l=0}^{L-1} g_l g_{l+2n} = 0
 \]
- scaling \& wavelet filters both satisfy orthonormality property

First Level Scaling Coefficients: I

- orthonormality property of \{h_l\} is all that is needed to prove \(\mathcal{W}_1\) is half of an orthonormal transform (never used \(\sum_l h_l = 0\))
- going back and replacing \(h_l\) with \(g_l\) everywhere yields another half of an orthonormal transform
- circularly filter \(\mathbf{X}\) using \(\{g_l\}\) and downsample to define
 \[
 V_{1,t} \equiv \sum_{l=0}^{L-1} g_l X_{2t+1-\ell \mod N}, \quad t = 0, \ldots, \frac{N}{2} - 1
 \]
- \(\{V_{1,t}\}\) called scaling coefficients for level \(j = 1\)
- place these \(N/2\) coefficients in vector called \(\mathbf{V}_1\)

First Level Scaling Coefficients: III

- define \(\mathcal{V}_1\) in a manner analogous to \(\mathcal{W}_1\) so that \(\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X}\)
- when \(L = 4\) and \(N = 16\), \(\mathcal{V}_1\) looks like
 \[
 \begin{bmatrix}
 g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]
- \(\mathcal{V}_1\) obeys same orthonormality property as \(\mathcal{W}_1\):
 similar to \(\mathcal{W}_1 \mathcal{W}_1^T = I\), have \(\mathcal{V}_1 \mathcal{V}_1^T = I\)

Orthonormality of \(\mathcal{V}_1\) and \(\mathcal{W}_1\): I

- \(Q\): how does \(\mathcal{V}_1\) help us?
- \(A\): rows of \(\mathcal{V}_1\) and \(\mathcal{W}_1\) are pairwise orthogonal!
- readily apparent in Haar case:
 \[
 \begin{array}{c}
 g_l \\
 h_l \\
 \end{array}
 \]
 \[
 \begin{array}{c}
 \underbrace{\ldots}_{\text{sum} = 0}
 \end{array}
 \]
Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: II

- Let's check that orthogonality holds for $D(4)$ case also:

 $\begin{align*}
 g_l & \perp h_l, \quad \text{sum = 0} \\
 h_l & \perp g_{l-2}, \quad \text{sum = 0}
 \end{align*}$

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1: III

- Implies that

 \[\mathcal{P}_1 \equiv \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \]

 is an $N \times N$ orthonormal matrix since

 \[
 \mathcal{P}_1 \mathcal{P}_1^T = \begin{bmatrix} \mathcal{W}_1 & \mathcal{V}_1 \end{bmatrix} \begin{bmatrix} \mathcal{W}_1^T & \mathcal{V}_1^T \end{bmatrix} \\
 = \begin{bmatrix} \mathcal{W}_1 \mathcal{W}_1^T & \mathcal{W}_1 \mathcal{V}_1^T \\
 \mathcal{V}_1 \mathcal{W}_1^T & \mathcal{V}_1 \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} I_N & 0_N \\
 0_N & \frac{1}{2} I_N \end{bmatrix} = I_N
 \]

 - If $N = 2$ (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$
 - If $N > 2$, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

Interpretation of Scaling Coefficients: I

- Consider Haar scaling filter ($L = 2$): $g_0 = g_1 = \frac{1}{\sqrt{2}}$

- When $N = 16$, matrix \mathcal{V}_1 looks like

 \[
 \begin{bmatrix}
 g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]

- Since $\mathcal{V}_1 = \mathcal{V}_1 \mathcal{X}$, each $\mathcal{V}_{1,t}$ is proportional to a 2 point average:

 \[V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \mathcal{X}_1(2) \]

 and so forth

Interpretation of Scaling Coefficients: II

- Reconsider shapes of $\{g_l\}$ seen so far:

 \[
 \begin{array}{cccc}
 \text{Haar} & || & \text{D(4)} & \| \\
 \text{LA(8)} & \| & \end{array}
 \]

- For $L > 2$, can regard $V_{1,t}$ as proportional to weighted average

- Can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$
Frequency Domain Properties of Scaling Filter

- define transfer and squared gain functions for \(\{ g_l \} \)
 \[
 G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi fl} \quad \& \quad G(f) \equiv |G(f)|^2
 \]
- can argue that \(\hat{G}(f) = \hat{H}(f + \frac{1}{2}) \), which, combined with
 \[
 \hat{H}(f) + \hat{H}(f + \frac{1}{2}) = 2,
 \]
yields
 \[
 \hat{H}(f) + \hat{G}(f) = 2
 \]
Reconstructing X from W_1 and V_1

- in matrix notation, form wavelet & scaling coefficients via
 \[
 \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} = \begin{bmatrix}
 W_1X \\
 V_1
 \end{bmatrix} = \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} X = P_1 X
 \]
- recall that $P_1^T P_1 = I_N$ because P_1 is orthonormal
- since $P_1^T P_1 X = X$, premultiplying both sides by P_1^T yields
 \[
 P_1^T \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix} = \begin{bmatrix}
 W_1^T \\
 V_1^T
 \end{bmatrix} = W_1^T W_1 + V_1^T V_1 = X
 \]
- $D_1 \equiv W_1^T W_1$ is the first level detail
- $S_1 \equiv V_1^T V_1$ is the first level ‘smooth’
- $X = D_1 + S_1$ in this notation

First Level Variance Decomposition: I

- recall that ‘energy’ in X is its squared norm $\|X\|^2$
- because P_1 is orthonormal, have $P_1^T P_1 = I_N$ and hence
 \[
 \|P_1 X\|^2 = (P_1 X)^T P_1 X = X^T P_1^T P_1 X = X^T X = \|X\|^2
 \]
- can conclude that $\|X\|^2 = \|W_1\|^2 + \|V_1\|^2$ because
 \[
 P_1 X = \begin{bmatrix}
 W_1 \\
 V_1
 \end{bmatrix}
 \]
 and hence $\|P_1 X\|^2 = \|W_1\|^2 + \|V_1\|^2$
- leads to a decomposition of the sample variance for X:
 \[
 \sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \frac{1}{N} \|X\|^2 - \bar{X}^2
 = \frac{1}{N} \|W_1\|^2 + \frac{1}{N} \|V_1\|^2 - \bar{X}^2
 \]
Summary of First Level of Basic Algorithm

- transforms \(\{ X_t : t = 0, \ldots, N - 1 \} \) into 2 types of coefficients
- \(N/2 \) wavelet coefficients \(\{ W_{1,t} \} \) associated with:
 - \(W_1 \), a vector consisting of first \(N/2 \) elements of \(W \)
 - changes on scale 1 and nominal frequencies \(\frac{1}{4} \leq |f| \leq \frac{1}{2} \)
 - first level detail \(D_1 \)
 - \(W_1 \), an \(\frac{N}{2} \times N \) matrix consisting of first \(N/2 \) rows of \(W \)
- \(N/2 \) scaling coefficients \(\{ V_{1,t} \} \) associated with:
 - \(V_1 \), a vector of length \(N/2 \)
 - averages on scale 2 and nominal frequencies \(0 \leq |f| \leq \frac{1}{4} \)
 - first level smooth \(S_1 \)
 - \(V_1 \), an \(\frac{N}{2} \times N \) matrix spanning same subspace as last \(N/2 \) rows of \(W \)

Constructing Remaining DWT Coefficients: I

- have regarded time series \(X_t \) as ‘one point’ averages \(\overline{X}_t(1) \) over scale of 1
- first level of basic algorithm transforms \(X \) of length \(N \) into
 - \(N/2 \) wavelet coefficients \(W_1 \propto \) changes on a scale of 1
 - \(N/2 \) scaling coefficients \(V_1 \propto \) averages of \(X_t \) on a scale of 2
- in essence basic algorithm takes length \(N \) series \(X \) related to scale 1 averages and produces
 - length \(N/2 \) series \(W_1 \) associated with the same scale
 - length \(N/2 \) series \(V_1 \) related to averages on double the scale

Constructing Remaining DWT Coefficients: II

- \(Q \): what if we now treat \(V_1 \) in the same manner as \(X \)?
- basic algorithm will transform length \(N/2 \) series \(V_1 \) into
 - length \(N/4 \) series \(W_2 \) associated with the same scale (2)
 - length \(N/4 \) series \(V_2 \) related to averages on twice the scale
- by definition, \(W_2 \) contains the level 2 wavelet coefficients
- \(Q \): what if we treat \(V_2 \) in the same way?
- basic algorithm will transform length \(N/4 \) series \(V_2 \) into
 - length \(N/8 \) series \(W_3 \) associated with the same scale (4)
 - length \(N/8 \) series \(V_3 \) related to averages on twice the scale
- by definition, \(W_3 \) contains the level 3 wavelet coefficients

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \(W \)
 (recall that \(W = \mathcal{W}X \) is the vector of DWT coefficients)
- at each level \(j \), outputs \(W_j \) and \(V_j \) from the basic algorithm are each half the length of the input \(V_{j-1} \)
- length of \(V_j \) given by \(N/2^j \)
- since \(N = 2^J \), length of \(V_J \) is 1, at which point we must stop
- \(J \) applications of the basic algorithm defines the remaining subvectors \(W_2, \ldots, W_J, V_J \) of DWT coefficient vector \(W \)
- overall scheme is known as the ‘pyramid’ algorithm
Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1}, i.e., wavelet coefficients W_j
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients V_j
- $\tau_j \equiv 2^{j-1}$ denotes scale associated with W_j
 - for $j = 1, \ldots, J$, takes on values $1, 2, 4, \ldots, N/4, N/2$
- $\lambda_j \equiv 2^j = 2\tau_j$ denotes scale associated with V_j
 - takes on values $2, 4, 8, \ldots, N/2, N$

Matrix Description of Pyramid Algorithm: I

- form $\frac{N}{2^j} \times \frac{N}{2^j}$ matrix B_j in same way as $\frac{N}{2^j} \times N$ matrix W_j
- when $L = 4$ and $N/2^{j-1} = 16$, have
 \[
 B_j = \begin{bmatrix}
 h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 \\
 h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_3 & h_2 & h_1 & h_0 & 0 \\
 \end{bmatrix}
 \]
- matrix gets us jth level wavelet coefficients via $W_j = B_j V_{j-1}$

Matrix Description of Pyramid Algorithm: II

- form $\frac{N}{2^j} \times \frac{N}{2^j}$ matrix A_j in same way as $\frac{N}{2^j} \times N$ matrix V_j
- when $L = 4$ and $N/2^{j-1} = 16$, have
 \[
 A_j = \begin{bmatrix}
 g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 \\
 g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_3 & g_2 & g_1 & g_0 & 0 & 0 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]
- matrix gets us jth level scaling coefficients via $V_j = A_j V_{j-1}$

Matrix Description of Pyramid Algorithm: III

- if we define $V_0 = X$ and let $j = 1$, then
 \[W_j = B_j V_{j-1}\]
 reduces to
 \[W_1 = B_1 V_0 = B_1 X = W_1 X\]
 because B_1 has the same definition as W_1
- likewise, when $j = 1$,
 \[V_j = A_j V_{j-1}\]
 reduces to
 \[V_1 = A_1 V_0 = A_1 X = V_1 X\]
 because A_1 has the same definition as V_1
Formation of Submatrices of \mathcal{W}: I

- using $\mathbf{V}_j = \mathbf{A}_j \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_1 = \mathbf{A}_1 \mathbf{X}$, can write

 \[\mathbf{W}_j = \mathbf{B}_j \mathbf{V}_{j-1} = \mathbf{B}_j \mathbf{A}_j^{-1} \mathbf{V}_{j-2} = \mathbf{B}_j \mathbf{A}_{j-1} \mathbf{A}_j^{-2} \mathbf{V}_{j-3} = \mathbf{B}_j \mathbf{A}_{j-1} \mathbf{A}_{j-2} \cdots \mathbf{A}_1 \mathbf{X} \equiv \mathbf{W}_j \mathbf{X}, \]

 where \mathbf{W}_j is $\frac{N}{2^j} \times N$ submatrix of \mathcal{W} responsible for \mathbf{W}_j

- likewise, can get $1 \times N$ submatrix \mathcal{V}_j responsible for \mathbf{V}_j

 \[\mathbf{V}_j = \mathbf{A}_j \mathbf{V}_{j-1} = \mathbf{A}_j \mathbf{A}_{j-1} \mathbf{V}_{j-2} = \mathbf{A}_j \mathbf{A}_{j-1} \mathbf{A}_{j-2} \mathbf{V}_{j-3} = \mathbf{A}_j \mathbf{A}_{j-1} \mathbf{A}_{j-2} \cdots \mathbf{A}_1 \mathbf{X} \equiv \mathbf{V}_j \mathbf{X} \]

- \mathcal{V}_j is the last row of \mathcal{W}_j & all its elements are equal to $1/\sqrt{N}$

Examples of \mathcal{W} and its Partitioning: I

- $N = 16$ case for Haar DWT matrix \mathcal{W}

Examples of \mathcal{W} and its Partitioning: II

- $N = 16$ case for D(6) DWT matrix \mathcal{W}

- note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed
Partial DWT: I

- J repetitions of pyramid algorithm for X of length $N = 2^J$ yields ‘complete’ DWT, i.e., $W = \mathcal{W}X$
- can choose to stop at $J_0 < J$ repetitions, yielding a ‘partial’ DWT of level J_0:

$$X = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_j \\ \vdots \\ W_{J_0} \end{bmatrix} = \begin{bmatrix} B_1 & A_1 \\ B_2 & A_1 \\ \vdots & \vdots \\ B_j & A_{j-1} \cdots A_1 \\ \vdots & \vdots \\ B_{J_0} & A_{J_0-1} \cdots A_1 \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_j \\ \vdots \\ W_{J_0} \end{bmatrix}$$

- \mathcal{V}_{J_0} is $\frac{N}{2^{J_0}} \times N$, yielding $\frac{N}{2^{J_0}}$ coefficients for scale $\lambda_{J_0} = 2^{J_0}$

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$X = \sum_{j=1}^{J_0} D_j + S_{J_0}$$

S_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \bar{X})
- analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} ||W_j||^2 + \frac{1}{N} ||V_{J_0}||^2 - \bar{X}^2$$

Example of $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core

Example of MRA from $J_0 = 4$ Partial Haar DWT

- oxygen isotope records X from Antarctic ice core
Example of Variance Decomposition

- decomposition of sample variance from $J_0 = 4$ partial DWT
 \[\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \|W_j\|^2 + \frac{1}{N} \|V_4\|^2 - \bar{X}^2 \]

- Haar-based example for oxygen isotope records
 - 0.5 year changes: \(\frac{1}{N} \|W_1\|^2 = 0.295 (\approx 9.2\% \text{ of } \hat{\sigma}_X^2) \)
 - 1.0 years changes: \(\frac{1}{N} \|W_2\|^2 = 0.464 (\approx 14.5\%) \)
 - 2.0 years changes: \(\frac{1}{N} \|W_3\|^2 = 0.652 (\approx 20.4\%) \)
 - 4.0 years changes: \(\frac{1}{N} \|W_4\|^2 = 0.846 (\approx 26.4\%) \)
 - 8.0 years averages: \(\frac{1}{N} \|V_4\|^2 - \bar{X}^2 = 0.947 (\approx 29.5\%) \)
 - sample variance: \(\hat{\sigma}_X^2 = 3.204 \)

Haar Equivalent Wavelet & Scaling Filters

- $L_j = 2^j$ is width of \(\{h_{j,l}\} \) and \(\{g_{j,l}\} \)
- note: convenient to define \(\{h_{1,l}\} \) to be same as \(\{h_l\} \)

D(4) Equivalent Wavelet & Scaling Filters

- $L = 4$
- $L_2 = 4$
- $L_3 = 10$
- $L_4 = 22$
- $L_3 = 46$
- $L_4 = 4$
- $L_2 = 10$
- $L_3 = 22$
- $L_4 = 46$

L_j dictated by general formula $L_j = (2^j - 1)(L - 1) + 1$,
but can argue that effective width is 2^j (same as Haar L_j)

LA(8) Equivalent Wavelet & Scaling Filters

- $L = 8$
- $L_2 = 8$
- $L_3 = 22$
- $L_4 = 50$
- $L_3 = 106$
- $L_4 = 8$
- $L_2 = 22$
- $L_3 = 50$
- $L_4 = 106$
Squared Gain Functions for Filters

- squared gain functions give us frequency domain properties:
 \[\mathcal{H}_j(f) \equiv |H_j(f)|^2 \text{ and } \mathcal{G}_j(f) \equiv |G_j(f)|^2 \]
- example: squared gain functions for LA(8) \(J_0 = 4 \) partial DWT

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- unlike the DWT, MODWT is defined naturally for all sample sizes (i.e., \(N \) need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with \(X \) (if \(X \) has detail \(D_j \), then \(T^m X \) has detail \(T^m D_j \), where \(T^m \) circularly shifts \(X \) by \(m \) units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for \(X \) and its circular shifts \(T^m X \)

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced ‘mod WT’)
- transforms very similar to the MODWT have been studied in the literature under the following names:
 - undecimated DWT (or nondecimated DWT)
 - stationary DWT
 - translation invariant DWT
 - time invariant DWT
 - redundant DWT
- also related to notions of ‘wavelet frames’ and ‘cycle spinning’
- basic idea: use values removed from DWT by downsampling

Definition of MODWT Coefficients: I

- define MODWT filters \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \) by renormalizing the DWT filters:
 \[\tilde{h}_{j,l} = h_{j,l}/2^{j/2} \text{ and } \tilde{g}_{j,l} = g_{j,l}/2^{j/2} \]
- level \(j \) MODWT wavelet and scaling coefficients are defined to be output obtaining by filtering \(X \) with \(\{\tilde{h}_{j,l}\} \) and \(\{\tilde{g}_{j,l}\} \):
 \[X \rightarrow \{\tilde{h}_{j,l}\} \rightarrow \tilde{W}_j \text{ and } X \rightarrow \{\tilde{g}_{j,l}\} \rightarrow \tilde{V}_j \]
- compare the above to its DWT equivalent:
 \[X \rightarrow \{h_{j,l}\} \rightarrow W_j \text{ and } X \rightarrow \{g_{j,l}\} \rightarrow V_j \]
- level \(J_0 \) MODWT consists of \(J_0 + 1 \) vectors, namely,
 \(\tilde{W}_1, \tilde{W}_2, \ldots, \tilde{W}_{J_0} \) and \(\tilde{V}_{J_0} \),
 each of which has length \(N \)
Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^J, MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^J, we can write

$$W_{j,t} = \sum_{l=0}^{L_j-1} h_{j,t} X_{2^J(t-1)-l} \bmod N$$

and we have the relationship

$$W_{j,t} = 2^{J/2} \tilde{W}_{j,2^J(t+1)-1}$$

(here $\tilde{W}_{j,t}$ & $\tilde{V}_{j,t}$ denote the tth elements of \tilde{W}_j & \tilde{V}_j)

Example of $J_0 = 4$ LA(8) MODWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA):
 $$\mathbf{X} = \sum_{j=1}^{J_0} \mathbf{D}_j + \mathbf{S}_{J_0}$$
 - a scale-based energy decomposition (basis for ANOVA):
 $$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\tilde{\mathbf{V}}_{J_0}\|^2$$

- in addition, the MODWT can be computed efficiently via a pyramid algorithm

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_4 from DWT after circular shift T^{-3} to align coefficients properly in time
- top plot shows $\tilde{\mathbf{W}}_4$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_4 via $W_{4,t} = 4\tilde{W}_{4,16(t+1)-1}$
Example of $J_0 = 4$ LA(8) MODWT MRA

- oxygen isotope records X from Antarctic ice core

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$
- construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 1. sums to zero; i.e., $\sum_l h_l = 0$;
 2. has unit energy; i.e., $\sum_l h_l^2 = 1$; and
 3. is orthogonal to its even shifts; i.e., $\sum_l h_l h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

Example of Variance Decomposition

- decomposition of sample variance from MODWT

$$\sigma_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \bar{X})^2 = \sum_{j=1}^{4} \frac{1}{N} \|\hat{W}_j\|^2 + \frac{1}{N} \|\hat{V}_4\|^2 - \bar{X}^2$$

- LA(8)-based example for oxygen isotope records
 - 0.5 year changes: $\frac{1}{N} \|\hat{W}_1\|^2 \approx 0.145$ (≈ 4.5% of σ_X^2)
 - 1.0 years changes: $\frac{1}{N} \|\hat{W}_2\|^2 \approx 0.500$ (≈ 15.6%)
 - 2.0 years changes: $\frac{1}{N} \|\hat{W}_3\|^2 \approx 0.751$ (≈ 23.4%)
 - 4.0 years changes: $\frac{1}{N} \|\hat{W}_4\|^2 \approx 0.839$ (≈ 26.2%)
 - 8.0 years averages: $\frac{1}{N} \|\hat{V}_4\|^2 - \bar{X}^2 \approx 0.969$ (≈ 30.2%)
 - sample variance: $\sigma_X^2 \approx 3.204$

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series X into
 - wavelet coefficients W_1 (related to changes in averages on a unit scale) and
 - scaling coefficients V_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to V_1, yielding
 - wavelet coefficients W_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients V_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients V_{j-1}
 at level $j - 1$ are transformed into wavelet and scaling coefficients W_j and V_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$
Summary of Key Points about the DWT: III

- after J_0 repetitions, this ‘pyramid’ algorithm transforms time series X whose length N is an integer multiple of 2^{J_0} into DWT coefficients $W_1, W_2, \ldots, W_{J_0}$ and V_{J_0} (sizes of vectors are $N, \frac{N}{2}, \ldots, \frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
 - first decomposition is additive and is known as a multiresolution analysis (MRA), in which X is reexpressed as
 \[X = \sum_{j=1}^{J_0} D_j + S_{J_0}, \]
 where D_j is a time series reflecting variations in X on scale τ_j, while S_{J_0} is a series reflecting its λ_{J_0} averages

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
 - a scale-based multiresolution analysis
 - a scale-based analysis of the sample variance
 - a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
 - defined for all sample sizes (no ‘power of 2’ restrictions)
 - unaffected by circular shifts to X in that coefficients, details and smooths shift along with X
 - highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
- MODWT can eliminate ‘alignment’ artifacts, but its redundancies are problematic for some uses