Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images (mostly)
- following work on continuous wavelet transform by Morlet and co-workers in 1983, Daubechies, Mallat and others introduced discrete wavelet transform (DWT) in 1988
- begin with qualitative description of the DWT
- discuss two key descriptive capabilities of the DWT:
- multiresolution analysis (an additive decomposition)
- wavelet variance or spectrum (decomposition of sum of squares)
- look at how DWT is formed based on a wavelet filter
- discuss maximal overlap DWT (MODWT)

I-1

Implications of Orthonormality

- let $\mathcal{W}_{j\bullet}^T$ denote the *j*th row of \mathcal{W} , where $j = 0, 1, \dots, N-1$
- let $\mathcal{W}_{j,l}$ denote *l*th element of $\mathcal{W}_{j\bullet}$
- consider two rows, say, $\mathcal{W}_{i\bullet}^T$ and $\mathcal{W}_{k\bullet}^T$
- orthonormality says

$$\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k \\ 0, & \text{when } j \neq k \end{cases}$$

$$\begin{split} &- \langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \text{ is inner product of } j\text{th } \& k\text{th rows} \\ &- \langle \mathcal{W}_{j\bullet}, \mathcal{W}_{j\bullet} \rangle = \|\mathcal{W}_{j\bullet}\|^2 \text{ is squared norm (energy) for } \mathcal{W}_{j\bullet} \end{split}$$

Qualitative Description of DWT

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be a vector of N time series values (note: 'T' denotes transpose; i.e., \mathbf{X} is a column vector)
- assume initially $N = 2^J$ for some positive integer J (will relax this restriction later on)
- \bullet DWT is a linear transform of ${\bf X}$ yielding N DWT coefficients
- \bullet notation: $\mathbf{W}=\mathcal{W}\mathbf{X}$
- $-\mathbf{W}$ is vector of DWT coefficients (*j*th component is W_j)
- $-\mathcal{W}$ is $N \times N$ orthonormal transform matrix
- orthonormality says $\mathcal{W}^T \mathcal{W} = I_N (N \times N \text{ identity matrix})$
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also

WMTSA: 57, 53

I-2

Example: the Haar DWT

I-4

• note that rows are orthogonal to each other

Haar DWT Coefficients: I Haar DWT Coefficients: II • obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathcal{W} : • consider form $W_0 = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ takes in N = 16 example: $\mathbf{W} = \mathcal{W} \mathbf{X}$ • *j*th coefficient W_j is inner product of *j*th row $\mathcal{W}_{j\bullet}^T$ and **X**: $W_i = \langle \mathcal{W}_{i \bullet}, \mathbf{X} \rangle$ • can interpret coefficients as difference of averages • similar interpretation for $W_1, \ldots, W_{\frac{N}{2}-1} = W_7 = \langle \mathcal{W}_{7\bullet}, \mathbf{X} \rangle$: • to see this, let $\overline{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{`scale } \lambda\text{' average}$ $\begin{array}{cccc} \mathcal{W}_{7,t} & & & \\ & & \\ X_t & & \\ &$ - note: $\overline{X}_t(1) = X_t = \text{scale 1 'average'}$ - note: $\overline{X}_{N-1}(N) = \overline{X}$ = sample average WMTSA: 58 I-5WMTSA: 58 I-6Haar DWT Coefficients: III Haar DWT Coefficients: IV • $W_{\underline{3N}} = W_{12} = \langle \mathcal{W}_{12\bullet}, \mathbf{X} \rangle$ takes the following form: • now consider form of $W_{\frac{N}{2}} = W_8 = \langle \mathcal{W}_{8\bullet}, \mathbf{X} \rangle$: • continuing in this manner, come to $W_{N-2} = \langle \mathcal{W}_{14\bullet}, \mathbf{X} \rangle$: • similar interpretation for $W_{\frac{N}{2}+1}, \ldots, W_{\frac{3N}{4}-1}$ $\mathcal{W}_{14,t} \xrightarrow{\mathbf{T}_{11}} \mathcal{W}_{14,t} X_t \xrightarrow{\mathbf{T}_{14,t}} \operatorname{sum} \propto \overline{X}_{15}(8) - \overline{X}_{7}(8)$

WMTSA: 58

I-8

WMTSA: 58

Haar DWT Coefficients: V

- additive decomposition
 - reexpresses **X** as the sum of J + 1 new time series, each of which is associated with a particular scale τ_i
 - called multiresolution analysis (MRA)
- energy decomposition
- yields analysis of variance across J scales
- called wavelet spectrum or wavelet variance

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_i \end{bmatrix}$$

- \mathbf{W}_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes) note: $\sum_{j=1}^J \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \dots + 2 + 1 = 2^J 1 = N 1$
- \mathbf{V}_I has 1 element, which is equal to $\sqrt{N} \cdot \overline{X}$ (scale N average)

Multiresolution Analysis: I

• synthesis equation leads to additive decomposition:

$$\mathbf{X} = \sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j} + \mathcal{V}_{J}^{T} \mathbf{V}_{J} \equiv \sum_{j=1}^{J} \mathcal{D}_{j} + \mathcal{S}_{J}$$

- $\mathcal{D}_j \equiv \mathcal{W}_j^T \mathbf{W}_j$ is portion of synthesis due to scale τ_j
- \mathcal{D}_j is vector of length N and is called *j*th 'detail'
- $S_J \equiv \mathcal{V}_J^T \mathbf{V}_J = \overline{X} \mathbf{1}$, where **1** is a vector containing N ones (later on we will call this the 'smooth' of Jth order)
- additive decomposition called multiresolution analysis (MRA)

Multiresolution Analysis: II

• example of MRA for time series of length N = 16

• adding values for, e.g., t = 14 in $\mathcal{D}_1, \ldots, \mathcal{D}_4$ & \mathcal{S}_4 yields X_{14}

WMTSA: 64

I-18

Energy Preservation Property of DWT Coefficients

I-17

• define 'energy' in **X** as its squared norm:

$$\|\mathbf{X}\|^2 = \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

• energy of **X** is preserved in its DWT coefficients **W** because

$$\begin{split} \mathbf{W} \|^2 &= \mathbf{W}^T \mathbf{W} = (\mathcal{W} \mathbf{X})^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T \mathcal{W}^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T I_N \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2 \end{split}$$

• note: same argument holds for *any* orthonormal transform

Wavelet Spectrum (Variance Decomposition): I

• let
$$\overline{X}$$
 denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$

• let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{W}\|^2 - \overline{X}^2$$
since $\|\mathbf{W}\|^2 = \sum_{j=1}^J \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2$ and $\frac{1}{N} \|\mathbf{V}_J\|^2 = \overline{X}^2$,
$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{i=1}^J \|\mathbf{W}_j\|^2$$

WMTSA: 62

I-20

WMTSA: 64-65

Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

$$P_X(\tau_j) \equiv \frac{1}{N} \|\mathbf{W}_j\|^2$$
, where $\tau_j = 2^{j-1}$

• gives us a scale-based decomposition of the sample variance:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_X(\tau_j$$

• in addition, each $W_{j,t}$ in \mathbf{W}_j associated with a portion of \mathbf{X} ; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

WMTSA: 62

I-21

Defining the Discrete Wavelet Transform (DWT)

- \bullet can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
- 'brute force' method uses $O(N^2)$ multiplications
- faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can formulate algorithm using linear filters or matrices (two approaches are complementary)
- need to review ideas from theory of linear (time-invariant) filters

Wavelet Spectrum (Variance Decomposition): III

• wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length N = 16, each with zero sample mean and same sample variance

Fourier Theory for Sequences: I

I - 22

- let $\{a_t\}$ denote a real-valued sequence such that $\sum_t a_t^2 < \infty$
- discrete Fourier transform (DFT) of $\{a_t\}$:

$$A(f) \equiv \sum_{t} a_{t} e^{-i2\pi f t}$$

- f called frequency: $e^{-i2\pi ft} = \cos(2\pi ft) i\sin(2\pi ft)$
- A(f) defined for all f, but $0 \le f \le 1/2$ is of main interest:
- $-A(\cdot)$ periodic with unit period, i.e., A(f+1) = A(f), all f
- $-A(-f) = A^*(f)$, complex conjugate of A(f)
- need only know A(f) for $0 \le f \le 1/2$ to know it for all f
- 'low frequencies' are those in lower range of [0, 1/2]
- 'high frequencies' are those in upper range of [0, 1/2]

Fourier Theory for Sequences: II

• can recover (synthesize) $\{a_t\}$ from its DFT:

$$\int_{-1/2}^{1/2} A(f) e^{i2\pi ft} \, df = a_t;$$

left-hand side called inverse DFT of $A(\cdot)$

- $\{a_t\}$ and $A(\cdot)$ are two representations for one 'thingy'
- large |A(f)| says $e^{i2\pi ft}$ important in synthesizing $\{a_t\}$; i.e., $\{a_t\}$ resembles some combination of $\cos(2\pi ft)$ and $\sin(2\pi ft)$

WMTSA: 22–23

I-25

Basic Concepts of Filtering

- convolution & linear time-invariant filtering are same concepts:
- $\{b_t\}$ is input to filter
- $-\{a_t\}$ represents the filter
- $-\{c_t\}$ is filter output
- flow diagram for filtering: $\{b_t\} \longrightarrow \overline{\{a_t\}} \longrightarrow \{c_t\}$
- $\bullet \left\{ a_t \right\}$ is called impulse response sequence for filter
- \bullet its DFT $A(\cdot)$ is called transfer function
- in general $A(\cdot)$ is complex-valued, so write $A(f) = |A(f)|e^{i\theta(f)}$
- -|A(f)| defines gain function
- $-\mathcal{A}(f) \equiv |A(f)|^2$ defines squared gain function
- $\; \theta(\cdot)$ called phase function (well-defined at f if |A(f)| > 0)

WMTSA: 25

Convolution of Sequences

• given two sequences $\{a_t\}$ and $\{b_t\}$, define their convolution by

$$c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}$$

• DFT of $\{c_t\}$ has a simple form, namely,

$$\sum_{=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f),$$

where $A(\cdot)$ is the DFT of $\{a_t\}$, and $B(\cdot)$ is the DFT of $\{b_t\}$; i.e., just multiply two DFTs together!!!

WMTSA:	24

I-26

Example of a Low-Pass Filter

• consider
$$b_t = \frac{3}{16} \left(\frac{4}{5}\right)^{|t|} + \frac{1}{20} \left(-\frac{4}{5}\right)^{|t|} \& a_t = \begin{cases} \frac{1}{2}, & t = 0\\ \frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• note: $A(\cdot) \& B(\cdot)$ both real-valued $(A(\cdot) = \text{its gain function})$

WMTSA: 25–26

WMTSA: 69

I-31

WMTSA: 69–70

Haar Wavelet Filter

• simplest wavelet filter is Haar
$$(L=2)$$
: $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$

- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonality to even shifts also readily apparent

WMTSA: 69-70

I-33

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \boxed{\{1, -1\}} \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter $-X_t^{(1)}$ is difference between two '1 point averages'
- consider filter 'cascade' with two 1st difference filters:

$$\{X_t\} \longrightarrow \fbox{\{1,-1\}} \longrightarrow \fbox{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• by considering convolution of $\{1, -1\}$ with itself, can reexpress the above using a single 'equivalent' (2nd difference) filter:

$$\{X_t\} \longrightarrow \boxed{\{1, -2, 1\}} \longrightarrow \{X_t^{(2)}\}$$

D(4) Wavelet Filter: I • next simplest wavelet filter is D(4), for which L = 4: $h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \ h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \ h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \ h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$ - 'D' stands for Daubechies -L = 4 width member of her 'extremal phase' wavelets • computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required • orthogonality to even shifts apparent except for ± 2 case:

I - 34

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \overline{\{a,b\}} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

• convolution of $\{a, b\}$ and $\{1, -2, 1\}$ yields an equivalent filter, which is how the D(4) wavelet filter arises:

$$[X_t\} \longrightarrow \overline{\{h_0, h_1, h_2, h_3\}} \longrightarrow \{Y_t\}$$

WMTSA: 60-61

WMTSA: 59

D(4) Wavelet Filter: IV

- using conditions
- 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$ 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$ 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$ can solve for feasible values of a and b
- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (other solutions yield essentially the same filter)
- \bullet interpret D(4) filtered output as changes in weighted averages
- 'change' now measured by 2nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

WMTSA: 60–61

I-37

First Level Wavelet Coefficients: I

- given wavelet filter $\{h_l\}$ of width L & time series of length $N = 2^J$, obtain first level wavelet coefficients as follows
- \bullet circularly filter ${\bf X}$ with wavelet filter to yield output

$$\sum_{l=0}^{L-1} h_l X_{t-l} = \sum_{l=0}^{L-1} h_l X_{t-l \bmod N}, \quad t = 0, \dots, N-1;$$

- i.e., if t-l does not satisfy $0\leq t-l\leq N-1,$ interpret X_{t-l} as $X_{t-l\bmod N};$ e.g., $X_{-1}=X_{N-1}$ and $X_{-2}=X_{N-2}$
- take every other value of filter output to define

$$W_{1,t} \equiv \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

 $\{W_{1,t}\}$ formed by *downsampling* filter output by a factor of 2

Another Popular Daubechies Wavelet Filter • LA(8) wavelet filter ('LA' stands for 'least asymmetric') h_l h_{l-2} h_lh_{l-2} h_lh_{l-2} h_lh_{l-4} sum = 0 h_lh_{l-4} h_lh_{l-6} • resembles three-point high-pass filter {-1/4, 1/2, -1/4} (somewhat) • can interpret this filter as cascade consisting of 4th difference filter weighted average filter of width 4, but effective width 1 • filter output can be interpreted as changes in weighted averages

First Level Wavelet Coefficients: II

• example of formation of $\{W_{1,t}\}$

$$h_{l}^{\circ} \xrightarrow{\mathbf{1}} h_{l}^{\circ} X_{15-l \mod 16} \xrightarrow{\mathbf{1}} \sum_{\mathbf{1} \in \mathbf{1} \atop \mathbf{1} \mathbf{1} \atop \mathbf{1} \atop \mathbf{1} \in \mathbf{1} \atop \mathbf{1} \atop \mathbf{1} \in \mathbf{1} \atop \mathbf{1$$

- $\{W_{1,t}\}$ are unit scale wavelet coefficients these are the elements of \mathbf{W}_1 and first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}
- hence elements of \mathcal{W}_1 dictated by wavelet filter

WMTSA: 70

The Scaling Filter: II

- $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:
- 2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

 \bullet scaling & wavelet filters both satisfy orthonormality property

WMTSA: 76

I-45

First Level Scaling Coefficients: III

- \bullet define \mathcal{V}_1 in a manner analogous to \mathcal{W}_1 so that $\mathbf{V}_1=\mathcal{V}_1\mathbf{X}$
- when L = 4 and N = 16, \mathcal{V}_1 looks like

g_1	g_0	0	0	0	0	0	0	0	0	0	0	0	0	g_3	g_2
g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	g_3	g_2	g_1	g_0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	g_3	g_2	g_1	g_0

• \mathcal{V}_1 obeys same orthonormality property as \mathcal{W}_1 :

similar to
$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$
, have $\mathcal{V}_1 \mathcal{V}_1^T = I_{\frac{N}{2}}$

I-47

First Level Scaling Coefficients: I

- orthonormality property of $\{h_l\}$ is all that is needed to prove \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- \bullet going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- \bullet circularly filter ${\bf X}$ using $\{g_l\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{L-1} g_l X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

- $\{V_{1,t}\}$ called scaling coefficients for level j = 1
- place these N/2 coefficients in vector called \mathbf{V}_1

WMTSA: 77

I--46

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : I

- Q: how does \mathcal{V}_1 help us?
- A: rows of \mathcal{V}_1 and \mathcal{W}_1 are pairwise orthogonal!
- readily apparent in Haar case:

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : **II**

• let's check that orthogonality holds for D(4) case also:

Orthonormality of \mathcal{V}_1 and \mathcal{W}_1 : **III**

• implies that

is an $N \times N$ orthonormal matrix since $\mathcal{P}_1 \mathcal{P}_1^T = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \begin{bmatrix} \mathcal{W}_1^T, \mathcal{V}_1^T \end{bmatrix}$ $= \begin{bmatrix} \mathcal{W}_1 \mathcal{W}_1^T & \mathcal{W}_1 \mathcal{V}_1^T \\ \mathcal{V}_1 \mathcal{W}_1^T & \mathcal{V}_1 \mathcal{V}_1^T \end{bmatrix} = \begin{bmatrix} I_N & 0_N \\ 0_N & 2 \\ 0_N & I_N \end{bmatrix} = I_N$ • if N = 2 (not of too much interest!), in fact $\mathcal{P}_1 = \mathcal{W}$ • if N > 2, \mathcal{P}_1 is an intermediate step: \mathcal{V}_1 spans same subspace as lower half of \mathcal{W} and will be further manipulated

Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

- for L > 2, can regard $V_{1,t}$ as proportional to weighted average
- can argue that effective width of $\{q_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$

Frequency Domain Properties of Scaling Filter

• define transfer and squared gain functions for $\{g_l\}$

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l} \& \mathcal{G}(f) \equiv |G(f)|^2$$

• can argue that $\mathcal{G}(f) = \mathcal{H}(f + \frac{1}{2})$, which, combined with

 $\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2,$

yields

$$\mathcal{H}(f) + \mathcal{G}(f) = 2$$

WMTSA: 76

I-53

Example of Decomposing X into W_1 and V_1 : I

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$

Example of Decomposing X into W_1 and V_1 : II

- oxygen isotope record series \mathbf{X} has N = 352 observations
- spacing between observations is $\Delta \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients \mathbf{V}_1 related to averages on scale of 2Δ
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δ
- \bullet coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

Reconstructing X from \mathbf{W}_1 and \mathbf{V}_1

• in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

• recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal • since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields $\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$ • $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail

- $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathbf{V}_1$ is the first level 'smooth' • $\mathcal{S}_1 \equiv \mathcal{V}_1^T \mathbf{V}_1$ is the first level 'smooth'
- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

WMTSA: 80-81

I-57

First Level Variance Decomposition: I

- \bullet recall that 'energy' in ${\bf X}$ is its squared norm $\|{\bf X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2$
- can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix}$$
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$

 \bullet leads to a decomposition of the sample variance for ${\bf X}:$

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2 \\ = \frac{1}{N} \|\mathbf{W}_1\|^2 + \frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2$$

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

• Haar-based decomposition for oxygen isotope records X

$$\begin{array}{c} -42 \\ -49 \\ -56 \\ 3.5 \\ 0 \\ -56 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -56 \\ 1800 \\ 1850 \\ 1850 \\ 1900 \\ 9 \\ 4 \\ -58 \end{array} \\ \begin{array}{c} \mathcal{S}_{1} \\ \mathcal{S}_{2} \\$$

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
- 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1
- 2. $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
- first piece: $\frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295$
- second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2 \doteq 2.909$
- sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
- changes on scale of $\Delta \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$ (standardized scale 1 corresponds to physical scale Δ)

Summary of First Level of Basic Algorithm

- transforms $\{X_t : t = 0, \dots, N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
- $-\mathbf{W}_1$, a vector consisting of first N/2 elements of \mathbf{W}
- changes on scale 1 and nominal frequencies $\frac{1}{4} \le |f| \le \frac{1}{2}$
- first level detail \mathcal{D}_1
- $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
- $-\mathbf{V}_1$, a vector of length N/2
- averages on scale 2 and nominal frequencies $0 \le |f| \le \frac{1}{4}$
- first level smooth \mathcal{S}_1
- $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

WMTSA: 86-87

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_1 in the same manner as \mathbf{X} ?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
 - length N/4 series \mathbf{W}_2 associated with the same scale (2)
 - length $N\!/4$ series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat \mathbf{V}_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
- length N/8 series \mathbf{W}_3 associated with the same scale (4)
- length N/8 series \mathbf{V}_3 related to averages on twice the scale
- by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over scale of 1
- \bullet first level of basic algorithm transforms ${\bf X}$ of length N into
- -N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
- N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- \bullet in essence basic algorithm takes length N series ${\bf X}$ related to scale 1 averages and produces
 - length N/2 series \mathbf{W}_1 associated with the same scale
 - length N/2 series \mathbf{V}_1 related to averages on double the scale

WMTSA: Section 4.5

I-62

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm *defines* the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm

Scales Associated with DWT Coefficients

• *j*th level of algorithm transforms scale 2^{j-1} averages into • form $\frac{N}{2i} \times \frac{N}{2i-1}$ matrix \mathcal{B}_i in same way as $\frac{N}{2} \times N$ matrix \mathcal{W}_1 - differences of averages on scale 2^{j-1} , i.e., wavelet coefficients • when L = 4 and $N/2^{j-1} = 16$, have \mathbf{W}_{i} - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., scaling coefficients \mathbf{V}_i • $\tau_i \equiv 2^{j-1}$ denotes scale associated with \mathbf{W}_i - for j = 1, ..., J, takes on values 1, 2, 4, ..., N/4, N/2• $\lambda_i \equiv 2^j = 2\tau_i$ denotes scale associated with \mathbf{V}_i - takes on values $2, 4, 8, \ldots, N/2, N$ • matrix gets us *j*th level wavelet coefficients via $\mathbf{W}_{i} = \mathcal{B}_{i} \mathbf{V}_{i-1}$ WMTSA: 85 I-65WMTSA: 94 I-66 Matrix Description of Pyramid Algorithm: II Matrix Description of Pyramid Algorithm: III • form $\frac{N}{2j} \times \frac{N}{2^{j-1}}$ matrix \mathcal{A}_j in same way as $\frac{N}{2} \times N$ matrix \mathcal{V}_1 • if we define $\mathbf{V}_0 = \mathbf{X}$ and let j = 1, then • when L = 4 and $N/2^{j-1} = 16$, have $\mathbf{W}_{i} = \mathcal{B}_{i} \mathbf{V}_{i-1}$ reduces to $\mathbf{W}_{1} = \mathcal{B}_{1} \mathbf{V}_{0} = \mathcal{B}_{1} \mathbf{X} = \mathcal{W}_{1} \mathbf{X}$ because \mathcal{B}_1 has the same definition as \mathcal{W}_1 • likewise, when i = 1, $\mathbf{V}_i = \mathcal{A}_i \mathbf{V}_{i-1}$ reduces to $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{V}_0 = \mathcal{A}_1 \mathbf{X} = \mathcal{V}_1 \mathbf{X}$ because \mathcal{A}_1 has the same definition as \mathcal{V}_1 • matrix gets us *j*th level scaling coefficients via $\mathbf{V}_{i} = \mathcal{A}_{i}\mathbf{V}_{i-1}$

Matrix Description of Pyramid Algorithm: I

Formation of Submatrices of \mathcal{W} : I Formation of Submatrices of \mathcal{W} : II • using $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ repeatedly and $\mathbf{V}_1 = \mathcal{A}_1 \mathbf{X}$, can write • have now constructed all of DWT matrix: $\mathbf{W}_{i} = \mathcal{B}_{i} \mathbf{V}_{i-1}$ W_1 $= \mathcal{B}_i \mathcal{A}_{i-1} \mathbf{V}_{i-2}$ $\mathcal{B}_2\mathcal{A}_1$ \mathcal{W}_2 $= \mathcal{B}_{j}\mathcal{A}_{j-1}\mathcal{A}_{j-2}\mathbf{V}_{j-3}$ $ar{\mathcal{B}}_3 ar{\mathcal{A}}_2 ar{\mathcal{A}}_1$ \mathcal{W}_3 $= \mathcal{B}_{i}\mathcal{A}_{i-1}\mathcal{A}_{i-2}\cdots\mathcal{A}_{1}\mathbf{X} \equiv \mathcal{W}_{i}\mathbf{X},$ $\mathcal{B}_4 \mathcal{A}_3 \mathcal{A}_2 \mathcal{A}_1$ \mathcal{W}_4 $\mathcal{W} =$ where \mathcal{W}_i is $\frac{N}{2i} \times N$ submatrix of \mathcal{W} responsible for \mathbf{W}_i = : : $\begin{vmatrix} - & \vdots \\ & \mathcal{B}_{j}\mathcal{A}_{j-1}\cdots\mathcal{A}_{1} \\ & \vdots \\ & \mathcal{B}_{J}\mathcal{A}_{J-1}\cdots\mathcal{A}_{1} \\ & \mathcal{A}_{J}\mathcal{A}_{J}\cdots\mathcal{A}_{J} \end{vmatrix}$ \mathcal{W}_{j} • likewise, can get $1 \times N$ submatrix \mathcal{V}_I responsible for \mathbf{V}_I $|\mathcal{W}_J|$ $\mathbf{V}_I = \mathcal{A}_I \mathbf{V}_{I-1}$ $= \mathcal{A}_{I}\mathcal{A}_{I-1}\mathbf{V}_{I-2}$ $= \mathcal{A}_{I}\mathcal{A}_{I-1}\mathcal{A}_{I-2}\mathbf{V}_{I-3}$ $= \mathcal{A}_{I}\mathcal{A}_{I-1}\mathcal{A}_{I-2}\cdots\mathcal{A}_{1}\mathbf{X} \equiv \mathcal{V}_{I}\mathbf{X}$ • \mathcal{V}_I is the last row of \mathcal{W} , & all its elements are equal to $1/\sqrt{N}$ WMTSA: 94 I-69 WMTSA: 94 I_{-70} Examples of \mathcal{W} and its Partitioning: I Examples of \mathcal{W} and its Partitioning: II • N = 16 case for Haar DWT matrix \mathcal{W} • N = 16 case for D(4) DWT matrix \mathcal{W} 9 \mathcal{W}_2 \mathcal{W}_2 10 11 11 \mathcal{W}_1 \mathcal{W}_1 12 12 \mathcal{W}_3 13 \mathcal{W}_3 5 13 14 \mathcal{W}_4 14 \mathcal{W}_4 15 \mathcal{V}_4 15 \mathcal{V}_{4} 10 15 0 5 10 15 0 5 10 15 0 5 10 15 • above agrees with qualitative description given previously • note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

Partial DWT: I

- J repetitions of pyramid algorithm for **X** of length $N = 2^J$ yields 'complete' DWT, i.e., $\mathbf{W} = \mathcal{W}\mathbf{X}$
- can choose to stop at $J_0 < J$ repetitions, yielding a 'partial' DWT of level J_0 :

$$\begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{W}_{2} \\ \vdots \\ \mathcal{W}_{j} \\ \vdots \\ \mathcal{W}_{J_{0}} \\ \mathcal{V}_{J_{0}} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathcal{B}_{1} \\ \mathcal{B}_{2}\mathcal{A}_{1} \\ \vdots \\ \mathcal{B}_{j}\mathcal{A}_{j-1}\cdots\mathcal{A}_{1} \\ \vdots \\ \mathcal{B}_{J_{0}}\mathcal{A}_{J_{0}-1}\cdots\mathcal{A}_{1} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{W}_{1} \\ \mathbf{W}_{2} \\ \vdots \\ \mathbf{W}_{j} \\ \vdots \\ \mathbf{W}_{J_{0}} \\ \mathbf{V}_{J_{0}} \end{bmatrix}$$

$$\bullet \mathcal{V}_{J_{0}} \text{ is } \frac{N}{2^{J_{0}}} \times N, \text{ yielding } \frac{N}{2^{J_{0}}} \text{ coefficients for scale } \lambda_{J_{0}} = 2^{J_{0}}$$

Example of $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core

Partial DWT: II

- only requires N to be integer multiple of 2^{J_0}
- partial DWT more common than complete DWT
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X})

• analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

WMTSA: 104

I-74

Example of MRA from $J_0 = 4$ Partial Haar DWT

Example of Variance Decomposition

• decomposition of sample variance from $J_0 = 4$ partial DWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^4 \frac{1}{N} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_4\|^2 - \overline{X}^2$$

• Haar-based example for oxygen isotope records

-0.5 year changes:	$\frac{1}{N} \ \mathbf{W}_1\ ^2 \doteq 0.295 (\doteq 9.2\% \text{ of } \hat{\sigma}_X^2)$
- 1.0 years changes:	$\frac{1}{N} \ \mathbf{W}_2\ ^2 \doteq 0.464 \ (\doteq 14.5\%)$
- 2.0 years changes:	$\frac{1}{N} \ \mathbf{W}_3\ ^2 \doteq 0.652 \ (\doteq 20.4\%)$
-4.0 years changes:	$\frac{1}{N} \ \mathbf{W}_4\ ^2 \doteq 0.846 \ (\doteq 26.4\%)$
- 8.0 years averages:	$\frac{1}{N} \ \mathbf{V}_4\ ^2 - \overline{X}^2 \doteq 0.947 \ (\doteq 29.5\%)$
- sample variance:	$\hat{\sigma}_X^2 \doteq 3.204$
WMTSA: 104	I-77

Haar Equivalent Wavelet & Scaling Filters

Squared Gain Functions for Filters

• squared gain functions give us frequency domain properties:

$$\mathcal{H}_j(f) \equiv |H_j(f)|^2$$
 and $\mathcal{G}_j(f) \equiv |G_j(f)|$

• example: squared gain functions for LA(8) $J_0 = 4$ partial DWT

Quick Comparison of the MODWT to the DWT

- unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
- \bullet unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
- similar to the DWT, can form multiresolution analyses (MRAs) using MODWT with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with **X** (if **X** has detail $\widetilde{\mathcal{D}}_j$, then $\mathcal{T}^m \mathbf{X}$ has detail $\mathcal{T}^m \widetilde{\mathcal{D}}_j$, where \mathcal{T}^m circularly shifts **X** by *m* units)
- similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients
- unlike the DWT, MODWT discrete wavelet power spectrum same for ${\bf X}$ and its circular shifts ${\cal T}^m {\bf X}$

WMTSA: 159–160

WMTSA: 99

Maximal Overlap Discrete Wavelet Transform

- abbreviation is MODWT (pronounced 'mod WT')
- transforms very similar to the MODWT have been studied in the literature under the following names:
- undecimated DWT (or nondecimated DWT)
- stationary DWT
- translation invariant DWT
- time invariant DWT
- redundant DWT
- also related to notions of 'wavelet frames' and 'cycle spinning'
- basic idea: use values removed from DWT by downsampling
- WMTSA: 159

I-82

Definition of MODWT Coefficients: I

• define MODWT filters $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$ by renormalizing the DWT filters:

$$\tilde{h}_{j,l} = h_{j,l}/2^{j/2}$$
 and $\tilde{g}_{j,l} = g_{j,l}/2^{j/2}$

• level j MODWT wavelet and scaling coefficients are *defined* to be output obtaining by filtering **X** with $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$:

$$\mathbf{X} \longrightarrow [{\tilde{h}_{j,l}}] \longrightarrow \widetilde{\mathbf{W}}_j \text{ and } \mathbf{X} \longrightarrow [{\tilde{g}_{j,l}}] \longrightarrow \widetilde{\mathbf{V}}_j$$

• compare the above to its DWT equivalent:

$$\mathbf{X} \longrightarrow \overline{\{h_{j,l}\}} \xrightarrow{}_{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow \overline{\{g_{j,l}\}} \xrightarrow{}_{\downarrow 2^j} \mathbf{V}_j$$

• level J_0 MODWT consists of $J_0 + 1$ vectors, namely, $\widetilde{\mathbf{W}}_1, \widetilde{\mathbf{W}}_2, \dots, \widetilde{\mathbf{W}}_{J_0}$ and $\widetilde{\mathbf{V}}_{J_0}$,

each of which has length N

WMTSA: 169

Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0} , MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0} , we can write

$$W_{j,t} = \sum_{l=0}^{L_j - 1} h_{j,l} X_{2^j(t+1) - 1 - l \mod N} \& \widetilde{W}_{j,t} = \sum_{l=0}^{L_j - 1} \tilde{h}_{j,l} X_{t-l \mod N},$$

and we have the relationship

. . .

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1} \& \text{, likewise, } V_{J_0,t} = 2^{J_0/2} \widetilde{V}_{J_0,2^{J_0}(t+1)-1} \\ \text{(here } \widetilde{W}_{j,t} \& \widetilde{V}_{J_0,t} \text{ denote the } t\text{th elements of } \widetilde{\mathbf{W}}_j \& \widetilde{\mathbf{V}}_{J_0})$$

WMTSA: 96–97, 169, 203

I-85

Example of $J_0 = 4$ LA(8) MODWT

• oxygen isotope records \mathbf{X} from Antarctic ice core

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA):

$$\mathbf{X} = \sum_{j=1}^{J_0} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0}$$

- a scale-based energy decomposition (basis for ANOVA):

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2$$

• in addition, the MODWT can be computed efficiently via a pyramid algorithm

WMTSA: 159–160

I-86

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\widetilde{\mathbf{W}}_4$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_4 via $W_{4,t} = 4\widetilde{W}_{4,16(t+1)-1}$

Example of $J_0 = 4$ LA(8) MODWT MRA

• oxygen isotope records **X** from Antarctic ice core

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$
- construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
- 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
- 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
- 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- \bullet while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

WMTSA: 150–156

Example of Variance Decomposition

• decomposition of sample variance from MODWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^4 \frac{1}{N} \| \widetilde{\mathbf{W}}_j \|^2 + \frac{1}{N} \| \widetilde{\mathbf{V}}_4 \|^2 - \overline{X}^2$$

- LA(8)-based example for oxygen isotope records
- $\begin{array}{ll} -0.5 \text{ year changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_1\|^2 \doteq 0.145 \ (\doteq 4.5\% \text{ of } \hat{\sigma}_X^2) \\ -1.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_2\|^2 \doteq 0.500 \ (\doteq 15.6\%) \\ -2.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_3\|^2 \doteq 0.751 \ (\doteq 23.4\%) \\ -4.0 \text{ years changes:} & \frac{1}{N} \|\widetilde{\mathbf{W}}_4\|^2 \doteq 0.839 \ (\doteq 26.2\%) \\ -8.0 \text{ years averages:} & \frac{1}{N} \|\widetilde{\mathbf{V}}_4\|^2 \overline{X}^2 \doteq 0.969 \ (\doteq 30.2\%) \\ -\text{ sample variance:} & \hat{\sigma}_X^2 \doteq 3.204 \end{array}$

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients \mathbf{V}_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
- wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
- scaling coefficients \mathbf{V}_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series **X** whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which **X** is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

WMTSA: 150-156

I-93

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
- a scale-based multiresolution analysis
- a scale-based analysis of the sample variance
- a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
- defined for all sample sizes (no 'power of 2' restrictions)
- unaffected by circular shifts to ${\bf X}$ in that coefficients, details and smooths shift along with ${\bf X}$
- highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
- MODWT can eliminate 'alignment' artifacts, but its redundancies are problematic for some uses

WMTSA: 159–160

Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm) of **X** on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{J_{0}} \|\mathbf{W}_{j}\|^{2} + \|\mathbf{V}_{J_{0}}\|^{2}$$

leading to an analysis of the sample variance of **X**:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

WMTSA: 150–156