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Motivation: Simulation of Gaussian
Stationary Processes

• let {Xt} be a Gaussian stationary process

– assume t to be discrete: t = . . . ,−1, 0, 1, . . .

– any finite subset of {Xt} is multivariate normal

– cov{Xt,Xt+τ} = sX,τ for all t and τ

(defines autocovariance sequence (ACVS))

– sX,τ determines spectrum SX(f ) =
∑
τ sX,τe

−i2πfτ

• Q: given supply of Gaussian white noise deviates,

how can we generate realizations of X0, . . . , XN−1?

• common approaches fall in two categories

– time domain (e.g., Cholesky decomposition)

– frequency domain (e.g., circulant embedding)

• disadvantages to common approaches

– can be slow for use in ‘real-time’ or with large N

– not easy to adapt for non-Gaussian processes

– not easy to adapt for nonstationary processes

• claim: wavelet-based method attractive alternative



Outline of Remainder of Talk

• overview of discrete wavelet transform (DWT)

– orthonormal transform

– localized in time and frequency

– DWT as decorrelator of ‘power law’

or ‘1/f type’ processes

• wavelet-based simulation of time series

– previously proposed wavelet-based scheme

(Wornell, 1995; McCoy & Walden, 1996)

– ‘circularization’ produces

non-Gaussian stationary processes

– can adapt for time-varying power-law processes

– can adapt for ‘real-time’ implementations

• comments on extending scheme to other processes

via discrete wavelet packet transforms (DWPTs)



Overview of DWT

• let X = [X0, X1, . . . , XN−1]
T denote a time series

(for convenience, assume N = 2J)

• let W be N ×N orthonormal DWT matrix;

i.e., W−1 = WT so WTW = WWT = IN

• W = WX is vector of DWT coefficients

• can partition W as follows:

W =




W1
...

WJ

VJ




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ contains a single scaling coefficient

– proportion to sample mean of time series



DWT in Terms of Filters: I

• filter X0, X1, . . . , XN−1 to obtain

Wj,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1

where hj,l is jth level wavelet filter

– L is length of unit level filter (must be even)

– jth level filter has length Lj = (2j−1)(L−1)+1

– note use of circular filtering

• subsample to obtain wavelet coefficients:

Wj,t = Wj,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Fig. 2: Haar wavelet filters of levels j = 1, . . . , 7

• Fig. 3: D(4), C(6) & LA(8) wavelet filters

– ‘D’ = Daubechies’ extremal phase filters

– ‘C’ & ‘LA’ =‘coiflets’ & ‘least asymmetric’

(have approximately linear phase)



Examples of DWTs: I

• formation of Haar DWT coefficients for N = 16:

W = WX =




• • 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 • • 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 • • 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 • • 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 • • 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 • •
• • • • 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 • • • • 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 • • • • 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 • • • •
• • • • • • • • 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
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Examples of DWTs: II

• formation of D(4) DWT coefficients for N = 16:

W = WX =




• • 0 0 0 0 0 0 0 0 0 0 0 0 • •
• • • • 0 0 0 0 0 0 0 0 0 0 0 0

0 0 • • • • 0 0 0 0 0 0 0 0 0 0

0 0 0 0 • • • • 0 0 0 0 0 0 0 0

0 0 0 0 0 0 • • • • 0 0 0 0 0 0

0 0 0 0 0 0 0 0 • • • • 0 0 0 0

0 0 0 0 0 0 0 0 0 0 • • • • 0 0

0 0 0 0 0 0 0 0 0 0 0 0 • • • •
• • • • 0 0 0 0 0 0 • • • • • •
• • • • • • • • 0 0 0 0 0 0 • •
0 0 • • • • • • • • • • 0 0 0 0

0 0 0 0 0 0 • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
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• localization in time decreases with increasing L

• there are N/2j coefficients at level j, of which

no more than L− 2 are ‘boundary’ coefficients



DWT in Terms of Filters: II

• jth wavelet filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

• note: jth scale related to interval of frequencies

• Fig. 4: squared gain functions for j = 1, 2, 3 and

L = 2, 4, . . . , 14

• band-pass approximation improves as L increases



DWT of FD Processes

• Xt called fractionally differenced (FD) process

if its spectrum is given by

SX(f ) =
σ2

|2 sin(πf )|2δ ,

where σ2 > 0

• note: for small f , have SX(f ) ≈ C/|f |2δ;
i.e., power law or ‘1/f type’ process

• if δ = 0, FD process is white noise

• if 0 < δ < 1
2, process stationary with ‘long memory’

• can extend definition to δ ≥ 1
2

– nonstationary 1/f type process

– also called ARFIMA(0,δ,0) process

• Fig 5: DWT of FDP, δ = 0.4



DWT as a Whitening Transform

• since FD process is stationary, Wj is also

(ignoring terms influenced by circularity)

• Fig. 6: SDFs Sj(·) for Wj, j = 1, 2, 3, 4

• DWT acts as whitening filter for FD series because

SDFs for Wj are ≈ flat over pass-bands [ 1
2j+1 ,

1
2j ]

• Figs. 7 & 8: auto- and cross-correlations

• can regard W1, . . . ,WJ as ≈ uncorrelated

– cross-correlation decreases as L increases

– refinement: model remaining autocorrelation

using autoregressive model of low order

• if Gaussian, close to independently distributed

– ≈ IID within given Wj, but not between

(Wj & Wj′ can have different variances)



DWT-Based Simulation: I

• basic DWT-based simulation scheme

– approximate Wj as Gaussian white noise

with zero mean and variance
∫ 1/2

−1/2
Hj(f )SX(f ) df ≈ 1

1
2j − 1

2j+1

∫ 1/2j

1/2j+1 SX(f ) df ≡ Cj,

where Hj(·) is squared gain function for hj,l

– approximate X via

YN ≡ WT
NΛ

1/2
N ZN,

where

∗ Λ is N ×N diagonal matrix with diagonal

C1, . . . , C1︸ ︷︷ ︸
N
2 of these

, C2, . . . , C2︸ ︷︷ ︸
N
4 of these

, . . . , CJ−1, CJ−1︸ ︷︷ ︸
2 of these

, CJ, CJ+1

(CJ+1 ∝ variance of scaling coefficient in VJ)

∗ ZN is vector of Gaussian white noise

(zero mean and unit variance)

• Q: do covariance matrices of X & YN match up?

– ΣX is Toeplitz with diagonals sX,0, . . . , sX,N−1

– Fig. 9: ΣY is not Toeplitz!



DWT-Based Simulation: II

• can force Toeplitz structure via following ‘trick’

– recall W treats X as if it were circular

– let T be N ×N ‘circular rotation’ matrix:

T




Y0

Y1

Y2

Y3




=




Y1

Y2

Y3

Y0



; T 2




Y0

Y1

Y2

Y3




=




Y2

Y3

Y0

Y1



; etc.

– let κ be uniformily distributed over 0, . . . , N − 1

– define ỸN ≡ T κYN

• can show that ỸN has Toeplitz covariance matrix;

i.e., ỸN is stationary with ACVS sỸ ,τ

• can argue sỸ ,N−τ = sỸ ,τ for τ = 1, . . . , N/2

– thus sỸ ,τ �≈ sX,τ for τ close to N

– can patch up by simulating ỸM with M > N

and then extracting first N deviates

– Fig. 10: approximate and target ACVSs

– Fig. 11: example of simulated FD series



Simulating Non-Gaussian Series

• marginal distributions of YM are Gaussian,

but ỸM obeys Gaussian mixture model

• let I be a binomial random variable (RV):

P [I = 1] = p and P [I = 0] = 1 − p

• let N (0, σ2) be Gaussian RV, mean 0 & variance σ2

• example of RV with Gaussian mixture:

R = IN (0, σ2
1) + (1 − I)N (0, σ2

2),

where σ2
1 �= σ2

2

• Fig. 12: example of Gaussian mixture density

• generalizes readily to multinomial

• consider replacing M
2j occurrences of Cj in ΛM

with values whose average is Cj

• Q: how does this affect statistical properties of ỸM?

– spectral properties over [ 1
2j+1 ,

1
2j ] ≈ invariant

(due to circularization)

– univariate distribution changes significantly

• Fig. 13: FD processes with different marginals



Simulating Non-Stationary Series

• recall that Wj,t = Wj,2j(t+1)−1, where

Wj,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1

• if hj,l is coiflet or least asymmetric filter,

can associate Wj,t with position in time series

(apply shifts to turn linear phase into zero phase)

• can thus generate time-dependent Cj to simulate

process with time-evolving spectrum

(e.g., evolving from S(f ) ∝ |f |−0.2 to S(f ) ∝ |f |−0.8)

• Fig. 14: example of time series with evolving spec-

trum



‘Real-Time’ Simulation: I

• form of simulated series via inverse Haar DWT:

YM = WT
MΛ

1/2
M ZM =




• 0 0 0 0 0 0 0 • 0 0 0 • 0 • •
• 0 0 0 0 0 0 0 • 0 0 0 • 0 • •
0 • 0 0 0 0 0 0 • 0 0 0 • 0 • •
0 • 0 0 0 0 0 0 • 0 0 0 • 0 • •
0 0 • 0 0 0 0 0 0 • 0 0 • 0 • •
0 0 • 0 0 0 0 0 0 • 0 0 • 0 • •
0 0 0 • 0 0 0 0 0 • 0 0 • 0 • •
0 0 0 • 0 0 0 0 0 • 0 0 • 0 • •
0 0 0 0 • 0 0 0 0 0 • 0 0 • • •
0 0 0 0 • 0 0 0 0 0 • 0 0 • • •
0 0 0 0 0 • 0 0 0 0 • 0 0 • • •
0 0 0 0 0 • 0 0 0 0 • 0 0 • • •
0 0 0 0 0 0 • 0 0 0 0 • 0 • • •
0 0 0 0 0 0 • 0 0 0 0 • 0 • • •
0 0 0 0 0 0 0 • 0 0 0 • 0 • • •
0 0 0 0 0 0 0 • 0 0 0 • 0 • • •
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• need log2(M) + 1 multiplications to compute any Yt
(even less if elements computed recursively)

• only log2(M) + 1 random deviates required at once



‘Real-Time’ Simulation: II

• can generate series with large N since, e.g.,

log2(1, 073, 741, 824) = 30

• for other wavelets (LA(8) etc.), required storage and

computational burden increase linearly

(hj,l can be generated using approximation scheme)



Beyond Power Law Processes

• DWT ideally suited for power-law processes,

but problematic for other processes

• Fig. 15: DWT applied to two autoregressive pro-

cesses

• key to scheme is finding decorrelating transform

• possible to do so for given spectrum using DWPT

(discrete wavelet packet transform)

• Figs. 16, 17 & 18: key ideas behind DWPT



Concluding Remarks

• wavelet-based simulations quite promising,

but still some theoretical work to be done

• would welcome opportunities for collaborations

involving implementing scheme for applications


