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Motivation: Simulation of Gaussian
Stationary Processes

e let { X} be a Gaussian stationary process

— assume t to be discrete: t=...,—1,0,1,...
— any finite subset of {X;} is multivariate normal

—cov{ Xy, Xy4r} = sx, forall t and 7
(defines autocovariance sequence (ACVS))
— sx.r determines spectrum Sx(f) = 2 s x. e 2T

e (): given supply of Gaussian white noise deviates,
how can we generate realizations of X, ..., Xy_17

e common approaches fall in two categories

— time domain (e.g., Cholesky decomposition)

— frequency domain (e.g., circulant embedding)
e disadvantages to common approaches

— can be slow for use in ‘real-time’ or with large NV
— not easy to adapt for non-Gaussian processes

— not easy to adapt for nonstationary processes

e claim: wavelet-based method attractive alternative



Outline of Remainder of Talk

e overview of discrete wavelet transform (DWT)

— orthonormal transform

— localized in time and frequency

— DWT as decorrelator of ‘power law’
or ‘1/f type’ processes

e wavelet-based simulation of time series

— previously proposed wavelet-based scheme
(Wornell, 1995; McCoy & Walden, 1996)

— ‘circularization’ produces
non-Gaussian stationary processes

— can adapt for time-varying power-law processes
— can adapt for ‘real-time’ implementations

e comments on extending scheme to other processes
via discrete wavelet packet transforms (DWPTs)



Overview of DWT

o let X = [Xy, X1,..., Xy 1]! denote a time series
(for convenience, assume N = 27)

e let YW be N x N orthonormal DW'T' matrix;
e, W L=WTso WW =WWT = Iy

o W = WX is vector of DW'T coefficients

e can partition W as follows:

W:

e W contains N; = N/2/ wavelet coefficients

— related to changes of averages at scale 7; = 2771
(7; is gth ‘dyadic’ scale)
— related to times spaced 27 units apart

e V; contains a single scaling coefficient

— proportion to sample mean of time series



DWT in Terms of Filters: 1

o filter X, X1,..., Xy_1 to obtain

_ Lj—1
Wj)t = lz:() hj,lXt—lmodNa t=0,1,...,N—1

where h;; is jth level wavelet filter

— L is length of unit level filter (must be even)
— jthlevel filter has length L; = (2/ —1)(L—1)+1

— note use of circular filtering
e subsample to obtain wavelet coefficients:
Wi = ngj(t_i_l)_l, t=0,1,...,N; — 1,
where W, ; is tth element of W
e Fig. 2: Haar wavelet filters of levels 7 =1,...,7
e Fig. 3: D(4), C(6) & LA(8) wavelet filters

— ‘D’ = Daubechies’ extremal phase filters

— ‘C" & ‘LA’ =‘coiflets’ & ‘least asymmetric’
(have approximately linear phase)
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Examples of DWTs: 11

e formation of D(4) DWT coefficients for N = 16:
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e localization in time decreases with increasing L

e there are N/2/ coefficients at level j, of which
no more than L — 2 are ‘boundary’ coefficients

® 6 & & 0 O 0 &0 ¢ O O T oo oo e




DWT in Terms of Filters: 11

e jth wavelet filter is band-pass with pass-band [2]%, 2%]
e note: jth scale related to interval of frequencies

e Fig. 4. squared gain functions for 5 = 1,2,3 and
L=24...14

e band-pass approximation improves as L increases



DWT of FD Processes

X; called fractionally differenced (FD) process
if its spectrum is given by
2

- |2 sin(7 f)]20’

Sx(f)

where o2 > 0

note: for small f, have Sx(f) ~ C/|f|*;
i.e., power law or ‘1/f type’ process

if 6 =0, FD process is white noise
if0<d< %, process stationary with ‘long memory’
can extend definition to 6 > %

— nonstationary 1/ f type process

— also called ARFIMA(0,4,0) process
Fig 5: DWT of FDP, 6 = 0.4



DWT as a Whitening Transform

e since D process is stationary, W is also
(ignoring terms influenced by circularity)

e Fig. 6: SDFs S;(-) for W, j =1,2,3,4

e DWT acts as whitening filter for FD series because

SDFs for W; are ~ flat over pass-bands [, o]
e Figs. 7 & 8: auto- and cross-correlations
e can regard Wy, ..., W as = uncorrelated

— cross-correlation decreases as L increases

— refinement: model remaining autocorrelation
using autoregressive model of low order

e if Gaussian, close to independently distributed

— ~ [ID within given W, but not between
(W, & W can have different variances)



DWT-Based Simulation: I

e basic DWT-based simulation scheme

— approximate W as Gaussian white noise
with zero mean and variance

1 J
NS N df & [ Sx(Ndf =,

27 27T
where H(+) is squared gain function for h;;

— approximate X via
Yy = WIAYZy,
where

x A is N x N diagonal matrix with diagonal
Cl) ce Ol; 027 Tty 027 SR OJ—l) CJ—l; OJ) CJ—I—l

% of these % of these 2 of these

(C'y11 o variance of scaling coefficient in 'V ;)

x Ziy 1s vector of Gaussian white noise
(zero mean and unit variance)

e (): do covariance matrices of X & Y match up?

— Yx is Toeplitz with diagonals sx,...,Sxn-1

— Fig. 9: Xy is not Toeplitz!



DWT-Based Simulation: 11

e can force Toeplitz structure via following ‘trick’

— recall VWV treats X as if it were circular

—let 7 be N x N ‘circular rotation’ matrix:

Yo Y Yo | Ys
il _|Yo| Y| _|Ys,

T v, vl T v, v etc.
Y; | Yo | Y; Yy

— let k be uniformily distributed over 0,..., N —1
— define ?N = TKYN
e can show that Yy has Toeplitz covariance matrix;
l.e., Yy is stationary with ACVS sy
e can argue sy v = sy forT=1,...,N/2
— thus sy % sx ;- for 7 close to IV
— can patch up by simulating Y, with M > N
and then extracting first N deviates

— Fig. 10: approximate and target ACVSs

— Fig. 11: example of simulated F'D series



Simulating Non-Gaussian Series

e marginal distributions of Y j; are Gaussian,
but Y s obeys Gaussian mixture model

e let Z be a binomial random variable (RV):
PZ=1l=pand PZ=0=1-—p

e let A(0, 0?) be Gaussian RV, mean 0 & variance o

e example of RV with Gaussian mixture:

R=1IN(0,01)+ (1 —ZI)N(0,03),
where 0% # 03
e Fig. 12: example of Gaussian mixture density
e generalizes readily to multinomial

e consider replacing 94—] occurrences of C in Ayy
with values whose average is C

e O: how does this affect statistical properties of Y ;7

1 1

— spectral properties over [W) 27] ~ Invariant

(due to circularization)

— univariate distribution changes significantly

e [ig. 13: FD processes with different marginals



Simulating Non-Stationary Series

o recall that Wiy =W, 941y, where

_ Lj—1
Wj7tE l;) hj,lXt—lmodNa t:O,l,...,N— 1

o if 1, is coiflet or least asymmetric filter,
can assoclate W;; with position in time series
(apply shifts to turn linear phase into zero phase)

e can thus generate time-dependent C; to simulate
process with time-evolving spectrum

(e.g., evolving from S(f) o< | f|7%* to S(f) o< | f|7"®)

e [ig. 14: example of time series with evolving spec-
trum



‘Real-Time’ Simulation: 1

e form of simulated series via inverse Haar DW'T:
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e need log, (M) + 1 multiplications to compute any Y;

(even less if elements computed recursively)

e only log,(M) + 1 random deviates required at once




‘Real-Time’ Simulation: II

e can generate series with large IV since, e.g.,
log,(1,073,741,824) = 30

e for other wavelets (LA(8) etc.), required storage and
computational burden increase linearly
(hj; can be generated using approximation scheme)



Beyond Power Law Processes

e DWT ideally suited for power-law processes,
but problematic for other processes

e [ig. 15: DW'T applied to two autoregressive pro-
cesses

e key to scheme is finding decorrelating transform

e possible to do so for given spectrum using DWPT
(discrete wavelet packet transform)

e Figs. 16, 17 & 18: key ideas behind DWPT



Concluding Remarks

e wavelet-based simulations quite promising,
but still some theoretical work to be done

e would welcome opportunities for collaborations
involving implementing scheme for applications



