Wavelet-Based Simulation of Stochastic Processes

Don Percival

Applied Physics Lab, University of Washington

overheads available via

http://www.staff.washington.edu/dbp
under "Recent Talks"

Motivation: Simulation of Gaussian Stationary Processes

- let $\{X_t\}$ be a Gaussian stationary process
 - assume t to be discrete: $t = \ldots, -1, 0, 1, \ldots$
 - any finite subset of $\{X_t\}$ is multivariate normal
 - $-\operatorname{cov}\{X_t, X_{t+\tau}\} = s_{X,\tau} \text{ for all } t \text{ and } \tau$ (defines autocovariance sequence (ACVS))
 - $-s_{X,\tau}$ determines spectrum $S_X(f) = \sum_{\tau} s_{X,\tau} e^{-i2\pi f\tau}$
- Q: given supply of Gaussian white noise deviates, how can we generate realizations of X_0, \ldots, X_{N-1} ?
- common approaches fall in two categories
 - time domain (e.g., Cholesky decomposition)
 - frequency domain (e.g., circulant embedding)
- disadvantages to common approaches
 - can be slow for use in 'real-time' or with large N
 - not easy to adapt for non-Gaussian processes
 - not easy to adapt for nonstationary processes
- claim: wavelet-based method attractive alternative

Outline of Remainder of Talk

- overview of discrete wavelet transform (DWT)
 - orthonormal transform
 - localized in time and frequency
 - DWT as decorrelator of 'power law' or '1/f type' processes
- wavelet-based simulation of time series
 - previously proposed wavelet-based scheme (Wornell, 1995; McCoy & Walden, 1996)
 - 'circularization' produces
 non-Gaussian stationary processes
 - can adapt for time-varying power-law processes
 - can adapt for 'real-time' implementations
- comments on extending scheme to other processes via discrete wavelet packet transforms (DWPTs)

Overview of DWT

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ denote a time series (for convenience, assume $N = 2^J$)
- let \mathcal{W} be $N \times N$ orthonormal DWT matrix; i.e., $\mathcal{W}^{-1} = \mathcal{W}^T$ so $\mathcal{W}^T \mathcal{W} = \mathcal{W} \mathcal{W}^T = I_N$
- $\mathbf{W} = \mathcal{W} \mathbf{X}$ is vector of DWT coefficients
- can partition **W** as follows:

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_1 \ dots \ \mathbf{W}_J \ \mathbf{V}_J \end{bmatrix}$$

- \mathbf{W}_j contains $N_j = N/2^j$ wavelet coefficients
 - related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is *j*th 'dyadic' scale)
 - related to times spaced 2^j units apart
- \mathbf{V}_J contains a single scaling coefficient
 - proportion to sample mean of time series

DWT in Terms of Filters: I

• filter
$$X_0, X_1, \ldots, X_{N-1}$$
 to obtain

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

where $h_{j,l}$ is *j*th level wavelet filter

-L is length of unit level filter (must be even)

-jth level filter has length $L_j = (2^j - 1)(L - 1) + 1$

- note use of circular filtering

• subsample to obtain wavelet coefficients:

$$W_{j,t} = \overline{W}_{j,2^{j}(t+1)-1}, \quad t = 0, 1, \dots, N_{j} - 1,$$

where $W_{j,t}$ is the element of \mathbf{W}_{j}

- Fig. 2: Haar wavelet filters of levels $j = 1, \ldots, 7$
- Fig. 3: D(4), C(6) & LA(8) wavelet filters
 - 'D' = Daubechies' extremal phase filters
 - 'C' & 'LA' = 'coiflets' & 'least asymmetric' (have approximately linear phase)

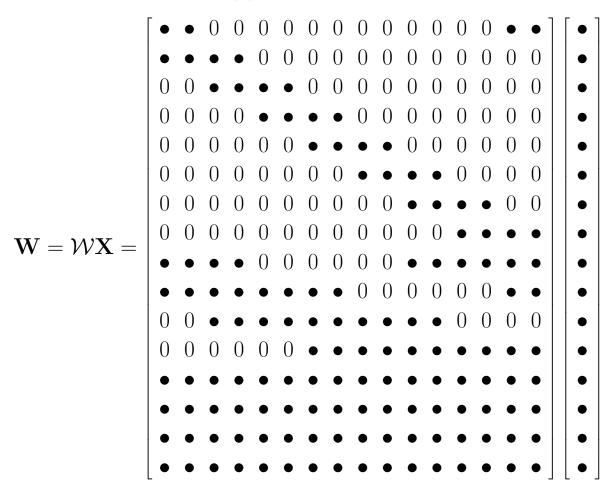
Examples of DWTs: I

• formation of Haar DWT coefficients for N = 16:

	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0][0	•
	0	0	•	•	0	0	0	0	0	0	0	0	0	0	0	0	•
	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0	0	•
	0	0	0	0	0	0	•	•	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\mathbf{W} = \mathcal{W} \mathbf{X} =$	0	0	0	0	0	0	0	0	•	•	0	0	0	0	0	0	•
	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	•
	0	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	•
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	•
	•	•	•	•	0	0	0	0	0	0	0	0	0	0	0	0	•
	0	0	0	0	•	•	•	•	0	0	0	0	0	0	0	0 0	•
	0	0	0	0	0	0	0	0	•	•	•	•	0	0	0	0	•
	0	0	0	0	0	0	0	0	0	0	0	0	•	•	•	•	•
	•	•	•	•	•	•	•	•	0	0	0	0	0	0	0	0	•
	0	0	0	0	0	0	0	0	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•] [•	•]

Examples of DWTs: II

• formation of D(4) DWT coefficients for N = 16:



- \bullet localization in time decreases with increasing L
- there are $N/2^{j}$ coefficients at level j, of which no more than L-2 are 'boundary' coefficients

DWT in Terms of Filters: II

- *j*th wavelet filter is band-pass with pass-band $\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right]$
- \bullet note: *j*th scale related to interval of frequencies
- Fig. 4: squared gain functions for j = 1, 2, 3 and $L = 2, 4, \ldots, 14$
- \bullet band-pass approximation improves as L increases

DWT of FD Processes

• X_t called fractionally differenced (FD) process if its spectrum is given by

$$S_X(f) = \frac{\sigma^2}{|2\sin(\pi f)|^{2\delta}},$$

where $\sigma^2 > 0$

- note: for small f, have $S_X(f) \approx C/|f|^{2\delta}$; i.e., power law or '1/f type' process
- if $\delta = 0$, FD process is white noise
- if $0 < \delta < \frac{1}{2}$, process stationary with 'long memory'
- can extend definition to $\delta \geq \frac{1}{2}$
 - nonstationary 1/f type process
 - also called ARFIMA(0, δ ,0) process
- Fig 5: DWT of FDP, $\delta = 0.4$

DWT as a Whitening Transform

- since FD process is stationary, \mathbf{W}_j is also (ignoring terms influenced by circularity)
- Fig. 6: SDFs $S_j(\cdot)$ for \mathbf{W}_j , j = 1, 2, 3, 4
- DWT acts as whitening filter for FD series because SDFs for \mathbf{W}_j are \approx flat over pass-bands $\left[\frac{1}{2^{j+1}}, \frac{1}{2^j}\right]$
- Figs. 7 & 8: auto- and cross-correlations
- can regard $\mathbf{W}_1, \ldots, \mathbf{W}_J$ as \approx uncorrelated
 - cross-correlation decreases as L increases
 - refinement: model remaining autocorrelation using autoregressive model of low order
- if Gaussian, close to independently distributed
 - \approx IID within given \mathbf{W}_j , but not between $(\mathbf{W}_j \& \mathbf{W}_{j'} \text{ can have different variances})$

DWT-Based Simulation: I

- basic DWT-based simulation scheme
 - approximate \mathbf{W}_j as Gaussian white noise with zero mean and variance

$$\int_{-1/2}^{1/2} \mathcal{H}_j(f) S_X(f) \, df \approx \frac{1}{\frac{1}{2^j} - \frac{1}{2^{j+1}}} \int_{1/2^{j+1}}^{1/2^j} S_X(f) \, df \equiv C_j,$$

where $\mathcal{H}_{j}(\cdot)$ is squared gain function for $h_{j,l}$

- approximate \mathbf{X} via

$$\mathbf{Y}_N \equiv \mathcal{W}_N^T \Lambda_N^{1/2} \mathbf{Z}_N,$$

where

* Λ is $N \times N$ diagonal matrix with diagonal

$$\underbrace{C_1, \ldots, C_1}_{\frac{N}{2} \text{ of these}}, \underbrace{C_2, \ldots, C_2}_{\frac{N}{4} \text{ of these}}, \ldots, \underbrace{C_{J-1}, C_{J-1}}_{2 \text{ of these}}, C_J, C_{J+1}$$

 $(C_{J+1} \propto \text{variance of scaling coefficient in } \mathbf{V}_J)$

* \mathbf{Z}_N is vector of Gaussian white noise (zero mean and unit variance)

- Q: do covariance matrices of $\mathbf{X} \& \mathbf{Y}_N$ match up?
 - $-\Sigma_{\mathbf{X}}$ is Toeplitz with diagonals $s_{X,0}, \ldots, s_{X,N-1}$
 - Fig. 9: $\Sigma_{\mathbf{Y}}$ is not Toeplitz!

DWT-Based Simulation: II

- can force Toeplitz structure via following 'trick'
 - recall \mathcal{W} treats \mathbf{X} as if it were circular
 - let \mathcal{T} be $N \times N$ 'circular rotation' matrix:

$$\mathcal{T}\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_1\\Y_2\\Y_3\\Y_0\end{bmatrix}; \quad \mathcal{T}^2\begin{bmatrix}Y_0\\Y_1\\Y_2\\Y_3\end{bmatrix} = \begin{bmatrix}Y_2\\Y_3\\Y_0\\Y_1\end{bmatrix}; \quad \text{etc.}$$

- let κ be uniformily distributed over $0, \ldots, N-1$ - define $\widetilde{\mathbf{Y}}_N \equiv \mathcal{T}^{\kappa} \mathbf{Y}_N$

- can show that $\widetilde{\mathbf{Y}}_N$ has Toeplitz covariance matrix; i.e., $\widetilde{\mathbf{Y}}_N$ is stationary with ACVS $s_{\widetilde{Y},\tau}$
- can argue $s_{\tilde{Y},N-\tau} = s_{\tilde{Y},\tau}$ for $\tau = 1, \ldots, N/2$
 - thus $s_{\widetilde{Y},\tau} \not\approx s_{X,\tau}$ for τ close to N
 - can patch up by simulating $\widetilde{\mathbf{Y}}_M$ with M > Nand then extracting first N deviates
 - Fig. 10: approximate and target ACVSs
 - Fig. 11: example of simulated FD series

Simulating Non-Gaussian Series

- marginal distributions of \mathbf{Y}_M are Gaussian, but $\widetilde{\mathbf{Y}}_M$ obeys Gaussian mixture model
- let \mathcal{I} be a binomial random variable (RV):

$$\mathbf{P}[\mathcal{I}=1] = p \text{ and } \mathbf{P}[\mathcal{I}=0] = 1-p$$

- let $\mathcal{N}(0, \sigma^2)$ be Gaussian RV, mean 0 & variance σ^2
- example of RV with Gaussian mixture:

 $R=\mathcal{IN}(0,\sigma_1^2)+(1-\mathcal{I})\mathcal{N}(0,\sigma_2^2),$ where $\sigma_1^2\neq\sigma_2^2$

- Fig. 12: example of Gaussian mixture density
- generalizes readily to multinomial
- consider replacing $\frac{M}{2^j}$ occurrences of C_j in Λ_M with values whose average is C_j
- Q: how does this affect statistical properties of $\widetilde{\mathbf{Y}}_M$?
 - spectral properties over $\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right] \approx$ invariant (due to circularization)
 - univariate distribution changes significantly
- Fig. 13: FD processes with different marginals

Simulating Non-Stationary Series

• recall that $W_{j,t} = \overline{W}_{j,2^{j}(t+1)-1}$, where

$$\overline{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

- if $h_{j,l}$ is coiflet or least asymmetric filter, can associate $W_{j,t}$ with position in time series (apply shifts to turn linear phase into zero phase)
- can thus generate time-dependent C_j to simulate process with time-evolving spectrum (e.g., evolving from $S(f) \propto |f|^{-0.2}$ to $S(f) \propto |f|^{-0.8}$)
- Fig. 14: example of time series with evolving spectrum

'Real-Time' Simulation: I

• form of simulated series via inverse Haar DWT:

- need $\log_2(M) + 1$ multiplications to compute any Y_t (even less if elements computed recursively)
- only $\log_2(M) + 1$ random deviates required at once

'Real-Time' Simulation: II

- can generate series with large N since, e.g., $\log_2(1,073,741,824) = 30$
- for other wavelets (LA(8) etc.), required storage and computational burden increase linearly (h_{j,l} can be generated using approximation scheme)

Beyond Power Law Processes

- DWT ideally suited for power-law processes, but problematic for other processes
- Fig. 15: DWT applied to two autoregressive processes
- key to scheme is finding decorrelating transform
- possible to do so for given spectrum using DWPT (discrete wavelet packet transform)
- Figs. 16, 17 & 18: key ideas behind DWPT

Concluding Remarks

- wavelet-based simulations quite promising, but still some theoretical work to be done
- would welcome opportunities for collaborations involving implementing scheme for applications