

Figure 1. ACVS $\left\{s_{X, \tau}\right\}$, spectrum $S_{X}(\cdot)$ and three realization of an FD process with $\delta=0.4$.

Figure 2. Haar wavelet filters for scales $\tau_{j}=2^{j-1}, j=1,2, \ldots, 7$.

Figure 3. $\mathrm{D}(4), \mathrm{C}(6)$ and $\mathrm{LA}(8)$ wavelet filters for scales $\tau_{j}=2^{j-1}, j=$ $1,2, \ldots, 7$.

Figure 4. Squared gain functions $\mathcal{H}_{j}^{(D)}(\cdot), j=1,2$ and 3 (left, middle and right columns, respectively), for Daubechies wavelet filters of widths $L=$ $2,4, \ldots, 14$ (top to bottom rows, respectively). The two thin vertical lines in each plot delineate the nominal pass-band for the filter. The vertical axis is in decibels (i.e., we plot $10 \cdot \log _{10}\left(\mathcal{H}_{j}^{(D)}(f)\right)$ versus f).

Figure 5. LA(8) DWT coefficients for simulated FD(0.4) time series and sample ACSs.

Figure 6. SDFs for an $\mathrm{FD}(0.4)$ process (left-hand plot) and for nonboundary LA(8) wavelet coefficients in $\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}$ and \mathbf{W}_{4} (right-hand). The vertical axis is in units of decibels (i.e., we plot $\log _{10}\left(S_{X}(f)\right)$ versus f). The vertical lines in the left-hand plot denote the nominal pass-bands for the four \mathbf{W}_{j}.

Figure 7. ACSs at $\tau=1, \ldots 4$ for Haar, $\mathrm{D}(4)$ and LA(8) wavelet coefficients $W_{j, t}, j=1, \ldots 4$, of an $\mathrm{FD}(0.4)$ process. The ACS values are plotted as deviations from zero (some are not visible because they are so close to zero).

Figure 8a. Correlation between the Haar wavelet coefficients $W_{j, t}$ and $W_{j^{\prime}, t^{\prime}}$ formed from an $\mathrm{FD}(0.4)$ process and for levels satisfying $1 \leq j<j^{\prime} \leq 4$.

Figure 8b. As in Figure 8a, but now using the LA(8) DWT.

Figure 9. Diagonal elements $\Sigma_{\mathbf{Y}, m, m+\tau}$ and $\Sigma_{\mathbf{X}, m, m+\tau}, m=0, \ldots, N-1-\tau$, of the covariance matrices $\Sigma_{\mathbf{Y}}$ and $\Sigma_{\mathbf{X}}$ (thick jagged curves and thin horizontal lines, respectively) for sample size $N=64$ from an $\operatorname{FD}(0.4)$ process with $\sigma^{2}=1$ and with $\Sigma_{\mathbf{Y}}$ constructed using an LA(8) DWT. Three diagonals are plotted for each covariance matrix, namely, the main diagonal $(\tau=0)$ and the first two off-diagonals $(\tau=1$ and 2$)$. Whereas $\Sigma_{\mathbf{X}}$ exhibits the Toeplitz structure required for a stationary process, its approximation $\Sigma_{\mathbf{Y}}$ does not.

Figure 10. True ACVS (thin curves) and wavelet-based approximate ACVSs (thick) for an $\mathrm{FD}(0.4)$ process. The approximating ACVSs are based on an LA(8) DWT in which we generate a series of length M and then extract a series of length $N=64$. As M goes from N to $4 N$, the approximate ACVS gets closer to the true ACVS.

Figure 11. LA(8) wavelet-based simulation of a series of length $N=1024$ from an FD process with zero mean and with parameters $\delta=0.4$ and $\sigma^{2}=1.0$.

Figure 12. PDFs for $\mathcal{N}(0,1)$ and $\mathcal{N}(0,10)$ RVs (left-hand plot, thin and thick curves, respectively) and for an RV obeying a Gaussian mixture model (righthand plot). The mixture PDF is non-Gaussian and is formed by adding the $\mathcal{N}(0,1)$ and $\mathcal{N}(0,10)$ PDFs, weighted by $p=0.75$ and $1-p=0.25$, respectively (adapted from Figure 1 of Chipman et al., 1997).

Figure 13. Three simulated time series generated using the wavelet-based scheme. The top series was constructed using homogeneous variances for each scale, while the bottom two series use inhomogeneous variances. The middle series has a quiesent period of about a hundred points, whereas the bottom has a noticeable burst of about the same duration. While all three series are realizations of stationary processes with spectra that are designed to approximate that of an FD process with $\delta=0.4$, their marginal distributions obey quite different Gaussian mixture models (the distribution for the top series is in fact very close to Gaussian).

Figure 14. LA(8) wavelet-based simulation of a series of length $N=1024$ from process with time varying statistical properties.

Figure 15. SDFs for $A R(1)$ processes (top plot) with $\phi=0.9$ (thick curve) and -0.9 (thin) and for corresponding nonboundary LA(8) wavelet coefficients in \mathbf{W}_{1} to \mathbf{W}_{4} (bottom four plots). The vertical axes are in decibels, and the vertical lines in the top plot denote the nominal pass-bands for the four \mathbf{W}_{j}.

Figure 16. Flow diagram illustrating the analysis of \mathbf{X} into $\mathbf{W}_{3,0}, \ldots, \mathbf{W}_{3,7}$ (recall that $N_{j} \equiv N / 2^{j}$).

Figure 17. Flow diagram illustrating the analysis of \mathbf{X} into $\mathbf{W}_{3,0}, \mathbf{W}_{3,1}$, $\mathbf{W}_{2,1}$ and $\mathbf{W}_{1,1}$, which is identical to a partial DWT of level $J_{0}=3$.

Figure 18. Flow diagram illustrating the analysis of \mathbf{X} into $\mathbf{W}_{2,0}, \mathbf{W}_{3,2}$, $\mathbf{W}_{3,3}$ and $\mathbf{W}_{1,1}$, an arbitrary disjoint dyadic decomposition.

