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Figure 1. ACVS {sX,τ}, spectrum SX(·) and three realization of an FD

process with δ = 0.4.
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Figure 2. Haar wavelet filters for scales τj = 2j−1, j = 1, 2, . . . , 7.
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Figure 3. D(4), C(6) and LA(8) wavelet filters for scales τj = 2j−1, j =

1, 2, . . . , 7.
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Figure 4. Squared gain functions H(D)
j (·), j = 1, 2 and 3 (left, middle and

right columns, respectively), for Daubechies wavelet filters of widths L =

2, 4, . . . , 14 (top to bottom rows, respectively). The two thin vertical lines

in each plot delineate the nominal pass-band for the filter. The vertical axis is

in decibels (i.e., we plot 10 · log10(H
(D)
j (f)) versus f).
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Figure 5. LA(8) DWT coefficients for simulated FD(0.4) time series and

sample ACSs.
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Figure 6. SDFs for an FD(0.4) process (left-hand plot) and for nonboundary

LA(8) wavelet coefficients in W1, W2, W3 and W4 (right-hand). The vertical

axis is in units of decibels (i.e., we plot log10(SX(f)) versus f). The vertical

lines in the left-hand plot denote the nominal pass-bands for the four Wj .
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Figure 7. ACSs at τ = 1, . . . 4 for Haar, D(4) and LA(8) wavelet coefficients

Wj,t, j = 1, . . . 4, of an FD(0.4) process. The ACS values are plotted as

deviations from zero (some are not visible because they are so close to zero).
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Figure 8a. Correlation between the Haar wavelet coefficients Wj,t and Wj′,t′

formed from an FD(0.4) process and for levels satisfying 1 ≤ j < j′ ≤ 4.
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Figure 8b. As in Figure 8a, but now using the LA(8) DWT.
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Figure 9. Diagonal elements ΣY,m,m+τ and ΣX,m,m+τ , m = 0, . . . , N−1−τ ,

of the covariance matrices ΣY and ΣX (thick jagged curves and thin horizontal

lines, respectively) for sample size N = 64 from an FD(0.4) process with σ2 = 1

and with ΣY constructed using an LA(8) DWT. Three diagonals are plotted

for each covariance matrix, namely, the main diagonal (τ = 0) and the first

two off-diagonals (τ = 1 and 2). Whereas ΣX exhibits the Toeplitz structure

required for a stationary process, its approximation ΣY does not.
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Figure 10. True ACVS (thin curves) and wavelet-based approximate ACVSs

(thick) for an FD(0.4) process. The approximating ACVSs are based on an

LA(8) DWT in which we generate a series of length M and then extract a

series of length N = 64. As M goes from N to 4N , the approximate ACVS

gets closer to the true ACVS.



  

 

 

              

 

5

0

−5
0 256 512 768 1024

t

Figure 11. LA(8) wavelet-based simulation of a series of length N = 1024

from an FD process with zero mean and with parameters δ = 0.4 and σ2 = 1.0.
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Figure 12. PDFs for N (0, 1) and N (0, 10) RVs (left-hand plot, thin and thick

curves, respectively) and for an RV obeying a Gaussian mixture model (right-

hand plot). The mixture PDF is non-Gaussian and is formed by adding the

N (0, 1) and N (0, 10) PDFs, weighted by p = 0.75 and 1−p = 0.25, respectively

(adapted from Figure 1 of Chipman et al., 1997).
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Figure 13. Three simulated time series generated using the wavelet-based

scheme. The top series was constructed using homogeneous variances for each

scale, while the bottom two series use inhomogeneous variances. The middle

series has a quiesent period of about a hundred points, whereas the bottom

has a noticeable burst of about the same duration. While all three series are

realizations of stationary processes with spectra that are designed to approx-

imate that of an FD process with δ = 0.4, their marginal distributions obey

quite different Gaussian mixture models (the distribution for the top series is

in fact very close to Gaussian).
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Figure 14. LA(8) wavelet-based simulation of a series of length N = 1024

from process with time varying statistical properties.
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Figure 15. SDFs for AR(1) processes (top plot) with φ = 0.9 (thick curve)

and −0.9 (thin) and for corresponding nonboundary LA(8) wavelet coefficients

in W1 to W4 (bottom four plots). The vertical axes are in decibels, and the

vertical lines in the top plot denote the nominal pass-bands for the four Wj .
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Figure 16. Flow diagram illustrating the analysis of X into W3,0, . . . , W3,7

(recall that Nj ≡ N/2j).
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Figure 17. Flow diagram illustrating the analysis of X into W3,0, W3,1,

W2,1 and W1,1, which is identical to a partial DWT of level J0 = 3.
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Figure 18. Flow diagram illustrating the analysis of X into W2,0, W3,2,

W3,3 and W1,1, an arbitrary disjoint dyadic decomposition.


