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Introduction and Overview

• motivation: ABL aerothermal turbulence data

– Fig. 1: 7.5 million points (100 point averages)

– spatial resolution ≈ 1.83 cm

• will model using time-varying stochastic process

• basic idea: combine wavelets with stochastic fractals

– wavelets give time/scale decomposition

(yields multiscale approach to modeling)

– fractals describe connections across scales

(will use fractionally differenced processes)
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Outline of Talk

• overview of discrete wavelet transform (DWT)

• overview of fractionally differenced (FD) processes

• basic properties of DWT of an FD process

(DWT acts as decorrelator of FD processes)

• DWT-based estimation of parameters for FD process

– maximum likelihood and least squares estimators

• application to ABL data

• future work
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Overview of DWT: I

• let X = [X0, X1, . . . , XN−1]
T be observed time series

(for convenience, assume N integer multiple of 2J0)

• let W be N ×N orthonormal DWT matrix

• W = WX is vector of DWT coefficients

• orthonormality says X = WTW, so X ⇔ W

• can partition W as follows:

W =




W1
...

WJ0

VJ0




• Wj contains Nj = N/2j wavelet coefficients

– related to changes of averages at scale τj = 2j−1

(τj is jth ‘dyadic’ scale)

– related to times spaced 2j units apart

• VJ0 contains NJ0 = N/2J0 scaling coefficients

– related to averages at scale λJ0 = 2J0

– related to times spaced 2J0 units apart

• Fig. 2: DWT of small segment of ABL data
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Overview of DWT: II

• obtain DWT via filtering with subsampling

• filter X0, X1, . . . , XN−1 to obtain

2j/2W̃j,t ≡
Lj−1∑
l=0

hj,lXt−l mod N, t = 0, 1, . . . , N − 1

– hj,l is jth level wavelet filter

– width of h1,l is Lj = (2j − 1)(L− 1) + 1

– W̃j,t part of ‘maximal overlap’ DWT (MODWT)

• subsample to obtain DWT wavelet coefficients:

Wj,t = 2j/2W̃j,2j(t+1)−1, t = 0, 1, . . . , Nj − 1,

where Wj,t is tth element of Wj

• Fig. 3: Haar & ‘least asymmetric’ (LA) wavelet filters

• jth filter is band-pass with pass-band [ 1
2j+1 ,

1
2j ]

• similarly, scaling filters yield VJ0

• Fig. 3: Haar & LA(8) scaling filters

• J0th filter is low-pass with pass-band [0, 1
2J0+1 ]
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Overview of FD Processes

• Xt called fractionally differenced (FD) process if it

has a spectral density function (SDF) given by

SX(f ) =
σ2
ε

|2 sin(πf )|2δ ,

where σ2
ε > 0 and −∞ < δ <∞

• Fig. 4: for small f , have SX(f ) ≈ C/|f |2δ;
i.e., ‘1/f type,’ ‘power law’ or ‘fractal’ process

• also called ARFIMA(0,δ,0) process

• special cases

– stationary if δ < 1
2

∗ white noise if δ = 0

∗ has ‘long memory’ if 0 < δ < 1
2

· autocorrelation sequence sX,τ ≈ Csτ
−1+2δ

· quite similar to fractional Gaussian noise

– has stationary increments if δ ≥ 1
2

∗ random walk if δ = 1

∗ like fractional Brownian motion if 1
2 < δ <

3
2

∗ like −5
3 power law (Kolmogorov) if δ = 5

6
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DWT of FD Processes

• Fig. 5: DWT of realization of FD process (δ = 0.4)

• sample ACSs suggest random variables (RVs) in Wj

are approximately uncorrelated

• ignoring ‘boundary’ coefficients, Wj is stationary

• Fig. 6: SDFs for Wj, j = 1, 2, 3, 4

– quite close to white noise

– remaining structure close to SDF for first or sec-

ond order autoregressive process

• Wj & Wj′, j �= j′, approximately uncorrelated (can

improve approximation by increasing L)

• DWT acts as a whitening transform (basis for wavelet-

based maximum likelihood scheme)

• have ν2
X(τj) ≡ var {W̃j,t} ∝ τ 2δ−1

j approximately

– implies log (ν2
X(τj)) ≈ ζ + (2δ − 1) log (τj)

– ν2
X(τj) called wavelet variance (note: based on

MODWT W̃j,t rather than DWT Wj,t)

– basis for wavelet-based least squares scheme
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ML Estimation for FD Processes: I

• suppose we are given U0, . . . , UN−1 such that

Ut = Tt +Xt

where Tt ≡ ∑r
j=0 ajt

j is polynomial trend &Xt is FD

process

• width L wavelet filter has embedded differencing op-

eration of order L/2

• if L2 ≥ r + 1, reduces polynomial trend to 0

• can partition DWT coefficients as

W = Ws + Wb + Ww

where

– Ws has scaling coefficients and 0s elsewhere

– Ws has boundary-dependent wavelet coefficients

– Ww has boundary-independent wavelet coefficients
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ML Estimation for FD Processes: II

• since U = WTW, can write

U = WT (Ws + Wb) + WTWw ≡ T̂ + X̂

• can use values in Ww to form likelihood:

L(δ, σ2
ε ) ≡

J0∏
j=1

N ′
j∏

t=1

1(
2πσ2

j

)1/2
e
−W 2

j,t+L′j−1
/(2σ2

j )

where

σ2
j ≡

∫ 1/2

−1/2
Hj(f )

σ2
ε

|2 sin(πf )|2δ df ;

and Hj(f ) is squared gain for hj,l

• leads to maximum likelihood estimator δ̂(ml) for δ

• δ̂(ml) asymptotically normal with mean δ and

var {δ̂(ml)} = 2
[ J0∑
j=1
N ′
jγ

2
j −

1

N ′(
J0∑
j=1
N ′
jγj)

2
]−1
,

where N ′ ≡ ∑J0
j=1N

′
j and

γj ≡
d var {Wj,t}

dδ

var {Wj,t}
= − 4σ2

ε

var {Wj,t}
∫ 1/2

0
Hj(f )

log (2 sin(πf ))

[2 sin(πf )]2δ
df

• works well in Monte Carlo simulations
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LS Estimation for FD Processes: I

• define unbiased estimator of wavelet variance ν2
X(τj):

ν̂2
X(τj) ≡

1

Mj

N−1∑
t=Lj−1

W̃ 2
j,t, where Mj ≡ N − Lj + 1

• ν̂2
X(τj) is approximately distribution as ν2

X(τj)χ
2
ηj
/ηj,

where

– χ2
ηj

is chi-square RV with ηj degrees of freedom

– can approximate ηj by max {Mj/2
j, 1}

• using log (ν2
X(τj)) ≈ ζ + β log (τj) with β ≡ 2δ − 1,

can formulate regression model; with

Y (τj) ≡ log (ν̂2
X(τj)) − ψ(

ηj
2 ) + log (

ηj
2 ),

have Y (τj) = ζ + β log (τj) + ej, where

ej ≡ log


ν̂

2
X(τj)

ν2
X(τj)


 − ψ(

ηj
2 ) + log (

ηj
2 )

has distribution log (χ2
ηj

) − ψ(
ηj
2 ) − log (2)

• have E{ej} = 0 and var {ej} = ψ′(
ηj
2 ), where ψ′(·)

is trigamma function

• ej approximately Gaussian if ηj ≥ 10

10



LS Estimation for FD Processes: II

• weighted least squares (LS) estimator for β:

β̂(wls) =
∑
wj

∑
wj log (τj)Y (τj) − ∑

wj log (τj)
∑
wjY (τj)∑

wj
∑
wj log2(τj) − (

∑
wj log (τj))

2 ,

where wj ≡ 1/ψ′(
ηj
2 )

• have

var {β̂(wls)} =
∑
wj∑

wj
∑
wj log2(τj) − (

∑
wj log (τj))

2

• use δ = 1
2(β + 1) to get δ̂(wls) ≡ 1

2(β̂
(wls) + 1) with

var {δ̂(wls)} = 1
4 var {β̂(wls)}

• works well in Monte Carlo simulations
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Analysis of ABL Data: I

• initial approach: divide into nonoverlapping blocks

– each block has 10,000 points

– blocks are contiguous

– allows analysis out to τ10 = 9.37 meters

• Fig. 7: wavelet variance estimates for ‘typical’ block

– based upon LA(8) wavelet filter

– single δ (i.e., power law) inadequate

– will combine 3 adjacent scales via separate FD

models

• Fig. 8, lower left-hand portion: scatter plots for log (ν̂2
X,b(τj))

– b is block index

– log (ν̂2
X,b(τj)) versus log (ν̂2

X,b(τk)) for different j, k

– lines shows expected pattern if σ2
ε held fixed, but

δ is changing across blocks

– reasonable agreement at higher scales when k =

j ± 1 or k = j ± 2
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Analysis of ABL Data: II

• Fig. 8, upper right-hand portion: ‘slope differential’

plots

– plot for (j, j + 1) with (k, k + 1) defined as

log (ν̂2
X,b(τj+1)) − log (ν̂2

X,b(τj))

log (ν̂2
X,b(τk+1)) − log (ν̂2

X,b(τk))
− 1 versus b

– above is zero if estimated slopes are identical

– box plots assess significance of deviations from 0

• conclusion: reasonable to combine scales as suggested

by ‘typical’ block

• Fig. 9: blocked WLS estimates of power law exponent

α ≡ −2δ

– scale τ4 has periodic burst (artifact?)

– scales τ5, τ6, τ7 swing from α = 0 to −5
3

– 95% confidence intervals say variations in α are

significant
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Analysis of ABL Data: III

• Fig. 10: comparison of WLS estimates for scales

τ5, τ6, τ7 and τ8, τ9, τ10

– two groups do not track each other

– largest scales generally consistent with −5
3 power

law, but show significant deviations at times

• Figs. 11–2: corresponding plots for ML estimates

– very good agreement with WLS estimates (ex-

cept for τ1, τ2, τ3 – not surprising)

– 95% confidence intervals similar to those for WLS

(but now block dependent)
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Future Work

• ‘instantaneous’ LS and ML estimates

– designed to get away from block dependence

– Fig. 13: use MODWT coefficients co-located across

scales (one coefficient per scale)

– easy to modify LS and ML estimators

– Fig. 14: preliminary LS results for scales τ5, τ6, τ7

∗ individual estimates very noisy, so have smoothed

∗ good agreement with blocked estimates

– need to study distributional properties of instan-

taneous estimates

– need to study ways to denoise instantaneous es-

timates (waveshrink)

• need to study ways to model evolution of α

• need to study ways of combining multiscale models
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