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Introduction and Overview

e motivation: ABL aerothermal turbulence data

— Fig. 1: 7.5 million points (100 point averages)

— spatial resolution ~ 1.83 cm
e will model using time-varying stochastic process
e basic idea: combine wavelets with stochastic fractals

— wavelets give time/scale decomposition
(yields multiscale approach to modeling)

— fractals describe connections across scales
(will use fractionally differenced processes)



Outline of Talk

e overview of discrete wavelet transform (DWT)
e overview of fractionally differenced (FD) processes

e basic properties of DWT of an FD process
(DWT acts as decorrelator of FD processes)

e DW'T-based estimation of parameters for FD process
— maximum likelihood and least squares estimators
e application to ABL data

e future work



Overview of DWT: 1

o let X = [Xy, X1,..., Xy_1]" be observed time series
(for convenience, assume N integer multiple of 27)

e let YW be N x N orthonormal DW'T matrix

e W = WX is vector of DW'T coefficients

e orthonormality says X = W/ W, s0 X & W

e can partition W as follows:
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e W, contains N; = N/27 wavelet coefficients

— related to changes of averages at scale 7; = 2771
(7; is jth ‘dyadic’ scale)
— related to times spaced 27 units apart

e V, contains N, = N/270 scaling coefficients

— related to averages at scale \j, = 27

— related to times spaced 270 units apart

e Fig. 2. DWT of small segment of ABL data



Overview of DWT: 11

e obtain DW'T via filtering with subsampling
o filter Xy, X1, ..., Xy_1 to obtain

—1
2PW,, = z hitXitmodn, t=0,1,...,N—1

— hj; is jth level wavelet filter

— width of by is L; = (2 — 1)(L — 1) + 1

— W, part of ‘maximal overlap’ DWT (MODWT)
e subsample to obtain DW'T wavelet coefficients:

Wie=2"W, 04011, t=0,1,...,N; -1,
where W, is tth element of W

e [ig. 3: Haar & ‘least asymmetric’ (LA) wavelet filters
e jth filter is band-pass with pass-band [2J+17 21]]
e similarly, scaling filters yield V j,
e Fig. 3: Haar & LA() scaling filters

e Jyth filter is low-pass with pass-band |0, 57 . .



Overview of FD Processes

e X, called fractionally differenced (FD) process if it
has a spectral density function (SDF) given by

0.2

Sxlf) = |2sin(7€rf)]25’

where 02 > 0 and —0co < § < o0

e Fig. 4: for small f, have Sx(f) ~ C/|f|*;
ie., ‘1/f type,” ‘power law’ or ‘fractal’ process

e also called ARFIMA(0,0,0) process

e special cases

— stationary if § < %
* white noise if 6 = 0
x has ‘long memory’ if 0 < § < %
- autocorrelation sequence s X~ CST_HQ‘S
- quite similar to fractional Gaussian noise
— has stationary increments if 6 > %

* random walk if § = 1

x like fractional Brownian motion if % <0< %

* like —g power law (Kolmogorov) if § = %



DWT of FD Processes

e Fig. 5: DWT of realization of FD process (§ = 0.4)

e sample ACSs suggest random variables (RVs) in W
are approximately uncorrelated

e ignoring ‘boundary’ coefficients, W is stationary
e ['ig. 6: SDFs for W;, j =1,2,3,4

— quite close to white noise
— remaining structure close to SDF for first or sec-

ond order autoregressive process

o W; & Wy, j # j', approximately uncorrelated (can
improve approximation by increasing L)

e DWT acts as a whitening transform (basis for wavelet-
based maximum likelihood scheme)

e have v%(7;) = var {W,;} 720~ 1 approximately
— implies log (v%(7;)) & ¢ + (20 — 1) log (1)

— v%(7;) called wavelet variance (note: based on

MODWT W, rather than DWT W)

— basis for wavelet-based least squares scheme



ML Estimation for FD Processes: 1

e suppose we are given Uy, ..., Uy_1 such that
U =T+ X,

where T} = X ajtj is polynomial trend & X; is FD
Process

e width L wavelet filter has embedded differencing op-
eration of order L /2

o if % > 1+ 1, reduces polynomial trend to 0

e can partition DW'T coeflicients as
W=W,+W,+W,
where

— W, has scaling coefficients and 0Os elsewhere
— W, has boundary-dependent wavelet coefficients

— W, has boundary-independent wavelet coefficients



ML Estimation for FD Processes: 11

e since U = WTW, can write

U=W W, +W)+W'W,=T+X

e can use values in W, to form likelihood:

Jo Vi 1 W2, /(202)
L(9, 062) = 1_([) H] 12¢ T
j=lt=l1 <27TJJZ>
where
9
2 1/2 O-e
— . df:
% —1/2H‘7(f)\2sin(7rf)\25 J;

and H;(f) is squared gain for h;;
e leads to maximum likelihood estimator 6 for

o 5(M) asymptotically normal with mean ¢ and

(m Jo 1  J
var {0} = 2| . Njy? — o > Ny,
]:

where N/ = 237021 N j’ and

L dvargvj’t} 402 log (2sin( f))

— A 0 124,
U (Wi~ v b )

df

e works well in Monte Carlo simulations



LS Estimation for FD Processes: 1

e define unbiased estimator of wavelet variance v%(7;):

1
x(1) = Z Wzt, where M; = N — L; +1
th Lj—1
e 1%(7;) is approximately distribution as v (7;) X%j /1
where
— X?,j is chi-square RV with n; degrees of freedom
— can approximate 7; by max {M;/27, 1}
e using log (v3(7;)) &= ¢ + Blog (7;) with =20 — 1,
can formulate regression model; with
Y (1)) = log (0% (7)) — ¢() +log (%),
have Y (7;) = ( + [log (1) + e;, where
% (7))
log( > ]>¢J + log (&
Aim)) T EE)
has distribution log (an) —p(F) —log (2)
e have E{e;} = 0 and var {e;} = ¢'(*}), where /(")

is trigamma function

e ¢; approximately Gaussian if n; > 10
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LS Estimation for FD Processes: 11

e weighted least squares (LS) estimator for [3:

S w; L wjlog (75)Y (1) — Swjlog (75) £ w;Y (1)
£ w; ¥ w;logh (1) — (S w;log (7))

where w; = 1/¢/(%)

B(wls) _

)

e have
A > W
var {ﬁ(wls)} _ J
£ w; £ w; log*(1) — (S w; log (7))
e use § = 3(0+ ) to get 6(whs) = %(B (wls) 4 1) with
var {619} = Lyap £ 50nls)}

e works well in Monte Carlo simulations
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Analysis of ABL Data: 1

e initial approach: divide into nonoverlapping blocks

— each block has 10,000 points
— blocks are contiguous

— allows analysis out to 79 = 9.37 meters
e Fig. 7: wavelet variance estimates for ‘typical” block

— based upon LA(8) wavelet filter
— single § (i.e., power law) inadequate
— will combine 3 adjacent scales via separate FD

models

e Fig. 8, lower left-hand portion: scatter plots for log (0% ,(7;))

— b is block index
— log (0% ,(7;)) versus log (0% (7)) for different 7, k

— lines shows expected pattern if o held fixed, but
0 is changing across blocks

— reasonable agreement at higher scales when k =
jtlork=j5+2
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Analysis of ABL Data: II

e Fig. 8, upper right-hand portion: ‘slope differential’
plots

— plot for (3,7 + 1) with (k, k

)
2

1) defined as
)
)

— above is zero if estimated slopes are identical

>

— 1 versus b

+
log (ﬁgc,b(TjH)) — log ( X,b(Tj
log (93(,b(7k+1)) — log (Agc,b(Tk:

— box plots assess significance of deviations from 0

e conclusion: reasonable to combine scales as suggested
by ‘typical’” block

e Fig. 9: blocked WLS estimates of power law exponent
a=—20

— scale 74 has periodic burst (artifact?)

— scales T3, 75, 77 swing from a = 0 to —g

— 95% confidence intervals say variations in « are
significant
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Analysis of ABL Data: III

e Fig. 10: comparison of WLS estimates for scales
T5,T6, T7 and 78,79, T10
— two groups do not track each other
— largest scales generally consistent with —g power
law, but show significant deviations at times
e Figs. 11-2: corresponding plots for ML estimates
— very good agreement with WLS estimates (ex-
cept for 7y, 7o, T3 — not surprising)

— 95% confidence intervals similar to those for WLS
(but now block dependent)
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Future Work

e ‘instantaneous’ LS and ML estimates

— designed to get away from block dependence

— Fig. 13: use MODWT coefficients co-located across
scales (one coefficient per scale)

— easy to modify LS and ML estimators
— Fig. 14: preliminary LS results for scales 15, 74, 77

x individual estimates very noisy, so have smoothed

x good agreement with blocked estimates

— need to study distributional properties of instan-
taneous estimates

— need to study ways to denoise instantaneous es-
timates (waveshrink)

e need to study ways to model evolution of «

e need to study ways of combining multiscale models
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