Wavelet-Based Analysis for Multispectral Fractal Processes

Don Percival

MathSoft, Inc., Seattle, WA

Applied Physics Lab, Univ. of Washington (UW)

overheads for talk available at

http://www.staff.washington.edu/dbp/talks.html

joint work with:

- Jim Bassingthwaighte, Dept. of Bioeng, UW
- Bill Constantine, MathSoft (PI)
- Peter Craigmile, Dept. of Statistics, UW
- Peter Guttorp, Dept. of Statistics, UW
- Jim Pitton, Applied Physics Lab, UW
- Per Reinhall, Dept. of Mech. Eng., UW (PI)

Introduction and Overview

- motivation: ABL aerothermal turbulence data
 - Fig. 1: 7.5 million points (100 point averages)
 - spatial resolution ≈ 1.83 cm
- will model using time-varying stochastic process
- basic idea: combine wavelets with stochastic fractals
 - wavelets give time/scale decomposition (yields multiscale approach to modeling)
 - fractals describe connections across scales (will use fractionally differenced processes)

Outline of Talk

- overview of discrete wavelet transform (DWT)
- overview of fractionally differenced (FD) processes
- basic properties of DWT of an FD process (DWT acts as decorrelator of FD processes)
- DWT-based estimation of parameters for FD process
 - maximum likelihood and least squares estimators
- application to ABL data
- future work

Overview of DWT: I

- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be observed time series (for convenience, assume N integer multiple of 2^{J_0})
- let \mathcal{W} be $N \times N$ orthonormal DWT matrix
- $\mathbf{W} = \mathcal{W}\mathbf{X}$ is vector of DWT coefficients
- orthonormality says $\mathbf{X} = \mathcal{W}^T \mathbf{W}$, so $\mathbf{X} \Leftrightarrow \mathbf{W}$
- can partition **W** as follows:

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_1 \ dots \ \mathbf{W}_{J_0} \ \mathbf{V}_{J_0} \end{bmatrix}$$

- \mathbf{W}_j contains $N_j = N/2^j$ wavelet coefficients
 - related to changes of averages at scale $\tau_j = 2^{j-1}$ (τ_j is *j*th 'dyadic' scale)
 - related to times spaced 2^{j} units apart
- \mathbf{V}_{J_0} contains $N_{J_0} = N/2^{J_0}$ scaling coefficients
 - related to averages at scale $\lambda_{J_0} = 2^{J_0}$
 - related to times spaced 2^{J_0} units apart
- Fig. 2: DWT of small segment of ABL data

Overview of DWT: II

- obtain DWT via filtering with subsampling
- filter $X_0, X_1, \ldots, X_{N-1}$ to obtain

$$2^{j/2}\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_j-1} h_{j,l} X_{t-l \bmod N}, \quad t = 0, 1, \dots, N-1$$

- $-h_{j,l}$ is *j*th level wavelet filter
- width of $h_{1,l}$ is $L_j = (2^j 1)(L 1) + 1$
- $-\widetilde{W}_{j,t}$ part of 'maximal overlap' DWT (MODWT)
- subsample to obtain DWT wavelet coefficients:

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}, \quad t = 0, 1, \dots, N_{j} - 1,$$

where $W_{j,t}$ is the element of \mathbf{W}_{j}

- Fig. 3: Haar & 'least asymmetric' (LA) wavelet filters
- *j*th filter is band-pass with pass-band $\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right]$
- similarly, scaling filters yield \mathbf{V}_{J_0}
- Fig. 3: Haar & LA(8) scaling filters
- J_0 th filter is low-pass with pass-band $[0, \frac{1}{2^{J_0+1}}]$

Overview of FD Processes

• X_t called fractionally differenced (FD) process if it has a spectral density function (SDF) given by

$$S_X(f) = \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}},$$

where $\sigma_{\epsilon}^2 > 0$ and $-\infty < \delta < \infty$

- Fig. 4: for small f, have $S_X(f) \approx C/|f|^{2\delta}$; i.e., '1/f type,' 'power law' or 'fractal' process
- also called ARFIMA $(0,\delta,0)$ process
- special cases
 - stationary if $\delta < \frac{1}{2}$
 - * white noise if $\delta = 0$
 - * has 'long memory' if $0 < \delta < \frac{1}{2}$
 - autocorrelation sequence $s_{X,\tau} \approx C_s \tau^{-1+2\delta}$
 - \cdot quite similar to fractional Gaussian noise
 - has stationary increments if $\delta \geq \frac{1}{2}$
 - * random walk if $\delta=1$
 - * like fractional Brownian motion if $\frac{1}{2} < \delta < \frac{3}{2}$
 - * like $-\frac{5}{3}$ power law (Kolmogorov) if $\delta = \frac{5}{6}$

DWT of FD Processes

- Fig. 5: DWT of realization of FD process ($\delta = 0.4$)
- sample ACSs suggest random variables (RVs) in \mathbf{W}_j are approximately uncorrelated
- ignoring 'boundary' coefficients, \mathbf{W}_j is stationary
- Fig. 6: SDFs for \mathbf{W}_j , j = 1, 2, 3, 4
 - quite close to white noise
 - remaining structure close to SDF for first or second order autoregressive process
- $\mathbf{W}_{j} \& \mathbf{W}_{j'}, j \neq j'$, approximately uncorrelated (can improve approximation by increasing L)
- DWT acts as a whitening transform (basis for waveletbased maximum likelihood scheme)
- have $\nu_X^2(\tau_j) \equiv \operatorname{var} \{ \widetilde{W}_{j,t} \} \propto \tau_j^{2\delta-1}$ approximately
 - implies $\log (\nu_X^2(\tau_j)) \approx \zeta + (2\delta 1) \log (\tau_j)$
 - $-\nu_X^2(\tau_j)$ called wavelet variance (note: based on MODWT $\widetilde{W}_{j,t}$ rather than DWT $W_{j,t}$)
 - basis for wavelet-based least squares scheme

ML Estimation for FD Processes: I

• suppose we are given U_0, \ldots, U_{N-1} such that

$$U_t = T_t + X_t$$

where $T_t \equiv \sum_{j=0}^r a_j t^j$ is polynomial trend & X_t is FD process

- width L wavelet filter has embedded differencing operation of order L/2
- if $\frac{L}{2} \ge r+1$, reduces polynomial trend to 0
- can partition DWT coefficients as

$$\mathbf{W} = \mathbf{W}_s + \mathbf{W}_b + \mathbf{W}_w$$

where

- $-\mathbf{W}_s$ has scaling coefficients and 0s elsewhere
- $-\mathbf{W}_s$ has boundary-dependent wavelet coefficients
- $-\mathbf{W}_w$ has boundary-independent wavelet coefficients

ML Estimation for FD Processes: II

• since $\mathbf{U} = \mathcal{W}^T \mathbf{W}$, can write

$$\mathbf{U} = \mathcal{W}^T(\mathbf{W}_s + \mathbf{W}_b) + \mathcal{W}^T \mathbf{W}_w \equiv \widehat{\mathbf{T}} + \widehat{\mathbf{X}}$$

• can use values in \mathbf{W}_w to form likelihood:

$$L(\delta, \sigma_{\epsilon}^2) \equiv \prod_{j=1}^{J_0} \prod_{t=1}^{N'_j} \frac{1}{\left(2\pi\sigma_j^2\right)^{1/2}} e^{-W_{j,t+L'_j-1}^2/(2\sigma_j^2)}$$

where

$$\sigma_j^2 \equiv \int_{-1/2}^{1/2} \mathcal{H}_j(f) \frac{\sigma_\epsilon^2}{|2\sin(\pi f)|^{2\delta}} df;$$

and $\mathcal{H}_j(f)$ is squared gain for $h_{j,l}$

- \bullet leads to maximum likelihood estimator $\hat{\delta}^{(ml)}$ for δ
- $\hat{\delta}^{(ml)}$ asymptotically normal with mean δ and

var
$$\{\hat{\delta}^{(ml)}\} = 2 \Big[\sum_{j=1}^{J_0} N'_j \gamma_j^2 - \frac{1}{N'} (\sum_{j=1}^{J_0} N'_j \gamma_j)^2 \Big]^{-1},$$

where $N' \equiv \sum_{j=1}^{J_0} N'_j$ and

$$\gamma_j \equiv \frac{\frac{d \operatorname{var} \{W_{j,t}\}}{d\delta}}{\operatorname{var} \{W_{j,t}\}} = -\frac{4\sigma_\epsilon^2}{\operatorname{var} \{W_{j,t}\}} \int_0^{1/2} \mathcal{H}_j(f) \frac{\log\left(2\sin(\pi f)\right)}{[2\sin(\pi f)]^{2\delta}} df$$

• works well in Monte Carlo simulations

LS Estimation for FD Processes: I

• define unbiased estimator of wavelet variance $\nu_X^2(\tau_j)$:

$$\hat{\nu}_X^2(\tau_j) \equiv \frac{1}{M_j} \sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2, \text{ where } M_j \equiv N - L_j + 1$$

- $\hat{\nu}_X^2(\tau_j)$ is approximately distribution as $\nu_X^2(\tau_j)\chi_{\eta_j}^2/\eta_j$, where
 - $-\chi^2_{\eta_j}$ is chi-square RV with η_j degrees of freedom - can approximate η_j by max $\{M_j/2^j, 1\}$
- using $\log(\nu_X^2(\tau_j)) \approx \zeta + \beta \log(\tau_j)$ with $\beta \equiv 2\delta 1$, can formulate regression model; with

$$Y(\tau_j) \equiv \log\left(\hat{\nu}_X^2(\tau_j)\right) - \psi(\frac{\eta_j}{2}) + \log\left(\frac{\eta_j}{2}\right),$$

have $Y(\tau_j) = \zeta + \beta \log(\tau_j) + e_j$, where

$$e_j \equiv \log\left(\frac{\hat{\nu}_X^2(\tau_j)}{\nu_X^2(\tau_j)}\right) - \psi(\frac{\eta_j}{2}) + \log\left(\frac{\eta_j}{2}\right)$$

has distribution $\log(\chi^2_{\eta_j}) - \psi(\frac{\eta_j}{2}) - \log(2)$

- have $E\{e_j\} = 0$ and $\operatorname{var} \{e_j\} = \psi'(\frac{\eta_j}{2})$, where $\psi'(\cdot)$ is trigamma function
- e_j approximately Gaussian if $\eta_j \ge 10$

LS Estimation for FD Processes: II

• weighted least squares (LS) estimator for β :

$$\hat{\beta}^{(wls)} = \frac{\sum w_j \sum w_j \log (\tau_j) Y(\tau_j) - \sum w_j \log (\tau_j) \sum w_j Y(\tau_j)}{\sum w_j \sum w_j \log^2(\tau_j) - (\sum w_j \log (\tau_j))^2},$$

where $w_j \equiv 1/\psi'(\frac{\eta_j}{2})$

• have

$$\operatorname{var}\left\{\hat{\beta}^{(wls)}\right\} = \frac{\sum w_j}{\sum w_j \sum w_j \log^2(\tau_j) - \left(\sum w_j \log\left(\tau_j\right)\right)^2}$$

- use $\delta = \frac{1}{2}(\beta + 1)$ to get $\hat{\delta}^{(wls)} \equiv \frac{1}{2}(\hat{\beta}^{(wls)} + 1)$ with $\operatorname{var} \{\hat{\delta}^{(wls)}\} = \frac{1}{4}\operatorname{var} \{\hat{\beta}^{(wls)}\}$
- works well in Monte Carlo simulations

Analysis of ABL Data: I

- initial approach: divide into nonoverlapping blocks
 - each block has 10,000 points
 - blocks are contiguous
 - allows analysis out to $\tau_{10} = 9.37$ meters
- Fig. 7: wavelet variance estimates for 'typical' block
 - based upon LA(8) wavelet filter
 - single δ (i.e., power law) inadequate
 - will combine 3 adjacent scales via separate FD models
- Fig. 8, lower left-hand portion: scatter plots for $\log(\hat{\nu}_{X,b}^2(\tau_j))$
 - -b is block index
 - $-\log(\hat{\nu}_{X,b}^2(\tau_j))$ versus $\log(\hat{\nu}_{X,b}^2(\tau_k))$ for different j, k
 - lines shows expected pattern if σ_{ϵ}^2 held fixed, but δ is changing across blocks
 - reasonable agreement at higher scales when $k = j \pm 1$ or $k = j \pm 2$

Analysis of ABL Data: II

• Fig. 8, upper right-hand portion: 'slope differential' plots

- plot for
$$(j, j+1)$$
 with $(k, k+1)$ defined as

$$\frac{\log\left(\hat{\nu}_{X,b}^2(\tau_{j+1})\right) - \log\left(\hat{\nu}_{X,b}^2(\tau_j)\right)}{\log\left(\hat{\nu}_{X,b}^2(\tau_{k+1})\right) - \log\left(\hat{\nu}_{X,b}^2(\tau_k)\right)} - 1 \text{ versus } b$$

- above is zero if estimated slopes are identical
- box plots assess significance of deviations from 0
- conclusion: reasonable to combine scales as suggested by 'typical' block
- Fig. 9: blocked WLS estimates of power law exponent $\alpha \equiv -2\delta$
 - scale τ_4 has periodic burst (artifact?)
 - scales τ_5, τ_6, τ_7 swing from $\alpha = 0$ to $-\frac{5}{3}$
 - 95% confidence intervals say variations in α are significant

Analysis of ABL Data: III

- Fig. 10: comparison of WLS estimates for scales τ_5, τ_6, τ_7 and $\tau_8, \tau_9, \tau_{10}$
 - two groups do not track each other
 - largest scales generally consistent with $-\frac{5}{3}$ power law, but show significant deviations at times
- Figs. 11–2: corresponding plots for ML estimates
 - very good agreement with WLS estimates (except for τ_1, τ_2, τ_3 not surprising)
 - 95% confidence intervals similar to those for WLS (but now block dependent)

Future Work

- 'instantaneous' LS and ML estimates
 - designed to get away from block dependence
 - Fig. 13: use MODWT coefficients co-located across scales (one coefficient per scale)
 - easy to modify LS and ML estimators
 - Fig. 14: preliminary LS results for scales τ₅, τ₆, τ₇
 * individual estimates very noisy, so have smoothed
 * good agreement with blocked estimates
 - need to study distributional properties of instantaneous estimates
 - need to study ways to denoise instantaneous estimates (waveshrink)
- need to study ways to model evolution of α
- need to study ways of combining multiscale models

Papers, Thesis and Book

 P. F. Craigmile, D. B. Percival and P. Guttorp (2000), 'Wavelet-Based Parameter Estimation for Trend Contaminated Fractionally Differenced Processes,' submitted to JTSA; TRS #47 at

http://www.nrcse.washington.edu/research/reports/reports.asp

- P. F. Craigmile, D. B. Percival and P. Guttorp (2000), 'Decorrelation Properties of Wavelet Based Estimators for Fractionally Differenced Processes,' *Proceedings of the 3ecm*; TRS #49 at above.
- W. Constantine, D. B. Percival and P. G. Reinhall (2000), 'Modeling aerothermal turbulence using fractionally differenced processes,' MathSoft Tech. Rep.
- P. F. Craigmile (2000), 'Wavelet Based Estimation for Trend Contaminated Long Memory Processes,' Ph.D. dissertation, Department of Statistics, University of Washington, Seattle
- D. B. Percival and A. T. Walden (2000), *Wavelet Methods for Time Series Analysis*, Cambridge, UK: Cambridge University Press

http://www.staff.washington.edu/dbp/wmtsa.html