
Wavelet Methods for Time Series Analysis

Part IX: Wavelet-Based Bootstrapping

• start with some background on bootstrapping and its rationale

• describe adjustments to the bootstrap that allow it to work
with correlated time series

• describe how the decorrelating property of the DWT can be
used to develop a wavelet-based bootstrap for certain time series

• describe ‘wavestrapping,’ an adaptive procedure based upon
finding a decorrelating transform from a wavelet packet table
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Motivating Question

• let X = [X0, . . ., XN−1]
T be a finite portion of a stationary

process with autocovariance sequence (ACVS) {sτ}
• let {ρτ} be the corresponding autocorrelation sequence (ACS):

ρτ =
sτ
s0

, where sτ = cov {Xt,Xt+τ} and s0 = var {Xt}
• given a time series, we can estimate its ACS at τ = 1 using

ρ̂1 ≡
∑N−2

t=0 XtXt+1∑N−1
t=0 X2

t

under the assumption that E{Xt} = 0

• Q: given the amount N of data we have, how close can we
expect ρ̂1 to be to the true unknown ρ1?

• i.e., how can we assess the sampling variability in ρ̂1?
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Classic Approach – Large Sample Theory: I

• in what follows, let N (µ, σ2) denote a Gaussian (normal) ran-
dom variable (RV) with mean µ and variance σ2

• if Xt’s were independent and identically distributed (IID) so
that ρ1 = 0, the distribution of ρ̂1 becomes arbitrarily close to
that of an N (0, 1

N ) RV as N → ∞ (requires suitable condi-
tions)
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Classic Approach – Large Sample Theory: II

• more generally, ρ̂1 is close to the distribution of an N (ρ1, σ
2
N )

RV as N → ∞, where

σ2
N ≡ 1

N

∞∑
τ=−∞

{
ρ2
τ (1 + 2ρ2

1) + ρτ+1ρτ−1 − 4ρ1ρτρτ−1

}

• in practice, the above result is unappealing because it requires

− knowledge of the theoretical ACS

− the ACS to damp down sufficiently fast, which would rule
out long memory processes (LMPs)

• while large sample theory has been worked out for ρ̂1 under
certain conditions, similar theory for other statistics can be
hard to come by
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Alternative Approach – Bootstrapping: I

• if Xt’s were IID, we could apply ‘bootstrapping’ to assess the
variability in ρ̂1, as follows

• suppose we have the following time series of length N = 8,
which is a realization of a Gaussian white noise process:

x
.
= [1.9, 2.2,−0.1, 1.0,−0.6, 0.5,−1.3,−0.3]T ,

for which ρ̂1
.
= 0.23 (for white noise, the true value of ρ1 is 0)

• generate a new time series x(1) by randomly sampling from x:

x(1) .
= [2.2,−0.1,−0.1, 1.0, 1.9, 1.9,−0.6,−0.1]T ,

for which ρ̂
(1)
1

.
= 0.31 (note: sampling is done with replacement)

• do again to get x(2) = [−0.3, 0.5, 1.9,−0.6,−0.3, 0.5, 2.2, 2.2]T ,

for which ρ̂
(2)
1

.
= 0.39
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Alternative Approach – Bootstrapping: II

• repeat a large number of times to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(M)
1

• plots shows histogram for {ρ̂(m)
1 : m = 1, . . . , 10, 000}, along

with probability density function (PDF) for N (0, 1
8) (left-hand

plot) and an approximation to the true PDF for ρ̂1 (right)
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• can regard sample distribution of {ρ̂(m)
1 } as an approximation

to the unknown distribution of ρ̂1
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Alternative Approach – Bootstrapping: III

• bootstrap approximation to distribution of ρ̂1 gets better as N
increases

• consider sample of Gaussian white noise of length N = 128, for
which ρ̂1

.
= −0.02
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• sample distribution of {ρ̂(m)
1 } agrees quite well with the ap-

proximate true PDF
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Bootstrapping Correlated Time Series: I

• key assumption: x was a realization of IID RVs

• if not true (usually the case with time series!), sample distribu-

tion of {ρ̂(m)
1 } can be badly misleading as an approximation to

unknown distribution of ρ̂1

• as an example, consider a realization of a fractionally differ-
enced (FD) process with parameter δ = 1

4, for which ρ̂1
.
= 0.23

(for an FD(1
4) process, ρ1 = 1

3)
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Bootstrapping Correlated Time Series: II

• use the same procedure as before to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(M)
1

• plot shows histogram for {ρ̂(m)
1 : m = 1, . . . , 10, 000}, along

with an approximation to the true PDF for ρ̂1
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ρ̂
(m)
1

• bootstrap approximation gets even worse as N increases

• to correct the problem caused by correlation in time series, can
use specialized time or frequency domain bootstrapping if ACS
damp downs sufficiently fast
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Parametric Bootstrapping: I

• one well-known time domain bootstrapping scheme is the para-
metric (or residual) bootstrap

• suppose we can assume that our time series is a realization of
a portion X0, . . ., XN−1 of a first order autoregressive (AR)
process:

Xt = φ1Xt−1 + εt,

where |φ1| < 1 and {εt} is white noise with zero mean and
variance σ2

ε (this model is widely used in geophysics)

• have var {Xt} = σ2
ε/(1 − φ2

1) and ρτ = φ
|τ |
1 for AR(1) process

• in particular, ρ1 = φ1, so can estimate φ1 using φ̂1 ≡ ρ̂1
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Parametric Bootstrapping: II

• since εt = Xt − φ1Xt−1, can form residuals

rt = Xt − φ̂1Xt−1, t = 1, . . . , N − 1,

with the idea that rt will be a good approximation to εt
(note: there are N − 1 residuals rather than N)

• let r
(1)
0 , r

(1)
1 , . . . , r

(1)
N−1 be a random sample from r1, r2, . . . , rN−1

(as before, sampling is done with replacement)

• let X
(1)
0 = r

(1)
0 /(1 − φ̂2

1)
1/2 (‘stationary initial condition’)

• form
X

(1)
t = φ̂1X

(1)
t−1 + r

(1)
t , t = 1, . . . , N − 1,

yielding the bootstrapped time series X
(1)
0 , X

(1)
1 , . . . , X

(1)
N−1

IX–11

Parametric Bootstrapping: III

• use X
(1)
0 , X

(1)
1 , . . . , X

(1)
N−1 to compute ρ̂

(1)
1

• let r
(2)
0 , r

(2)
1 , . . . , r

(2)
N−1 be a second random sample from r1, r2,

. . . , rN−1

• use these to form a second bootstrapped series X
(2)
0 , X

(2)
1 , . . . ,

X
(2)
N−1, from which we form ρ̂

(2)
1

• repeat this procedure M times to get ρ̂
(1)
1 , ρ̂

(2)
1 , . . . , ρ̂

(M)
1

IX–12



Parametric Bootstrapping: IV

• as an example, consider a realization of an AR(1) process with
φ1 = ρ1 = 1

3, for which ρ̂1
.
= 0.38
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• plot shows histogram for {ρ̂(m)
1 : m = 1, . . . , 10, 000}, along

with an approximation to the true PDF for ρ̂1
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Parametric Bootstrapping: V

• important assumption here is that time series is well modeled
by AR(1) process

• to see what happens if this assumption fails, reconsider FD(1
4)

realization and treat it as if it were an AR(1) realization

• since ρ̂1
.
= 0.23, we would set φ̂1

.
= 0.23

• plot shows histogram for {ρ̂(m)
1 : m = 1, . . . , 10, 000}, along

with an approximation to the true PDF for ρ̂1
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Parametric Bootstrapping: VI

• more generally, can fit pth order process

Xt =

p∑
u=1

φuXt−u + εt and use rt = Xt −
p∑

u=1

φ̂uXt−u

to form new series and then ρ̂
(m)
1

• note that the number of residuals is N−p, so best to stick with
small values of p

• several variations on the basic scheme, one of which is to use
r̃t = rt − r̄ rather than rt, where r̄ is the sample mean of the
residuals (usually close to zero, but sometimes not)
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Block Bootstrapping

• another time domain approach is block bootstrapping, which
is nonparametric and has some nice theoretical properties, but
a bit trickier to describe and implement
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Frequency Domain Bootstrapping

• ‘phase scramble’ discrete Fourier transform (DFT) {Xk} of
data {Xt} and apply inverse DFT to create new series:

Xk =

N−1∑
t=0

Xte
−i2πkt/N = Ake

iθk

• periodogram-based bootstrapping: in addition to phase scram-
bling, evoke large sample result that |Ak|’s are approximately
uncorrelated with distribution related to a chi-square RV with
2 degrees of freedom

• circulant embedding bootstrapping: form nonparametric esti-
mate of spectral density function and generate realizations us-
ing circulant embedding
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Rationale for Wavelet Domain Bootstrapping

• time and frequency domain approaches are both problematic
for long memory processes

• DWT decorrelates certain time series X, including long mem-
ory processes (these are ruled out by time and frequency domain
bootstrapping because ACS damps down slowly)

• level J0 partial DWT maps X to W1,W2, . . . ,WJ0
and VJ0

,
with the RVs in the Wj’s being approximately uncorrelated
(note: scaling coefficients VJ0

are still highly correlated)

IX–18

DWT of a Long Memory Process: I

X ρ̂X,τ

5

0

−5

1

0

−1
0 256 512 768 1024 0 32

t τ (lag)

• realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for τ ≥ 0,

ρ̂X,τ ≡
∑N−1−τ

t=0 XtXt+τ∑N−1
t=0 X2

t

• note that ACS dies down slowly
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DWT of a Long Memory Process: II
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• LA(8) DWT of FD(0.4) series and sample ACSs for each Wj
& V7, along with 95% confidence intervals for white noise
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DWT of a Long Memory Process: III

• second example: ACS for FD(0.45)
1

0

−1
0 16 32 48 64

τ

• unit lag autocorrelations for Wj using the Haar, D(4) and
LA(8) wavelet filters (other autocorrelations are very small)

j Haar D(4) LA(8)
1 −0.0626 −0.0797 −0.0767
2 −0.0947 −0.1320 −0.1356
3 −0.1133 −0.1511 −0.1501
4 −0.1211 −0.1559 −0.1535
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DWT of a Long Memory Process: IV

• spectral density functions (SDFs) for X and Wj

frequency
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− relatively flat (white noise if perfectly flat), but remaining
variation well approximated by SDF for AR(2) process

− height increases as j increases (variance of Wj sets height)

IX–22

DWT of a Long Memory Process: V

• maximum absolute cross-correlations for wavelet coefficients in
Wj and Wj′ for 1 ≤ j < j′ ≤ 4

Haar D(4) LA(8)
j\j′ 2 3 4 2 3 4 2 3 4

1 0.13 0.17 0.14 0.09 0.09 0.04 0.06 0.03 0.00
2 0.17 0.21 0.12 0.11 0.08 0.03
3 0.18 0.13 0.08
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Recipe for Wavelet Domain Bootstrapping: I

1. given X of length N = 2J , compute level J0 = J − 2 partial
DWT W1, . . ., WJ0

and VJ0
(4 coefficients in WJ0

and VJ0
)

2. randomly sample with replacement N/2j times from Wj to

create bootstrapped vector W
(b)
j , j = 1, . . . , J0

3. do the same for VJ0
to create V

(b)
J0

(theory lacking here, but

better in computer experiments than using just VJ0
)

4. apply inverse transform to W
(b)
1 , . . ., W

(b)
J0

and V
(b)
J0

to obtain

bootstrapped time series X(b)

5. compute unit lag sample autocorrelation ρ̂
(b)
1

• repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Recipe for Wavelet Domain Bootstrapping: II

• computer experiments indicate improvement over block boot-
strap for FD processes

• variation: replace X by series of length 2N given by

X(c) ≡ [X0, X1, . . . , XN−2, XN−1, XN−1, XN−2, . . . , X1, X0]
T ;

i.e., use ‘reflection’ rather than circular boundary conditions
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Motivation for ‘Wavestrapping’: I

• DWT does not adequately decorrelate all time series

• consider first order moving average process (MA(1)):

Xt = εt + 0.99εt−1

IX–26

Motivation for ‘Wavestrapping’: II

• SDFs for MA(1) process and associated Wj

frequency

S
D

F
 (

in
 d

ec
ib

el
s)

0.0 0.2 0.4

-2
0

-1
0

0
10

frequency

0.0 0.2 0.4

• note that SDF of W1 is not approximately flat

• idea: use transform selected from wavelet packet table
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Motivation for ‘Wavestrapping’: III

• consider following level J0 = 4 wavelet packet table (WPT):

W0,0 ≡ X

W1,0 W1,1

W2,0 W2,1 W2,2 W2,3

W3,0 W3,1 W3,2 W3,3 W3,4 W3,5 W3,6 W3,7

W4,0 W4,1 W4,2 W4,3 W4,4 W4,5 W4,6 W4,7 W4,8 W4,9 W4,10W4,11W4,12W4,13W4,14W4,15

0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2

f

• shaded boxes identify an orthonormal transform that is a better
decorrelator of the MA(1) process than the DWT
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Motivation for ‘Wavestrapping’: IV

• SDFs for MA(1) process and associated Wj,n
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Motivation for ‘Wavestrapping’: V

• first 5 of Wj,n SDFs have variations less than 3 dB, but those
for W4,13, W4,14 and W4,15 vary by 3.9, 5.3 and 7.2 dB

• increasing depth of WPT to J0 = 6 allows us to replace these
by

− three j = 5 level subvectors W5,26,W5,27,W5,28 and

− six j = 6 level subvectors W6,58, . . . ,W6,63

• resulting WPT has SDFs that all vary by less than 3 dB

• idea: adaptively select transform by using white noise tests
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Recipe for Wavestrapping: I

1. given X of length 2J , compute level J0 = J − 2 WPT
(enter step 2 with starting values j = n = 0 and W0,0 ≡ X)

2. if j = J0, retain Wj,n; if j < J0, do white noise test on Wj,n

− portmanteau test on autocorrelation estimates for Wj,n

− cumulative periodogram test

if fail to reject the null hypothesis, retain Wj,n; if reject, discard
Wj,n (after transforming it into Wj+1,2n and Wj+1,2n+1),
and repeat this step twice again (both on Wj+1,2n and Wj+1,2n+1)

3. desired adaptively chosen transform consists of all subvectors
retained after step 2 applied as many times as needed; randomly
sample (with replacement) from each subvector in the trans-
form to create the similarly dimensioned wavestrapped subvec-
tors
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Recipe for Wavestrapping: II

4. apply inverse transform to obtain bootstrapped time series X(b)

5. compute unit lag sample autocorrelation ρ̂
(b)
1

• repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Summary of Computer Experiments - I

Wavestrap
Process Boundary DWT Port Pgrm Block True

WN
N = 128 periodic 8.2 8.7 8.8 8.1 8.7

reflection 8.3 8.6 8.7
N = 1024 periodic 3.1 3.1 3.1 3.0 3.1

reflection 3.2 3.2 3.1

AR(1)
N = 128 periodic 5.7 5.2 5.1 5.4 4.8

reflection 5.5 5.1 5.4
N = 1024 periodic 1.6 1.5 1.5 1.5 1.4

reflection 1.6 1.5 1.5

MA(1)
N = 128 periodic 7.1 6.8 6.8 6.5 6.3

reflection 7.0 6.8 6.6
N = 1024 periodic 2.6 2.4 2.3 2.2 2.2

reflection 2.6 2.4 2.4

FD
N = 128 periodic 9.4 8.3 8.5 7.7 10.7

reflection 9.9 8.8 9.6
N = 1024 periodic 4.4 4.2 4.2 3.4 5.3

reflection 4.7 4.5 4.7
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Summary of Computer Experiments - II

• standard deviations (×100) of unit lag sample autocorrelations
given by DWT-based bootstrapping, two forms of wavestrap-
ping and block bootstrap, along with true standard deviations

• four models considered are white noise (WN); AR(1) process
Xt = 0.9Xt−1 + εt; MA(1) process Xt = εt + 0.99εt−1; and
fractionally differenced (FD) process with δ = 0.45

• wavestrapping with portmanteau test and reflection boundary
conditions does better than – or is comparable to – block boot-
strap (current state of the art) except for the MA(1) process,
for which the block bootstrap is ideally suited
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Application to BMW Stock Prices - I
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• plot shows log of daily returns on BMW share prices

• has small unit lag sample autocorrelation: ρ̂1
.
= 0.081.

• large sample theory appropriate for Gaussian white noise gives
standard error of 1/

√
N

.
= 0.013
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Application to BMW Stock Prices - II

• Gaussianity is suspect: data better modeled by t distribution
with 3.9 degrees of freedom

• block bootstrap with block sizes 30, 50, 100, 200 and 500 gives
standard errors are 0.012, 0.012, 0.014, 0.016 and 0.015

• DWT-based bootstrap and wavestrap give 0.023 & 0.020

• confirms presence of autocorrelation (small, but presumably
exploitable by traders)
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Applications to Bivariate Climate Time Series - I
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• plot shows Pacific decadal oscillation (PDO) index (thick curve)
and March 15th snow depth on Mt. Rainier (thin curve)

• sample cross-correlation is

ρ̂XY ≡
∑N−1

t=0 (Xt −X)(Yt − Y )
[∑N−1

t=0 (Xt −X)2
∑N−1

t=0 (Yt − Y )2
]1/2

.
= −0.27

• Q: given such a short series, is this significantly different from
zero?
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Applications to Bivariate Climate Time Series - II

• histogram of wavestrapped cross-correlations says ‘yes’
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Comment on Other Approaches

• stick with DWT, but use J0 = J − 3 or J0 = J − 4 partial
DWT so that there are 8 or 16 coefficients in both WJ0

and
VJ0

, then use parametric bootstrap on VJ0

• in addition to using parametric bootstrap on VJ0
, use para-

metric or block bootstrap separately on each subvector Wj

− for FD processes, although Wj is close to white noise, its
variation from white noise is captured to a very good ap-
proximation by an AR(1) or AR(2) process
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