Wavelet Methods for Time Series Analysis

Part IX: Wavelet-Based Bootstrapping

e start with some background on bootstrapping and its rationale

e describe adjustments to the bootstrap that allow it to work
with correlated time series

e describe how the decorrelating property of the DWT can be
used to develop a wavelet-based bootstrap for certain time series

e describe ‘wavestrapping,” an adaptive procedure based upon
finding a decorrelating transform from a wavelet packet table
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Motivating Question

elet X = [Xp, ..., Xy_1]T be a finite portion of a stationary
process with autocovariance sequence (ACVS) {s;}

e let {pr} be the corresponding autocorrelation sequence (ACS):

pr = S—T, where sr = cov { Xy, X¢4+} and sg = var { X3}

50
e given a time series, we can estimate its ACS at 7 = 1 using
N—-2
b= Do XX
- N—-1 2
2i—0 Xi

under the assumption that E{X;} =0

e (Q: given the amount N of data we have, how close can we
expect p1 to be to the true unknown pi?

e i.c., how can we assess the sampling variability in p;?
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Classic Approach — Large Sample Theory: I

e in what follows, let A'(11, 0%) denote a Gaussian (normal) ran-
dom variable (RV) with mean g and variance o

e if Xy’s were independent and identically distributed (IID) so
that p; = 0, the distribution of p; becomes arbitrarily close to
that of an A(0, %) RV as N — oo (requires suitable condi-
tions)
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Classic Approach — Large Sample Theory: II

e more generally, p1 is close to the distribution of an N (p1, 0]2\])
RV as N — oo, where

1 o0
NEN D {pg-(l +2p8) + pro1pr—1 — 4,01,07/)7_1}

T=—00
e in practice, the above result is unappealing because it requires

— knowledge of the theoretical ACS

— the ACS to damp down sufficiently fast, which would rule
out long memory processes (LMPs)

e while large sample theory has been worked out for p; under
certain conditions, similar theory for other statistics can be
hard to come by
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Alternative Approach — Bootstrapping: I

o if Xy's were IID, we could apply ‘bootstrapping’ to assess the
variability in pq, as follows

e suppose we have the following time series of length N = 8§,
which is a realization of a Gaussian white noise process:

x =[1.9,2.2,-0.1,1.0,—0.6,0.5, — 1.3, —0.3] ",
for which p; = 0.23 (for white noise, the true value of py is 0)
e generate a new time series x(1) by randomly sampling from x:
xM) = 2.2,-0.1,-0.1,1.0,1.9, 1.9, —0.6, —0.1],
(1)

for which p;” = 0.31 (note: sampling is done with replacement)

o do again to get x(2) = [~0.3,0.5, 1.9, —0.6, —0.3, 0.5, 2.2,2.2]T,
for which ﬁ(lQ) =0.39

Alternative Approach — Bootstrapping: 11

e repeat a large number of times to get ,5(11), [)&2), e ,ﬁ(lM)

e plots shows histogram for {ﬁgm) :m = 1,...,10,000}, along
with probability density function (PDF) for N(0, %) (left-hand
plot) and an approximation to the true PDF for p; (right)

1.3
vertical lines
0.0 l l indicates p;

-1 0 1 -1 0 1

ﬁ(lm) ﬁ(lm)

e can regard sample distribution of { [)gm)} as an approximation
to the unknown distribution of pq
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Alternative Approach — Bootstrapping: 111

e bootstrap approximation to distribution of p; gets better as N
increases

e consider sample of Gaussian white noise of length N = 128, for
which p; = —0.02

4 5
z 0 vertical line
indicates p;
—4 0 |

J

0 128 -1 0 1
¢ A(m)

e sample distribution of {,égm)} agrees quite well with the ap-
proximate true PDF
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Bootstrapping Correlated Time Series: 1

e key assumption: x was a realization of IID RVs

e if not true (usually the case with time series!), sample distribu-

(m)

tion of {py" '} can be badly misleading as an approximation to
unknown distribution of pq

e as an example, consider a realization of a fractionally differ-
enced (FD) process with parameter § = %, for which p; = 0.23
(for an FD(%) process, p] = %)
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Bootstrapping Correlated Time Series: II

e use the same procedure as before to get [)gl), ﬁgQ), cee [)gM)
e plot shows histogram for {ﬁ§m> :m = 1,...,10,000}, along
with an approximation to the true PDF for pg

5
vertical lines indicate
0 , Prandpy

-1 0 1

A

e bootstrap approximation gets even worse as N increases

e to correct the problem caused by correlation in time series, can
use specialized time or frequency domain bootstrapping if ACS
damp downs sufficiently fast
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Parametric Bootstrapping: 1

e one well-known time domain bootstrapping scheme is the para-
metric (or residual) bootstrap

e suppose we can assume that our time series is a realization of
a portion Xy, ..., Xy_j of a first order autoregressive (AR)
process:

Xt =01 X1 + &,
where |¢1] < 1 and {¢} is white noise with zero mean and
variance 02 (this model is widely used in geophysics)

o have var {X;} = 02/(1 — ¢%) and p; = qb'f' for AR(1) process

e in particular, p; = ¢1, so can estimate ¢ using gzgl =D
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Parametric Bootstrapping: II

e since € = Xy — ¢1X¢_1, can form residuals
Tt:Xt_leXt—la t=1,...,N —1,
with the idea that ry will be a good approximation to €;
(note: there are N — 1 residuals rather than N)
o let 7"((]1), 7"51), e ,Tg\lf)_l be arandom sample from r{, 7o, ..., ry_
(as before, sampling is done with replacement)

e let Xél) = r(gl)/(l — é%)lﬂ (‘stationary initial condition’)

e form . N 1
Xt():¢1X1t(—)l+T§ ), t=1,...,N —1,

yielding the bootstrapped time series Xél), Xfl), o XN
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Parametric Bootstrapping: 111

® use X(()l), X{l), ey X](\P_l to compute ﬁgl)

(2) (2) (2)

elet ry,m", ...,y beasecond random sample from rq, o,
o N1
. 2 2
e use these to form a second bootstrapped series Xé )7 X f ), e

%@ bl

N1 from which we form p;

e repeat this procedure M times to get ﬁgl), ,5(12), e ﬁgM)
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Parametric Bootstrapping: IV

e as an example, consider a realization of an AR(1) process with
¢1 = p1 = 3, for which p; = 0.38

4
Tt 0
—4

0 128
t

e plot shows histogram for {ﬁgm) :m = 1,...,10,000}, along
with an approximation to the true PDF for pg

6
vertical lines indicate
0 p1 and py
L J

Parametric Bootstrapping: V

e important assumption here is that time series is well modeled
by AR(1) process

e to see what happens if this assumption fails, reconsider FD(%I)
realization and treat it as if it were an AR(1) realization

e since p1 = 0.23, we would set qgl =0.23

e plot shows histogram for {ﬁgm) :m = 1,...,10,000}, along
with an approximation to the true PDF for pq

5
vertical lines indicate
0 . M and p;

<1 0 1
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Parametric Bootstrapping: VI

e more generally, can fit pth order process
p p A
X = Z OuXt—y + € and use 14 = Xy — Z OuXt—u
u=1 u=1

(m)

to form new series and then p;

e note that the number of residuals is N —p, so best to stick with
small values of p

e several variations on the basic scheme, one of which is to use
r+ = r¢ — T rather than r¢, where 7 is the sample mean of the
residuals (usually close to zero, but sometimes not)
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Block Bootstrapping

e another time domain approach is block bootstrapping, which
is nonparametric and has some nice theoretical properties, but
a bit trickier to describe and implement
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Frequency Domain Bootstrapping

e ‘phase scramble’ discrete Fourier transform (DFT) {A}} of
data {X¢} and apply inverse DFT to create new series:
N-1 .
ij — Z Xte—ZQWkt/N — Akelek
t=0
e periodogram-based bootstrapping: in addition to phase scram-
bling, evoke large sample result that |Aj|’s are approximately
uncorrelated with distribution related to a chi-square RV with
2 degrees of freedom

e circulant embedding bootstrapping: form nonparametric esti-
mate of spectral density function and generate realizations us-
ing circulant embedding
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Rationale for Wavelet Domain Bootstrapping

e time and frequency domain approaches are both problematic
for long memory processes

e DWT decorrelates certain time series X, including long mem-
ory processes (these are ruled out by time and frequency domain
bootstrapping because ACS damps down slowly)

e level Jy partial DWT maps X to W1, Wy, ..., W jrand V 5,
with the RVs in the W ’s being approximately uncorrelated
(note: scaling coefficients V 7, are still highly correlated)
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DWT of a Long Memory Process: 1

1
o

P R | S S B B
0 256 512 768 1024 0 32

7 (lag)

e realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for 7 > 0,

T X Xy
N—-1 v2
Zt:() X
e note that ACS dies down slowly

ﬁX,T =
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DWT of a Long Memory Process: 11
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e LA(8) DWT of FD(0.4) series and sample ACSs for each W
& V7, along with 95% confidence intervals for white noise
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DWT of a Long Memory Process: 111

e second example: ACS for FD(0.45)
;@

1 1 1 ]
0 16 32 48 64
T

—1

e unit lag autocorrelations for W; using the Haar, D(4) and
LA(8) wavelet filters (other autocorrelations are very small)

j Haar  D(4) LA(8)

1 —0.0626 —0.0797 —0.0767
2 —0.0947 —0.1320 —0.1356
3 —0.1133 —0.1511 —0.1501
4 —0.1211 —0.1559 —0.1535
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DWT of a Long Memory Process: IV
e spectral density functions (SDFs) for X and W

o
~N

10

SDF (in decibels)

-10

0.0 0.2 0.4 0.0 0.2 0.4

frequency frequency

— relatively flat (white noise if perfectly flat), but remaining
variation well approximated by SDF for AR(2) process

— height increases as j increases (variance of W sets height)
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DWT of a Long Memory Process: V

e maximum absolute cross-correlations for wavelet coefficients in
Wjande/for1§j<j’§4

Haar D(4) LA(8)
N 2 3 4 2 3 4 2 3 4

1 0.13 0.17 0.14 0.09 0.09 0.04 0.06 0.03 0.00
2 0.17 0.21 0.12 0.11 0.08 0.03
3 0.18 0.13 0.08
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Recipe for Wavelet Domain Bootstrapping: 1

1. given X of length N = 27, compute level Jy = J — 2 partial
DWT Wy, ..., W and V j, (4 coefficients in W ;, and V )

2. randomly sample with replacement N/ 2J times from W; to

create bootstrapped vector W(-b)7 jg=1,....Jy

. do the same for V j, to create V(le)) (theory lacking here, but

w

better in computer experiments than using just V JO)

4. apply inverse transform to ng), ce WS? and VS;) to obtain

bootstrapped time series X ()
(0)

. compute unit lag sample autocorrelation py

Ut

e repeat above many times to build up sample distribution of
bootstrapped autocorrelations
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Recipe for Wavelet Domain Bootstrapping: II

e computer experiments indicate improvement over block boot-
strap for FD processes

e variation: replace X by series of length 2N given by
Xy =X, X1, s Xn—o, Xy—1, X1, XN -9, .., X1, Xol*;

i.e., use ‘reflection’ rather than circular boundary conditions
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Motivation for ‘Wavestrapping’: 1

e DWT does not adequately decorrelate all time series
e consider first order moving average process (MA(1)):

Xt =€ +0.99€¢ 1
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Motivation for ‘Wavestrapping’: II

e SDFs for MA(1) process and associated W ;

o
—

SDF (in decibels)

-10

-20

0.0 0.2 0.4 0.0 0.2 0.4

frequency frequency

e note that SDF of W is not approximately flat
e idea: use transform selected from wavelet packet table
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Motivation for ‘Wavestrapping’: III

e consider following level Jy = 4 wavelet packet table (WPT):

Wu,n =X
Wi, Wi,
Wz,o Wz,l W, Wz,3
W.’&,“ W:i.l W:x,z W:i.fl w.’%,/k Wfi.ﬁ W.’&,h W!{J’
W[ Wi [Wiao Wi [Wa [ Wi s W [ W o | Was W W s Wi Wi s W 1o W W
0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2

s
e shaded boxes identify an orthonormal transform that is a better
decorrelator of the MA(1) process than the DWT
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Motivation for ‘Wavestrapping’: IV Motivation for ‘Wavestrapping’: V

e SDFs for MA(1) process and associated W ,, e first 5 of W ;, SDFs have variations less than 3 dB, but those
. for Wy 13, Wy 14 and Wy 15 vary by 3.9, 5.3 and 7.2 dB
— — e increasing depth of WPT to Jy = 6 allows us to replace these
o — by

— three j =5 level subvectors W 95, W5 97, W5 9g and

SDF (in decibels)

-10

— six j = 6 level subvectors Wg sg, ..., Wg 63
e resulting WPT has SDFs that all vary by less than 3 dB

e idea: adaptively select transform by using white noise tests

-20

0.0 0.2 0.4 0.0 0.2 0.4

frequency frequency
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Recipe for Wavestrapping: 1 Recipe for Wavestrapping: 11

1. given X of length 27, compute level Jy = J — 2 WPT

. . ) 4. apply inverse transform to obtain bootstrapped time series X (?)
(enter step 2 with starting values j = n = 0 and W g = X) DDA HIVEISE HEAtSIoHH H HAPPEC HIE 5EH

. W)
2.if j = Jo, retain W .- if j < Jo, do white noise test on W, 5. compute unit lag sample autocorrelation p;

— portmanteau test on autocorrelation estimates for W , e repeat above many times to build up sample distribution of

— cumulative periodogram test bootstrapped autocorrelations

if fail to reject the null hypothesis, retain W ,,; if reject, discard
W, (after transforming it into W12, and Wi 9,11),
and repeat this step twice again (both on W1 9, and W11 2,,41)

3. desired adaptively chosen transform consists of all subvectors
retained after step 2 applied as many times as needed; randomly
sample (with replacement) from each subvector in the trans-
form to create the similarly dimensioned wavestrapped subvec-
tors
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Summary of Computer Experiments - I

Wavestrap
Process Boundary | DWT Port Pgrm | Block | True
WN
N =128 periodic 82 87 88 8.1 8.7

reflection 83 86 87
N =1024 periodic 31 31 31 3.0 | 3.1

reflection 32 32 31

AR(1)
N =128 periodic 5.7 5.2 5.1 5.4 4.8
reflection 5.5 5.1 5.4
N =1024 periodic 1.6 1.5 1.5 1.5 1.4
reflection 1.6 1.5 1.5

MA(1)
N =128 periodic 71 68 68 65 | 6.3
reflection 7.0 6.8 6.6
N = 1024 periodic 2.6 2.4 2.3 2.2 2.2
reflection 2.6 2.4 2.4

FD
N =128 periodic 94 83 85 7.7 1107
reflection 9.9 8.8 9.6
N =1024 periodic 44 42 42 34 5.3
reflection 4.7 45 47
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Summary of Computer Experiments - 11

e standard deviations (x100) of unit lag sample autocorrelations
given by DWT-based bootstrapping, two forms of wavestrap-
ping and block bootstrap, along with true standard deviations

e four models considered are white noise (WN); AR(1) process
Xt = 09Xy 1 + e, MA(1) process Xy = € + 0.99¢;_1; and
fractionally differenced (FD) process with § = 0.45

e wavestrapping with portmanteau test and reflection boundary
conditions does better than — or is comparable to — block boot-

strap (current state of the art) except for the MA(1) process,
for which the block bootstrap is ideally suited
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Application to BMW Stock Prices - 1

0.05

log(returns)
-0.05

-0.15

0 1000 2000 3000 4000 5000 6000

days

e plot shows log of daily returns on BMW share prices
e has small unit lag sample autocorrelation: p; = 0.081.

e large sample theory appropriate for Gaussian white noise gives
standard error of 1/4/N = 0.013

I1X-35

Application to BMW Stock Prices - 11

e Gaussianity is suspect: data better modeled by ¢ distribution
with 3.9 degrees of freedom

e block bootstrap with block sizes 30, 50, 100, 200 and 500 gives
standard errors are 0.012, 0.012, 0.014, 0.016 and 0.015

e DWT-based bootstrap and wavestrap give 0.023 & 0.020

e confirms presence of autocorrelation (small, but presumably
exploitable by traders)
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Applications to Bivariate Climate Time Series - 1

400 5

PDO index

snowpack (inches)
N
o
S

0 1 1 1 1 -5
1900 1920 1940 1960 1980 2000
year

e plot shows Pacific decadal oscillation (PDO) index (thick curve)
and March 15th snow depth on Mt. Rainier (thin curve)

e sample cross-correlation is
X - X) (v - V)

pxy = T gy = 0.
P e virni e

e (): given such a short series, is this significantly different from
zero?!
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Applications to Bivariate Climate Time Series - 11

e histogram of wavestrapped cross-correlations says ‘yes’

4

normalized counts
N w
T T

-
T

o

-0.4 -0.2 0.0 0.2 0.4
cross correlation
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Comment on Other Approaches

e stick with DW'T| but use Jy = J — 3 or Jy = J — 4 partial
DWT so that there are 8 or 16 coefficients in both W j, and
V j,» then use parametric bootstrap on 'V

e in addition to using parametric bootstrap on V jz, use para-
metric or block bootstrap separately on each subvector W

— for FD processes, although W is close to white noise, its
variation from white noise is captured to a very good ap-
proximation by an AR(1) or AR(2) process
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