Wavelet Methods for Time Series Analysis	Wavelet-Based Signal Estimation: I
 Part VIII: Wavelet-Based Signal Extraction and Denoising overview of key ideas behind wavelet-based approach description of four basic models for signal estimation discussion of why wavelets can help estimate certain signals simple thresholding & shrinkage schemes for signal estimation wavelet-based thresholding and shrinkage case study: denoising ECG time series brief comments on 'second generation' denoising 	 DWT analysis of X yields W = WX DWT synthesis X = W^TW yields multiresolution analysis by splitting W^TW into pieces associated with different scales DWT synthesis can also estimate 'signal' hidden in X if we can modify W to get rid of noise in the wavelet domain if W' is a 'noise reduced' version of W, can form signal estimate via W^TW'
VIII–1	VIII-2
Wavelet-Based Signal Estimation: II	Models for Signal Estimation: I
 key ideas behind simple wavelet-based signal estimation certain signals can be efficiently described by the DWT using all of the scaling coefficients a small number of 'large' wavelet coefficients noise is manifested in a large number of 'small' wavelet coefficients can either 'threshold' or 'shrink' wavelet coefficients to eliminate noise in the wavelet domain key ideas led to wavelet thresholding and shrinkage proposed by Donoho, Johnstone and coworkers in 1990s 	 will consider two types of signals: 1. D, an N dimensional deterministic signal 2. C, an N dimensional stochastic signal; i.e., a vector of random variables (RVs) with covariance matrix Σ_C will consider two types of noise: 1. ε, an N dimensional vector of independent and identically distributed (IID) RVs with mean 0 and covariance matrix Σ_ε = σ_ε²I_N 2. η, an N dimensional vector of non-IID RVs with mean 0 and covariance matrix Σ_η * one form: RVs independent, but have different variances * another form of non-IID: RVs are correlated

 Models for Signal Estimation: II leads to four basic 'signal + noise' models for X X = D + ϵ <lix +="" =="" d="" li="" η<=""> <lix +="" =="" c="" li="" ϵ<=""> <lix +="" =="" c="" li="" η<=""> </lix></lix></lix> in the latter two cases, the stochastic signal C is assumed to be independent of the associated noise 	 Signal Representation via Wavelets: I consider deterministic signals D first signal estimation problem is simplified if we can assume that the important part of D is in its large values assumption is not usually viable in the original (i.e., time domain) representation D, but might be true in another domain an orthonormal transform O might be useful because O = OD is equivalent to D (since D = O^TO) we might be able to find O such that the signal is isolated in M ≪ N large transform coefficients
	 Q: how can we judge whether a particular O might be useful for representing D?
VIII-5	VIII-6
Signal Representation via Wavelets: II	Signal Representation via Wavelets: III
 let O_j be the jth transform coefficient in O = OD let O₍₀₎, O₍₁₎,, O_(N-1) be the O_j's reordered by magnitude: O₍₀₎ ≥ O₍₁₎ ≥ ≥ O_(N-1) example: if O = [-3, 1, 4, -7, 2, -1]^T, then O₍₀₎ = O₃ = -7, O₍₁₎ = O₂ = 4, O₍₂₎ = O₀ = -3 etc. define a normalized partial energy sequence (NPES): C_{M-1} ≡ ∑_{j=0}^{M-1} O_(j) ² = energy in largest M terms total energy in signal let I_M be N × N diagonal matrix whose jth diagonal term is 1 if O_j is one of the M largest magnitudes and is 0 otherwise 	• form $\widehat{\mathbf{D}}_{M} \equiv \mathcal{O}^{T} \mathcal{I}_{M} \mathbf{O}$, an approximation to $\mathbf{D} = \mathcal{O}^{T} \mathbf{O}$ • when $\mathbf{O} = [-3, 1, 4, -7, 2, -1]^{T}$ and $M = 3$, we have $\mathcal{I}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

and hence $\mathbf{P}\left[\max_{l}|e_{l}| \leq \delta^{(u)}\right] \to 1$ as $N \to \infty$, so no noise will exceed threshold in the limit \mathbf{b} in we use, e.g., hard thresholding, any holizero signal transform coefficient of a fixed magnitude will eventually get set to 0 as $N \to \infty$ • nonetheless: $\delta^{(u)}$ works remarkably well

Minimum Unbiased Risk: I

- \bullet second approach for setting δ is data-adaptive, but only works for selected thresholding functions
- assume model of deterministic signal plus non-IID noise: $\mathbf{X} = \mathbf{D} + \boldsymbol{\eta}$ so that $\mathbf{O} \equiv \mathcal{O}\mathbf{X} = \mathcal{O}\mathbf{D} + \mathcal{O}\boldsymbol{\eta} \equiv \mathbf{d} + \mathbf{n}$
- component-wise, have $O_l = d_l + n_l$
- further assume that n_l is an $\mathcal{N}(0, \sigma_{n_l}^2)$ RV, where $\sigma_{n_l}^2$ is assumed to be known, but we allow the possibility that n_l 's are correlated
- let $O_l^{(\delta)}$ be estimator of d_l based on a (yet to be determined) threshold δ
- put $O_l^{(\delta)}$'s into vector $\mathbf{O}^{(\delta)}$

VIII–29

Minimum Unbiased Risk: III

• using
$$O_l^{(\delta)} = O_l + A^{(\delta)}(O_l)$$
 with $O_l = d_l + n_l$ yields
 $O_l^{(\delta)} - d_l = n_l + A^{(\delta)}(O_l)$

and hence

$$E\{(O_l^{(\delta)} - d_l)^2\} = \sigma_{n_l}^2 + 2E\{n_l A^{(\delta)}(O_l)\} + E\{[A^{(\delta)}(O_l)]^2\}$$

• because of Gaussianity, can reduce middle term (book, p403):

$$E\{n_l A^{(\delta)}(O_l)\} = \sigma_{n_l}^2 E\left\{ \frac{d}{dx} A^{(\delta)}(x) \Big|_{x=O_l} \right\}$$

• can now write $E\{(O_l^{(\delta)} - d_l)^2\} = E\{\mathcal{R}(\sigma_{n_l}, O_l, \delta)\}$, where $\mathcal{R}(\sigma_{n_l}, x, \delta) \equiv \sigma_{n_l}^2 + 2\sigma_{n_l}^2 \frac{d}{dx} A^{(\delta)}(x) + [A^{(\delta)}(x)]^2$

Minimum Unbiased Risk: II

• define
$$\widehat{\mathbf{D}}^{(\delta)} \equiv \mathcal{O}^T \mathbf{O}^{(\delta)}$$
 and associated 'risk'
 $R(\widehat{\mathbf{D}}^{(\delta)}, \mathbf{D}) \equiv E\{\|\widehat{\mathbf{D}}^{(\delta)} - \mathbf{D}\|^2\} = E\{\|\mathcal{O}(\widehat{\mathbf{D}}^{(\delta)} - \mathbf{D})\|^2)\}$
 $= E\{\|\mathbf{O}^{(\delta)} - \mathbf{d}\|^2)\}$
 $= E\{\sum_{l=0}^{N-1} (O_l^{(\delta)} - d_l)^2\}$

- can minimize risk by making $E\{(O_l^{(\delta)} d_l)^2\}$ as small as possible for each l
- Stein (1981) considered estimators restricted to be of the form

$$O_l^{(\delta)} = O_l + A^{(\delta)}(O_l),$$

where $A^{(\delta)}(\cdot)$ must be 'weakly differentiable' (basically, piecewise continuous plus a bit more)

VIII–30

Minimum Unbiased Risk: IV

• risk in using
$$\mathbf{D}^{(\delta)}$$
 given by

$$R(\widehat{\mathbf{D}}^{(\delta)}, \mathbf{D}) = E\left\{\sum_{l=0}^{N-1} (O_l^{(\delta)} - d_l)^2\right\} = E\left\{\sum_{l=0}^{N-1} \mathcal{R}(\sigma_{n_l}, O_l, \delta)\right\}$$

• practical scheme: given realizations o_l of O_l , find δ minimizing

$$\sum_{l=0}^{N-1} \mathcal{R}(\sigma_{n_l}, o_l, \delta)$$

• for a given δ , above is Stein's unbiased risk estimator (SURE)

Minimum Unbiased Risk: V

• example: if we set

$$A^{(\delta)}(O_l) = \begin{cases} -O_l, & \text{if } |O_l| < \delta; \\ -\delta \operatorname{sign}\{O_l\}, & \text{if } |O_l| \ge \delta, \end{cases}$$

we obtain $O_l^{(\delta)} = O_l + A^{(\delta)}(O_l) = O_l^{(st)}$, i.e., soft thresholding

• for this case, can argue that

$$\mathcal{R}(\sigma_{n_l}, O_l, \delta) = O_l^2 - \sigma_{n_l}^2 + (2\sigma_{n_l}^2 - O_l^2 + \delta^2) \mathbf{1}_{[\delta^2, \infty)}(O_l^2 + \delta^2) \mathbf$$

• only the last term depends on δ , and, as a function of δ , SURE is minimized when last term is minimized

VIII–33

Signal Estimation via Shrinkage

- so far, we have only considered signal estimation via threshold-ing rules, which will map some O_l to zeros
- will now consider shrinkage rules, which differ from thresholding only in that nonzero coefficients are mapped to nonzero values rather than exactly zero (but values can be *very* close to zero!)
- there are three approaches that lead us to shrinkage rules
 - 1. linear mean square estimation
 - 2. conditional mean and median
 - 3. Bayesian approach
- \bullet will only consider 1 and 2, but one form of Bayesian approach turns out to be identical to 2

Minimum Unbiased Risk: VI

• data-adaptive scheme is to replace O_l with its realization, say o_l , and to set δ equal to the value, say $\delta^{(S)}$, minimizing

$$\sum_{l=0}^{N-1} (2\sigma_{n_l}^2 - o_l^2 + \delta^2) \mathbf{1}_{[\delta^2,\infty)}(o_l^2),$$

- must have $\delta^{(S)} = |o_l|$ for some l, so minimization is easy
- if n_l have a common variance, i.e., $\sigma_{n_l}^2 = \sigma_0^2$ for all l, need to find minimizer of the following function of δ :

$$\sum_{l=0}^{N-1} (2\sigma_0^2 - o_l^2 + \delta^2) \mathbf{1}_{[\delta^2,\infty)}(o_l^2),$$

(in practice, σ_0^2 is usually unknown, so later on we will consider how to estimate this also)

VIII–34

Linear Mean Square Estimation: I

- assume model of stochastic signal plus non-IID noise: $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$ so that $\mathbf{O} = \mathcal{O}\mathbf{X} = \mathcal{O}\mathbf{C} + \mathcal{O}\boldsymbol{\eta} \equiv \mathbf{R} + \mathbf{n}$
- component-wise, have $O_l = R_l + n_l$
- assume C and η are multivariate Gaussian with covariance matrices $\Sigma_{\mathbf{C}}$ and $\Sigma_{\boldsymbol{\eta}}$
- implies **R** and **n** are also Gaussian RVs, but now with covariance matrices $\mathcal{O}\Sigma_{\mathbf{C}}\mathcal{O}^{T}$ and $\mathcal{O}\Sigma_{\boldsymbol{\eta}}\mathcal{O}^{T}$
- assume that $E\{R_l\} = 0$ for any component of interest and that $R_l \& n_l$ are uncorrelated
- suppose we estimate R_l via a simple scaling of O_l :

 $\hat{R}_l \equiv a_l O_l$, where a_l is a constant to be determined

Linear Mean Square Estimation: II

• let us select a_l by making $E\{(R_l - \hat{R}_l)^2\}$ as small as possible, which can be shown to occur when we set

$$a_l = \frac{E\{R_l O_l\}}{E\{O_l^2\}}$$

• because R_l and n_l are uncorrelated with 0 means and because $O_l = R_l + n_l$, we have $E\{R_l O_l\} = E\{R_l^2\}$ and $E\{O_l^2\} = E\{R_l^2\} + E\{n_l^2\}$

$$E\{R_lO_l\} = E\{R_l^2\}$$
 and $E\{O_l^2\} = E\{R_l^2\} + E\{n_l^2\}$
yielding

$$\widehat{R}_{l} = \frac{E\{R_{l}^{2}\}}{E\{R_{l}^{2}\} + E\{n_{l}^{2}\}}O_{l} = \frac{\sigma_{R_{l}}^{2}}{\sigma_{R_{l}}^{2} + \sigma_{n_{l}}^{2}}O_{l}$$

• note: 'optimum' a_l shrinks O_l toward zero, with shrinkage increasing as the noise variance increases

VIII–37

Background on Conditional PDFs: II

 \bullet by definition RVs X and Y are said to be independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y),$$

in which case

$$f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y)$$

- \bullet thus X and Y are independent if knowing X doesn't allow us to alter our probabilistic description of Y
- $f_{Y|X=x}(\cdot)$ is a PDF, so its mean value is

$$E\{Y|X=x\} = \int_{-\infty}^{\infty} y f_{Y|X=x}(y) \, dy;$$

the above is called the conditional mean of Y, given X

Background on Conditional PDFs: I

- let X and Y be RVs with probability density functions (PDFs) $f_X(\cdot)$ and $f_Y(\cdot)$
- let $f_{X,Y}(x,y)$ be their joint PDF at the point (x,y)
- $f_X(\cdot)$ and $f_Y(\cdot)$ are called marginal PDFs and can be obtained from the joint PDF via integration:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

• the conditional PDF of Y given X = x is defined as

$$f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

(read '|' as 'given' or 'conditional on') $% \left(\left({{{\left({{{{\left({{{c}}} \right)}} \right)}_{i}}}_{i}}} \right)$

VIII–38

Background on Conditional PDFs: III

- \bullet suppose RVs X and Y are related, but we can only observe X
- \bullet suppose we want to approximate the unobservable Y based on some function of the observable X
- example: we observe part of a time series containing a signal buried in noise, and we want to approximate the unobservable signal component based upon a function of what we observed
- suppose we want our approximation to be the function of X, say $U_2(X)$, such that the mean square difference between Y and $U_2(X)$ is as small as possible; i.e., we want

$$E\{(Y - U_2(X))^2\}$$

to be as small as possible

Background on Conditional PDFs: IV

- solution is to use $U_2(X) = E\{Y|X\}$; i.e., the conditional mean of Y given X is our best guess at Y in the sense of minimizing the mean square error (related to fact that $E\{(Y - a)^2\}$ is smallest when $a = E\{Y\}$)
- on the other hand, suppose we want the function $U_1(X)$ such that the mean absolute error $E\{|Y U_1(X)|\}$ is as small as possible
- the solution now is to let $U_1(X)$ be the conditional median; i.e., we must solve

$$\int_{-\infty}^{U_1(x)} f_{Y|X=x}(y) \, dy = 0.5$$

to figure out what $U_1(x)$ should be when X = x

VIII-41

Conditional Mean and Median Approach: II

• can show that the joint PDF of R_l and O_l is related to the joint PDF $f_{R_l,n_l}(\cdot,\cdot)$ of R_l and n_l via

$$f_{R_l,O_l}(r_l,o_l) = f_{R_l,n_l}(r_l,o_l-r_l) = f_{R_l}(r_l)f_{n_l}(o_l-r_l),$$

with the 2nd equality following since $R_l \& n_l$ are independent

• the marginal PDF for O_l can be obtained from the joint PDF $f_{R_l,O_l}(\cdot, \cdot)$ by integrating out the first argument:

$$f_{O_l}(o_l) = \int_{-\infty}^{\infty} f_{R_l,O_l}(r_l,o_l) \, dr_l = \int_{-\infty}^{\infty} f_{R_l}(r_l) f_{n_l}(o_l - r_l) \, dr_l$$

• putting all these pieces together yields the conditional PDF

$$f_{R_l|O_l=o_l}(r_l) = \frac{f_{R_l,O_l}(r_l,o_l)}{f_{O_l}(o_l)} = \frac{f_{R_l}(r_l)f_{n_l}(o_l-r_l)}{\int_{-\infty}^{\infty} f_{R_l}(r_l)f_{n_l}(o_l-r_l)\,dr_l}$$

Conditional Mean and Median Approach: I

- assume model of stochastic signal plus non-IID noise: $\mathbf{X} = \mathbf{C} + \boldsymbol{\eta}$ so that $\mathbf{O} = \mathcal{O}\mathbf{X} = \mathcal{O}\mathbf{C} + \mathcal{O}\boldsymbol{\eta} \equiv \mathbf{R} + \mathbf{n}$
- component-wise, have $O_l = R_l + n_l$
- \bullet because ${\bf C}$ and ${\boldsymbol \eta}$ are independent, ${\bf R}$ and ${\bf n}$ must be also
- suppose we approximate R_l via $\hat{R}_l \equiv U_2(O_l)$, where $U_2(O_l)$ is selected to minimize $E\{(R_l U_2(O_l))^2\}$
- solution is to set $U_2(O_l)$ equal to the conditional mean $E\{R_l|O_l\}$, so let's work out what form the conditional mean takes
- to get $E\{R_l|O_l\}$, need the PDF of R_l given O_l , which is

$$f_{R_l|O_l=o_l}(r_l) = \frac{f_{R_l,O_l}(r_l,o_l)}{f_{O_l}(o_l)}$$

VIII–42

Conditional Mean and Median Approach: III

mean value of
$$f_{R_l|O_l=o_l}(\cdot)$$
 yields estimator $\widehat{R}_l = E\{R_l|O_l\}$:

$$E\{R_l|O_l=o_l\} = \int_{-\infty}^{\infty} r_l f_{R_l|O_l=o_l}(r_l) dr_l$$

$$= \frac{\int_{-\infty}^{\infty} r_l f_{R_l}(r_l) f_{n_l}(o_l-r_l) dr_l}{\int_{-\infty}^{\infty} f_{R_l}(r_l) f_{n_l}(o_l-r_l) dr_l}$$

- \bullet to make further progress, we need a model for the wavelet-domain representation R_l of the signal
- heuristic that signal in the wavelet domain has a few large values and lots of small values suggests a Gaussian mixture model

Conditional Mean and Median Approach: IV

- let \mathcal{I}_l be an RV such that $\mathbf{P}\left[\mathcal{I}_l=1\right]=p_l$ & $\mathbf{P}\left[\mathcal{I}_l=0\right]=1-p_l$
- \bullet under Gaussian mixture model, R_l has same distribution as

 $\mathcal{I}_l \mathcal{N}(0, \gamma_l^2 \sigma_{G_l}^2) + (1 - \mathcal{I}_l) \mathcal{N}(0, \sigma_{G_l}^2)$

where $\mathcal{N}(0, \sigma^2)$ is a Gaussian RV with mean 0 and variance σ^2

- 2nd component models small # of large signal coefficients
- 1st component models large # of small coefficients ($\gamma_I^2 \ll 1$)
- example: PDFs for case $\sigma_{G_l}^2 = 10$, $\gamma_l^2 \sigma_{G_l}^2 = 1$ and $p_l = 0.75$

Conditional Mean and Median Approach: VI

- let's simplify to a 'sparse' signal model by setting $\gamma_l = 0$; i.e., large # of small coefficients are all zero
- distribution for R_l same as $(1 \mathcal{I}_l)\mathcal{N}(0, \sigma_{G_l}^2)$
- conditional mean estimator becomes $E\{R_l|O_l = o_l\} = \frac{b_l}{1+c_l}o_l$, where

$$c_{l} = \frac{p_{l}\sqrt{(\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2})}}{(1 - p_{l})\sigma_{n_{l}}}e^{-o_{l}^{2}b_{l}/(2\sigma_{n_{l}}^{2})}$$

Conditional Mean and Median Approach: V

- \bullet to complete model, let n_l obey a Gaussian distribution with mean 0 and variance $\sigma_{n_l}^2$
- conditional mean estimator of the signal RV R_l is given by

$$E\{R_l|O_l = o_l\} = \frac{a_l A_l(o_l) + b_l B_l(o_l)}{A_l(o_l) + B_l(o_l)}o_l,$$

(book, Ex [10.5]) where

$$a_{l} \equiv \frac{\gamma_{l}^{2} \sigma_{G_{l}}^{2}}{\gamma_{l}^{2} \sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2}} \text{ and } b_{l} \equiv \frac{\sigma_{G_{l}}^{2}}{\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2}}$$

$$A_{l}(o_{l}) \equiv \frac{p_{l}}{\sqrt{(2\pi[\gamma_{l}^{2} \sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2}])}} e^{-o_{l}^{2}/[2(\gamma_{l}^{2} \sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2})]}$$

$$B_{l}(o_{l}) \equiv \frac{1 - p_{l}}{\sqrt{(2\pi[\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2}])}}} e^{-o_{l}^{2}/[2(\sigma_{G_{l}}^{2} + \sigma_{n_{l}}^{2})]}$$

$$VIII-46$$

Conditional Mean and Median Approach: VII

• conditional mean shrinkage rule for $p_l = 0.95$ (i.e., $\approx 95\%$ of signal coefficients are 0); $\sigma_{n_l}^2 = 1$; and $\sigma_{G_l}^2 = 5$ (curve furthest from dotted diagonal), 10 and 25 (curve nearest to diagonal)

• as $\sigma_{G_l}^2$ gets large (i.e., large signal coefficients increase in size), shrinkage rule starts to resemble mid thresholding rule

Conditional Mean and Median Approach: VIII

- now suppose we estimate R_l via $\hat{R}_l = U_1(O_l)$, where $U_1(O_l)$ is selected to minimize $E\{|R_l U_1(O_l)|\}$
- \bullet solution is to set $U_1(o_l)$ to the median of the PDF for R_l given $O_l=o_l$
- to find $U_1(o_l)$, need to solve for it in the equation

$$\int_{-\infty}^{U_1(o_l)} f_{R_l|O_l=o_l}(r_l) \, dr_l = \frac{\int_{-\infty}^{U_1(o_l)} f_{R_l}(r_l) f_{n_l}(o_l - r_l) \, dr_l}{\int_{-\infty}^{\infty} f_{R_l}(r_l) f_{n_l}(o_l - r_l) \, dr_l} = \frac{1}{2}$$

Conditional Mean and Median Approach: IX

• simplifying to the sparse signal model, Godfrey & Rocca (1981) show that

$$U_1(O_l) \approx \begin{cases} 0, & \text{if } |O_l| \le \delta \\ b_l O_l, & \text{otherwise,} \end{cases}$$

where

$$\delta = \sigma_{n_l} \left[2 \log \left(\frac{p_l \sigma_{G_l}}{(1 - p_l) \sigma_{n_l}} \right) \right]^{1/2} \text{ and } b_l = \frac{\sigma_{G_l}^2}{\sigma_{G_l}^2 + \sigma_{n_l}^2}$$

- above approximation valid if $p_l/(1-p_l)\gg\sigma_{n_l}^2/(\sigma_{G_l}\delta)$ and $\sigma_{G_l}^2\gg\sigma_{n_l}^2$
- note that $U_1(\cdot)$ is approximately a hard thresholding rule

VIII–49

Wavelet-Based Thresholding

- assume model of deterministic signal plus IID Gaussian noise with mean 0 and variance σ_{ϵ}^2 : $\mathbf{X} = \mathbf{D} + \boldsymbol{\epsilon}$
- using a DWT matrix \mathcal{W} , form $\mathbf{W} = \mathcal{W}\mathbf{X} = \mathcal{W}\mathbf{D} + \mathcal{W}\boldsymbol{\epsilon} \equiv \mathbf{d} + \mathbf{e}$; because $\boldsymbol{\epsilon}$ is IID Gaussian, it follows that \mathbf{e} is also
- Donoho & Johnstone (1994) advocate the following:
 - form partial DWT of level J_0 : $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0}
 - threshold \mathbf{W}_j 's but leave \mathbf{V}_{J_0} alone (i.e., administratively, all $N/2^{J_0}$ scaling coefficients assumed to be part of \mathbf{d})
 - use universal threshold $\delta^{(u)} = \sqrt{[2\sigma_{\epsilon}^2\log(N)]}$
 - use thresholding rule to form $\mathbf{W}_{j}^{(t)}$ (hard, etc.)
 - estimate **D** by inverse transforming $\mathbf{W}_1^{(t)}, \ldots, \mathbf{W}_{J_0}^{(t)}$ and \mathbf{V}_{J_0}

MAD Scale Estimator: I

VIII-50

- procedure assumes σ_{ϵ} is know, which is not usually the case
- if unknown, use median absolute deviation (MAD) scale estimator to estimate σ_ϵ using \mathbf{W}_1

 $\hat{\sigma}_{\text{(mad)}} \equiv \frac{\text{median}\left\{|W_{1,0}|, |W_{1,1}|, \dots, |W_{1,\frac{N}{2}-1}|\right\}}{0.6745}$

- heuristic: bulk of $W_{1,t}$'s should be due to noise
- '0.6745' yields estimator such that $E\{\hat{\sigma}_{(\rm mad)}\} = \sigma_{\epsilon}$ when $W_{1,t}$'s are IID Gaussian with mean 0 and variance σ_{ϵ}^2
- designed to be robust against large $W_{1,t}$'s due to signal

MAD Scale Estimator: II

• example: suppose \mathbf{W}_1 has 7 small 'noise' coefficients & 2 large 'signal' coefficients (say, a & b, with $|b| > |a| \gg 2$):

 $\mathbf{W}_1 = [1.23, -1.72, -0.80, -0.01, a, 0.30, 0.67, b, -1.33]^T$

• ordering these by their magnitudes yields

0.01, 0.30, 0.67, 0.80, 1.23, 1.33, 1.72, |a|, |b|

 \bullet median of these absolute deviations is 1.23, so

 $\hat{\sigma}_{(mad)} = 1.23/0.6745 \doteq 1.82$

• $\hat{\sigma}_{(mad)}$ not influenced adversely by a and b; i.e., scale estimate depends largely on the many small coefficients due to noise

Examples of DWT-Based Thresholding: II

VIII-53

- top: signal estimate using $J_0 = 6$ partial LA(8) DWT with hard thresholding (repeat of middle plot of previous overhead)
- middle: same, but now with soft thresholding
- bottom: same, but now with mid thresholding

Examples of DWT-Based Thresholding: I

- \bullet top plot: NMR spectrum ${\bf X}$
- middle: signal estimate using $J_0 = 6$ partial LA(8) DWT with hard thresholding and universal threshold level estimated by $\hat{\delta}^{(u)} = \sqrt{[2\hat{\sigma}^2_{(\text{mad})} \log(N)]}$
- \bullet bottom: same, but now using D(4) DWT

VIII–54

Examples of MODWT-Based Thresholding

- as in previous overhead, but using MODWT rather than DWT
- because of MODWT filters are normalized differently, universal threshold must be adjusted for each level:

$$\tilde{\delta}_j^{(u)} \equiv \sqrt{\left[2\tilde{\sigma}_{(\text{mad})}^2 \log\left(N\right)/2^j\right]} \doteq 6.49673/2^{j/2}$$

• results are identical to what 'cycle spinning' would yield

VisuShrink: II

VisuShrink: I

- recipe with soft thresholding is known as 'VisuShrink' (Donoho & Johnstone, 1994) but is really thresholding, not shrinkage
- one theoretical justification for VisuShrink
 - consider the risk for all possible signals ${\bf D}$ using VisuShrink:

 $R(\widehat{\mathbf{D}}^{(st)}, \mathbf{D}) \equiv E\{\|\widehat{\mathbf{D}}^{(st)} - \mathbf{D}\|^2\}$

- consider 'ideal' risk $R(\widehat{\mathbf{D}}^{(i)}, \mathbf{D})$ formed with the help of an 'oracle' that tells us which $W_{i,t}$'s are dominated by noise
- Donoho & Johnstone (1994), Theorem 1:

 $R(\widehat{\mathbf{D}}^{(st)}, \mathbf{D}) \leq [2\log(N) + 1][\sigma_{\epsilon}^2 + R(\widehat{\mathbf{D}}^{(i)}, \mathbf{D})]$

 two risks differ by only a logarithmic factor do poorer when compared to the 'ideal' risk

VIII–57

Examples of DWT-Based Thresholding: III

- top: VisuShrink estimate based upon level $J_0 = 6$ partial LA(8) DWT and SURE with MAD estimate based upon \mathbf{W}_1 only
- bottom: same, but now with MAD estimate based upon W₁,
 W₂, ..., W₆ (the common variance in SURE is assumed common to all wavelet coefficients)
- resulting signal estimate of bottom plot is less noisy than for top plot

• rather than using the universal threshold, can also determine δ for VisuShrink by finding value $\hat{\delta}^{(S)}$ that minimizes SURE, i.e.,

$$\sum_{i=1}^{J_0} \sum_{t=0}^{N_j-1} (2\hat{\sigma}_{(\text{mad})}^2 - W_{j,t}^2 + \delta^2) \mathbf{1}_{[\delta^2,\infty)}(W_{j,t}^2),$$

as a function of δ , with σ_{ϵ}^2 estimated via MAD

VIII–58

Wavelet-Based Shrinkage: I

- assume model of stochastic signal plus Gaussian IID noise: $\mathbf{X} = \mathbf{C} + \boldsymbol{\epsilon}$ so that $\mathbf{W} = \mathcal{W}\mathbf{X} = \mathcal{W}\mathbf{C} + \mathcal{W}\boldsymbol{\epsilon} \equiv \mathbf{R} + \mathbf{e}$
- component-wise, have $W_{j,t} = R_{j,t} + e_{j,t}$
- form partial DWT of level J_0 , shrink \mathbf{W}_j 's, but leave \mathbf{V}_{J_0} alone
- assume $E\{R_{j,t}\} = 0$ (reasonable for \mathbf{W}_j , but not for \mathbf{V}_{J_0})
- \bullet use a conditional mean approach with the sparse signal model
 - $R_{j,t}$ has distribution dictated by $(1 \mathcal{I}_{j,t})\mathcal{N}(0, \sigma_G^2)$, where $\mathbf{P}\left[\mathcal{I}_{j,t} = 1\right] = p$ and $\mathbf{P}\left[\mathcal{I}_{j,t} = 0\right] = 1 - p$
- $-R_{j,t}$'s are assumed to be IID
- model for $e_{j,t}$ is Gaussian with mean 0 and variance σ_{ϵ}^2
- note: parameters do not vary with $j \mbox{ or } t$

Comments on '2nd Generation' Denoising: I

• '1st generation' denoising looks at each $W_{j,t}$ alone; for 'real world' signals, coefficients often cluster within a given level and persist across adjacent levels (ECG series offers an example) VIII-65

Comments on '2nd Generation' Denoising: III

- '1st generation' denoising also suffers from problem of overall significance of multiple hypothesis tests
- '2nd generation' work integrates idea of 'false discovery rate' (Benjamini and Hochberg, 1995) into denoising (see Wink and Roerdink, 2004, for a recent applications-oriented discussion)

Comments on '2nd Generation' Denoising: II

- here are some '2nd generation' approaches that exploit these 'real world' properties:
 - Crouse *et al.* (1998) use hidden Markov models for stochastic signal DWT coefficients to handle clustering, persistence and non-Gaussianity
 - Huang and Cressie (2000) consider scale-dependent multiscale graphical models to handle clustering and persistence
 - Cai and Silverman (2001) consider 'block' thesholding in which coefficients are thresholded in blocks rather than individually (handles clustering)
 - Dragotti and Vetterli (2003) introduce the notion of 'wavelet footprints' to track discontinuities in a signal across different scales (handles persistence)

VIII–66

Additional References

- Y. Benjamini and Y. Hochberg (1995), 'Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,' *Journal of the Royal Statistical Society, Series B*, **57**, pp. 289300
- T. Cai and B. W. Silverman (2001), 'Incorporating Information on Neighboring Coefficients into Wavelet Estimation,' Sankhya Series B, 63, pp. 127–48
- P. L. Dragotti and M. Vetterli (2003), 'Wavelet Footprints: Theory, Algorithms, and Applications,' *IEEE Transactions on Signal Processing*, **51**, pp. 1306–23
- H.-C. Huang and N. Cressie (2000), 'Deterministic/Stochastic Wavelet Decomposition for Recovery of Signal from Noisy Data,' *Technometrics*, 42, pp. 262–76
- A. M. Wink and J. B. T. M. Roerdink (2004), 'Denoising Functional MR Images: A Comparison of Wavelet Denoising and Gaussian Smoothing,' *IEEE Transactions on Medical Imaging*, 23(3), pp. 374–87