
Wavelet Methods for Time Series Analysis

Part VIII: Wavelet-Based Analysis and Synthesis

of Long Memory Processes

• DWT well-suited for long memory processes (LMPs)

• basic idea: DWT approximately decorrelates LMPs

• on synthesis side, leads to DWT-based simulation of LMPs

• on analysis side, leads to wavelet-based maximum likelihood
and least squares estimators for LMP parameters, along with a
test for homogeneity of variance
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Wavelets and Long Memory Processes: I

• wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/2j+1, 1/2j] (called jth ‘octave band’)

• suppose {Xt} has SX(·) as its spectral density function (SDF)

• statistical properties of {Wj,t} are simple if SX(·) has simple
structure within jth octave band

• example: fractionally differenced (FD) process

(1 − B)δXt = εt,

(where B is the backward shift operator such that (1−B)Xt =
Xt − Xt−1) having SDF

SX(f ) = σ2
ε/[4 sin2(πf )]δ
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Wavelets and Long Memory Processes: II

• FD process controlled by two parameters: δ and σ2
ε

• for small f , have SX(f ) ≈ C|f |−2δ; i.e., a power law

• log(SX(f )) vs. log(f ) is approximately linear with slope −2δ

• for large τj, the wavelet variance at scale τj, namely ν2
X(τj),

satisfies ν2
X(τj) ≈ C ′τ2δ−1

j

• log (ν2
X(τj)) vs. log (τj) is approximately linear, slope 2δ − 1

• approximately ‘self-similar’ (or ‘fractal’)

• stationary ‘long memory’ process (LMP) if 0 < δ < 1/2: cor-
relation between Xt and Xt+τ dies down slowly as τ increases
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Wavelets and Long Memory Processes: III

• power law model ubiquitous in physical sciences

− voltage fluctuations across cell membranes

− traffic fluctuations on an expressway

− impedance fluctuations in geophysical borehole

− fluctuations in the rotation of the earth

− X-ray time variability of galaxies

• DWT well-suited to study FD process and other LMPs

− ‘self-similar’ filters used on ‘self-similar’ processes

− key idea: DWT approximately decorrelates LMPs
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DWT of a Long Memory Process: I
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• realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for τ ≥ 0,

ρ̂X,τ ≡
∑N−1−τ

t=0 XtXt+τ∑N−1
t=0 X2

t

• note that ACS dies down slowly
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DWT of a Long Memory Process: II
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• LA(8) DWT of FD(0.4) series and sample ACSs for each Wj
& V7, along with 95% confidence intervals for white noise
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MODWT of a Long Memory Process
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• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coefficients, none of which are approximately uncorrelated
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DWT of a Long Memory Process: III

• in contrast to X, ACSs for Wj consistent with white noise

• variance of Wj increases with j – to see why, note that

var {Wj,t} =

∫ 1/2

−1/2
Hj(f )SX(f ) df

≈ 2

∫ 1/2j

1/2j+1
2jSX(f ) df

=
1

1
2j − 1

2j+1

∫ 1/2j

1/2j+1
SX(f ) df ≡ Cj,

where Cj is average value of SX(·) over [1/2j+1, 1/2j]

• for FD process, can argue that Cj ≈ SX(1/2j+1
2), where

1/2j+1
2 is midpoint of interval [1/2j+1, 1/2j]
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DWT of a Long Memory Process: IV
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• plot shows v̂ar {Wj,t} (circles) & SX(1/2j+1
2) (curve) versus

1/2j+1
2, along with 95% confidence intervals for var {Wj,t}

• observed v̂ar {Wj,t} agrees well with theoretical var {Wj,t}
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Correlations Within a Scale and Between Two Scales

• let {sX,τ} denote autocovariance sequence (ACVS) for {Xt};
i.e., sX,τ = cov {Xt, Xt+τ}

• let {hj,l} denote equivalent wavelet filter for jth level

• to quantify decorrelation, can write

cov {Wj,t, Wj′,t′} =

Lj−1∑
l=0

Lj′−1∑
l′=0

hj,lhj′,l′sX,2j(t+1)−l−2j′(t′+1)+l′,

from which we can get ACVS (and hence within-scale correla-
tions) for {Wj,t}:

cov {Wj,t, Wj,t+τ} =

Lj−1∑
m=−(Lj−1)

sX,2jτ+m

Lj−|m|−1∑
l=0

hj,lhj,l+|m|
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Correlations Within a Scale
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• correlations between Wj,t and Wj,t+τ for an FD(0.4) process

• correlations within scale are slightly smaller for Haar

• maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: I
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• correlation between Haar wavelet coefficients Wj,t and Wj′,t′
from FD(0.4) process and for levels satisfying 1 ≤ j < j′ ≤ 4
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Correlations Between Two Scales: II
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• same as before, but now for LA(8) wavelet coefficients

• correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

• DWT acts as a decorrelating transform for FD process
(also true for fractional Gaussian noise, pure power law etc.)

• wavelet domain description is simple

• wavelet coefficients within a given scale are approximately un-
correlated (refinement: assume 1st order autoregressive model)

• wavelet coefficients have a scale-dependent variance, but these
variances are controlled by the two FD parameters (δ and σ2

ε)

• wavelet coefficients between scales are also approximately un-
correlated (approximation improves as filter width L increases)

VIII–14

DWT-Based Simulation

• properties of DWT of FD processes lead to schemes for simu-
lating time series X ≡ [X0, . . . , XN−1]

T with zero mean and
with a multivariate Gaussian distribution

• with N = 2J , recall that X = WTW, where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1
W2

...
Wj

...
WJ
VJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Basic DWT-Based Simulation Scheme

• assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

• assume Wj to have variance Cj ≈ SX(1/2j+1
2)

• assume single RV in VJ to have variance CJ+1 (see textbook
for details about how to set CJ+1)

• approximate FD time series X via Y ≡ WTΛ1/2Z, where

− Λ1/2 is N × N diagonal matrix with diagonal elements

C
1/2
1 , . . . , C

1/2
1︸ ︷︷ ︸

N
2 of these

, C
1/2
2 , . . . , C

1/2
2︸ ︷︷ ︸

N
4 of these

, . . . , C
1/2
J−1, C

1/2
J−1︸ ︷︷ ︸

2 of these

, C
1/2
J , C

1/2
J+1

− Z is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance
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Refinements to Basic Scheme: I

• covariance matrix for approximation Y does not correspond to
that of a stationary process

• recall W treats X as if it were circular

• let T be N × N ‘circular shift’ matrix:

T

⎡
⎢⎢⎣

Y0
Y1
Y2
Y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Y1
Y2
Y3
Y0

⎤
⎥⎥⎦ ; T 2

⎡
⎢⎢⎣

Y0
Y1
Y2
Y3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Y2
Y3
Y0
Y1

⎤
⎥⎥⎦ ; etc.

• let κ be uniformily distributed over 0, . . . , N − 1

• define Ỹ ≡ T κY

• Ỹ is stationary with ACVS given by, say, s
Ỹ ,τ
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Refinements to Basic Scheme: II

• Q: how well does {s
Ỹ ,τ

} match {sX,τ}?
• due to circularity, find that s

Ỹ ,N−τ
= s

Ỹ ,τ
for τ = 1, . . . , N/2

• implies s
Ỹ ,τ

cannot approximate sX,τ well for τ close to N

• can patch up by simulating Ỹ with M > N elements and then
extracting first N deviates (M = 4N works well)
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Refinements to Basic Scheme: III
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• plot shows true ACVS {sX,τ} (thick curves) for FD(0.4) pro-
cess and wavelet-based approximate ACVSs {s

Ỹ ,τ
} (thin curves)

based on an LA(8) DWT in which an N = 64 series is extracted
from M = N , M = 2N and M = 4N series
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Example and Some Notes
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• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

− can form realizations faster than best exact method

− efficient ‘real-time’ simulation of extremely long time series
(e.g, N = 230 = 1, 073, 741, 824 or even longer)

− effect of random circular shifting is to render time series non-
Gaussian (a Gaussian mixture model)
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MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ2
ε:

SX(f ) =
σ2

ε

[4 sin2(πf )]δ

• given X = [X0, X1, . . . , XN−1]
T with N = 2J , suppose we

want to estimate δ and σ2
ε

• if X is stationary (i.e. δ < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method
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MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

L(δ, σ2
ε | X) ≡ 1

(2π)N/2|ΣX|1/2
e−XTΣ−1

X X/2

where ΣX is covariance matrix for X, with (s, t)th element
given by sX,s−t, and |ΣX| & Σ−1

X denote determinant & inverse

• ML estimators of δ and σ2
ε maximize L(δ, σ2

ε | X) or, equiva-
lently, mininize

−2 log (L(δ, σ2
ε | X)) = N log (2π) + log (|ΣX|) + XTΣ−1

X X

• exact MLEs computationally intensive, mainly because of the
need to invert ΣX and compute its determinant

• good approximate MLEs of considerable interest
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MLEs of FD Parameters: III

• key ideas behind first wavelet-based approximate MLEs

− have seen that we can approximate FD time series X by
Y = WTΛ1/2Z, where Λ1/2 is a diagonal matrix, all of
whose diagonal elements are positive

− since covariance matrix for Z is IN , Equation (262c) says
covariance matrix for Y is

WTΛ1/2IN (WTΛ1/2)T = WTΛ1/2Λ1/2W = WTΛW ≡ Σ̃X,

where Λ ≡ Λ1/2Λ1/2 is also diagonal

− can consider Σ̃X to be an approximation to ΣX

• leads to approximation of log likelihood:

−2 log (L(δ, σ2
ε | X)) ≈ N log (2π) + log (|Σ̃X|) + XT Σ̃−1

X X

VIII–23

MLEs of FD Parameters: IV

• Q: so how does this help us?

− easy to invert Σ̃X:

Σ̃−1
X =

(
WTΛW

)−1
= (W)−1 Λ−1

(
WT

)−1
= WTΛ−1W ,

where Λ−1 is another diagonal matrix, leading to

XT Σ̃−1
X X = XTWTΛ−1WX = WTΛ−1W

− easy to compute the determinant of Σ̃X:

|Σ̃X| = |WTΛW| = |ΛWWT | = |ΛIN | = |Λ| · |IN | = |Λ|,
and the determinant of a diagonal matrix is just the product
of its diagonal elements
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MLEs of FD Parameters: V

• define the following three functions of δ:

C ′
j(δ) ≡

∫ 1/2j

1/2j+1

2j+1

[4 sin2(πf )]δ
df ≈

∫ 1/2j

1/2j+1

2j+1

[2πf ]2δ
df

C ′
J+1(δ) ≡ NΓ(1 − 2δ)

Γ2(1 − δ)
−

J∑
j=1

N

2j
C ′

j(δ)

σ2
ε(δ) ≡ 1

N

⎛
⎜⎜⎝ V 2

J,0

C ′
J+1(δ)

+

J∑
j=1

1

C ′
j(δ)

N
2j
−1∑

t=0

W 2
j,t

⎞
⎟⎟⎠
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MLEs of FD Parameters: VI

• wavelet-based approximate MLE δ̃ for δ is the value that min-
imizes the following function of δ:

l̃(δ | X) ≡ N log(σ2
ε(δ)) + log(C ′

J+1(δ)) +

J∑
j=1

N

2j
log(C ′

j(δ)),

• once δ̃ has been determined, MLE for σ2
ε is given by σ2

ε(δ̃)

• computer experiments indicate scheme works quite well
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LSEs of FD Parameters

• one alternative to MLEs are least square estimators (LSEs)

− recall that, for large τ and for β = 2δ − 1,

log (ν2
X(τj)) ≈ ζ + β log (τj)

− suggests determining δ by regressing log (ν̂2
X(τj)) on log (τj)

over range of τj

− weighted LSE takes into account fact that variance of log (ν̂2
X(τj))

depends upon scale τj (increases as τj increases)
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Homogeneity of Variance: I

• because DWT decorrelates LMPs, nonboundary coefficients in
Wj should resemble white noise; i.e., cov {Wj,t, Wj,t′} ≈ 0

when t �= t′, and var {Wj,t} should not depend upon t

• can test for homogeneity of variance in X using Wj at each
level j

• suppose U0, . . . , UN−1 are independent normal RVs with E{Ut} =
0 and var {Ut} = σ2

t

• want to test null hypothesis

H0 : σ2
0 = σ2

1 = · · · = σ2
N−1

• can test H0 versus a variety of alternatives, e.g.,

H1 : σ2
0 = · · · = σ2

k �= σ2
k+1 = · · · = σ2

N−1

using normalized cumulative sum of squares
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Homogeneity of Variance: II

• to define test statistic D, start with

Pk ≡
∑k

j=0 U2
j∑N−1

j=0 U2
j

, k = 0, . . . , N − 2

and then compute D ≡ max (D+, D−), where

D+ ≡ max
0≤k≤N−2

(
k + 1

N − 1
− Pk

)
& D− ≡ max

0≤k≤N−2

(
Pk − k

N − 1

)
• can reject H0 if observed D is ‘too large,’ where ‘too large’ is

quantified by considering distribution of D under H0

• need to find critical value xα such that P[D ≥ xα] = α for,
e.g., α = 0.01, 0.05 or 0.1
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Homogeneity of Variance: III

• once determined, can perform α level test of H0:

− compute D statistic from data U0, . . . , UN−1

− reject H0 at level α if D ≥ xα

− fail to reject H0 at level α if D < xα

• can determine critical values xα in two ways

− Monte Carlo simulations

− large sample approximation to distribution of D:

P[(N/2)1/2D ≥ x] ≈ 1 + 2

∞∑
l=1

(−1)le−2l2x2

(reasonable approximation for N ≥ 128)
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Homogeneity of Variance: IV

• idea: given time series {Xt}, compute D using nonboundary
wavelet coefficients Wj,t (there are M ′

j ≡ Nj − L′
j of these):

Pk ≡
∑k

t=L′
j
W 2

j,t∑Nj−1

t=L′
j

W 2
j,t

, k = L′
j, . . . , Nj − 2

• if null hypothesis rejected at level j, can use nonboundary
MODWT coefficients to accurately locate change point based
on

P̃k ≡
∑k

t=Lj−1 W̃ 2
j,t∑N−1

t=Lj−1 W̃ 2
j,t

, k = Lj − 1, . . . , N − 2

along with analogs D̃+
k and D̃−

k of D+
k and D−

k
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Annual Minima of Nile River
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• left-hand plot: annual minima of Nile River

• new measuring device introduced in year 715

• right: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon χ2
η3

approximation

VIII–32



Example – Annual Minima of Nile River: II

l̃(δ | X)

δ

−100

−300

−500
0.0 0.1 0.2 0.3 0.4 0.5

• based upon last 512 values (years 773 to 1284), plot shows
l̃(δ | X) versus δ for the first wavelet-based approximate MLE
using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

− wavelet-based approximate MLE is value minimizing upper
curve: δ̃

.
= 0.4532

− exact MLE is value minimizing lower curve: δ̂
.
= 0.4452
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Example – Annual Minima of Nile River: III
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• using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs δ̃ and σ2

ε(δ̃) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

• agreement is almost too good to be true!
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Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels
τj M ′

j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

• can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales τ1 & τ2, but not at larger scales
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Example – Annual Minima of Nile River: V
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• Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales τ1 & τ2 (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)
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Summary

• wavelets approximately decorrelate LMPs

• leads to practical and flexible schemes for simulating LMPs

• also leads to schemes for estimating parameters of LMPs

− approximate maximum likelihood estimators

− weighted least squares estimator

• can also devise wavelet-based tests for

− homogeneity of variance

− trends (see Section 9.4 & Craigmile et al., Environmetrics,
15, 313–35, 2004, for details)
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