Wavelet Methods for Time Series Analysis

Part VII: Wavelet-Based Bootstrapping

- start with some background on bootstrapping and its rationale
- describe adjustments to the bootstrap that allow it to work with correlated time series
- describe how the decorrelating property of the DWT can be used to develop a wavelet-based bootstrap for certain time series
- describe 'wavestrapping,' an adaptive procedure based upon finding a decorrelating transform from a wavelet packet table

VII-1

Classic Approach – Large Sample Theory: I

- in what follows, let $\mathcal{N}(\mu, \sigma^2)$ denote a Gaussian (normal) random variable (RV) with mean μ and variance σ^2
- if X_t 's were independent and identically distributed (IID) so that $\rho_1 = 0$, the distribution of $\hat{\rho}_1$ becomes arbitrarily close to that of an $\mathcal{N}(0, \frac{1}{N})$ RV as $N \to \infty$ (requires suitable conditions)

Motivating Question

- let $\mathbf{X} = [X_0, ..., X_{N-1}]^T$ be a finite portion of a stationary process with autocovariance sequence(ACVS) $\{s_{\tau}\}$
- let $\{\rho_{\tau}\}$ be the corresponding autocorrelation sequence (ACS): $\rho_{\tau} = \frac{s_{\tau}}{s_0}$, where $s_{\tau} = \text{cov}\{X_t, X_{t+\tau}\}$ and $s_0 = \text{var}\{X_t\}$
- given a time series, we can estimate its ACS at $\tau = 1$ using

$$\hat{\rho}_1 \equiv \frac{\sum_{t=0}^{N-2} X_t X_{t+1}}{\sum_{t=0}^{N-1} X_t^2}$$

under the assumption that $E\{X_t\} = 0$

- Q: given the amount N of data we have, how close can we expect $\hat{\rho}_1$ to be to the true unknown ρ_1 ?
- i.e., how can we assess the sampling variability in $\hat{\rho}_1$?

VII-2

Classic Approach – Large Sample Theory: II

• more generally, $\hat{\rho}_1$ is close to the distribution of an $\mathcal{N}(\rho_1, \sigma_N^2)$ RV as $N \to \infty$, where

$$\sigma_N^2 \equiv \frac{1}{N} \sum_{\tau = -\infty}^{\infty} \left\{ \rho_{\tau}^2 (1 + 2\rho_1^2) + \rho_{\tau + 1} \rho_{\tau - 1} - 4\rho_1 \rho_{\tau} \rho_{\tau - 1} \right\}$$

- in practice, the above result is unappealing because it requires
 - knowledge of the theoretical ACS
 - the ACS to damp down sufficiently fast, which would rule out long memory processes (LMPs)
- while large sample theory has been worked out for $\hat{\rho}_1$ under certain conditions, similar theory for other statistics can be hard to come by

Alternative Approach – Bootstrapping: I

- if X_t 's were IID, we could apply 'bootstrapping' to assess the variability in $\hat{\rho}_1$, as follows
- suppose we have the following time series of length N=8, which is a realization of a Gaussian white noise process:

$$\mathbf{x} \doteq [1.9, 2.2, -0.1, 1.0, -0.6, 0.5, -1.3, -0.3]^T$$

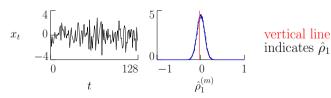
for which $\hat{\rho}_1 \doteq 0.23$ (for white noise, the true value of ρ_1 is 0)

- generate a new time series $\mathbf{x}^{(1)}$ by randomly sampling from \mathbf{x} : $\mathbf{x}^{(1)} \doteq [2.2, -0.1, -0.1, 1.0, 1.9, 1.9, -0.6, -0.1]^T,$ for which $\hat{\rho}_1^{(1)} \doteq 0.31$ (note: sampling is done with replacement)
- do again to get $\mathbf{x}^{(2)} = [-0.3, 0.5, 1.9, -0.6, -0.3, 0.5, 2.2, 2.2]^T$, for which $\hat{\rho}_1^{(2)} \doteq 0.39$

VII-5

Alternative Approach – Bootstrapping: III

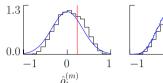
- bootstrap approximation to distribution of $\hat{\rho}_1$ gets better as N increases
- consider sample of Gaussian white noise of length N=128, for which $\hat{\rho}_1 \doteq -0.02$

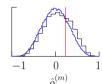


 \bullet sample distribution of $\{\hat{\rho}_1^{(m)}\}$ agrees quite well with the approximate true PDF

Alternative Approach – Bootstrapping: II

- repeat a large number of times to get $\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \dots, \hat{\rho}_1^{(M)}$
- plots shows histogram for $\{\hat{\rho}_1^{(m)}: m=1,\ldots,10,000\}$, along with probability density function (PDF) for $\mathcal{N}(0,\frac{1}{8})$ (left-hand plot) and an approximation to the true PDF for $\hat{\rho}_1$ (right)





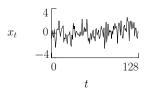
vertical line indicates $\hat{\rho}_1$

• can regard sample distribution of $\{\hat{\rho}_1^{(m)}\}$ as an approximation to the unknown distribution of $\hat{\rho}_1$

VII-6

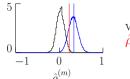
Bootstrapping Correlated Time Series: I

- \bullet key assumption: ${\bf x}$ was a realization of IID RVs
- if not true (usually the case with time series!), sample distribution of $\{\hat{\rho}_1^{(m)}\}$ can be badly misleading as an approximation to unknown distribution of $\hat{\rho}_1$
- as an example, consider a realization of a fractionally differenced (FD) process with parameter $\delta = \frac{1}{4}$, for which $\hat{\rho}_1 \doteq 0.23$ (for an FD($\frac{1}{4}$) process, $\rho_1 = \frac{1}{3}$)



Bootstrapping Correlated Time Series: II

- use the same procedure as before to get $\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \dots, \hat{\rho}_1^{(M)}$
- plot shows histogram for $\{\hat{\rho}_1^{(m)}: m=1,\ldots,10,000\}$, along with an approximation to the true PDF for $\hat{\rho}_1$



vertical lines indicate $\hat{\rho}_1$ and ρ_1

- ullet bootstrap approximation gets even worse as N increases
- to correct the problem caused by correlation in time series, can use specialized time or frequency domain bootstrapping *if* ACS damp downs sufficiently fast

VII-9

Parametric Bootstrapping: II

• since $\epsilon_t = X_t - \phi_1 X_{t-1}$, can form residuals

$$r_t = X_t - \hat{\phi}_1 X_{t-1}, \quad t = 1, \dots, N-1,$$

with the idea that r_t will be a good approximation to ϵ_t (note: there are N-1 residuals rather than N)

- let $r_0^{(1)}, r_1^{(1)}, \dots, r_{N-1}^{(1)}$ be a random sample from r_1, r_2, \dots, r_{N-1} (as before, sampling is done with replacement)
- let $X_0^{(1)} = r_0^{(1)}/(1 \hat{\phi}_1^2)^{1/2}$ ('stationary initial condition')

• form

$$X_t^{(1)} = \hat{\phi}_1 X_{t-1}^{(1)} + r_t^{(1)}, \quad t = 1, \dots, N-1,$$

yielding the bootstrapped time series $X_0^{(1)}, X_1^{(1)}, \dots, X_{N-1}^{(1)}$

Parametric Bootstrapping: I

- one well-known time domain bootstrapping scheme is the parametric (or residual) bootstrap
- suppose we can assume that our time series is a realization of a portion X_0, \ldots, X_{N-1} of a first order autoregressive (AR) process:

$$X_t = \phi_1 X_{t-1} + \epsilon_t$$

where $|\phi_1| < 1$ and $\{\epsilon_t\}$ is white noise with zero mean and variance σ_{ϵ}^2 (this model is widely used in geophysics)

- have var $\{X_t\} = \sigma_{\epsilon}^2/(1-\phi_1^2)$ and $\rho_{\tau} = \phi_1^{|\tau|}$ for AR(1) process
- in particular, $\rho_1 = \phi_1$, so can estimate ϕ_1 using $\hat{\phi}_1 \equiv \hat{\rho}_1$

VII-10

Parametric Bootstrapping: III

- ullet use $X_0^{(1)}, X_1^{(1)}, \dots, X_{N-1}^{(1)}$ to compute $\hat{
 ho}_1^{(1)}$
- let $r_0^{(2)}, r_1^{(2)}, \dots, r_{N-1}^{(2)}$ be a second random sample from r_1, r_2, \dots, r_{N-1}
- use these to form a second bootstrapped series $X_0^{(2)}, X_1^{(2)}, \ldots, X_{N-1}^{(2)}$, from which we form $\hat{\rho}_1^{(2)}$
- repeat this procedure M times to get $\hat{\rho}_1^{(1)}, \hat{\rho}_1^{(2)}, \dots, \hat{\rho}_1^{(M)}$

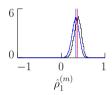
Parametric Bootstrapping: IV

• as an example, consider a realization of an AR(1) process with $\phi_1 = \rho_1 = \frac{1}{3}$, for which $\hat{\rho}_1 = 0.38$

$$x_t = \begin{cases} 4 \\ 0 \\ -4 \\ 0 \end{cases}$$

$$128$$

• plot shows histogram for $\{\hat{\rho}_1^{(m)}: m=1,\ldots,10,000\}$, along with an approximation to the true PDF for $\hat{\rho}_1$

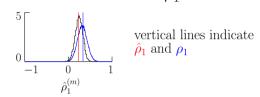


vertical lines indicate $\hat{\rho}_1$ and ρ_1

VII-13

Parametric Bootstrapping: V

- important assumption here is that time series is well modeled by AR(1) process
- to see what happens if this assumption fails, reconsider $FD(\frac{1}{4})$ realization and treat it as if it were an AR(1) realization
- since $\hat{\rho}_1 \doteq 0.23$, we would set $\hat{\phi}_1 \doteq 0.23$
- plot shows histogram for $\{\hat{\rho}_1^{(m)}: m=1,\ldots,10,000\}$, along with an approximation to the true PDF for $\hat{\rho}_1$



VII-14

Parametric Bootstrapping: VI

• more generally, can fit pth order process

$$X_t = \sum_{u=1}^p \phi_u X_{t-u} + \epsilon_t \text{ and use } r_t = X_t - \sum_{u=1}^p \hat{\phi}_u X_{t-u}$$

to form new series and then $\hat{\rho}_1^{(m)}$

- note that the number of residuals is N-p, so best to stick with small values of p
- several variations on the basic scheme, one of which is to use $\tilde{r}_t = r_t - \bar{r}$ rather than r_t , where \bar{r} is the sample mean of the residuals (usually close to zero, but sometimes not)

Block Bootstrapping

• another time domain approach is block bootstrapping, which is nonparametric and has some nice theoretical properties, but a bit trickier to describe and implement

Frequency Domain Bootstrapping

• 'phase scramble' discrete Fourier transform (DFT) $\{\mathcal{X}_k\}$ of data $\{X_t\}$ and apply inverse DFT to create new series:

$$\mathcal{X}_k = \sum_{t=0}^{N-1} X_t e^{-i2\pi kt/N} = A_k e^{i\theta_k}$$

- periodogram-based bootstrapping: in addition to phase scrambling, evoke large sample result that $|A_k|$'s are approximately uncorrelated with distribution related to a chi-square RV with 2 degrees of freedom
- circulant embedding bootstrapping: form nonparametric estimate of spectral density function and generate realizations using circulant embedding

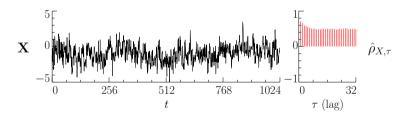
VII-17

Rationale for Wavelet Domain Bootstrapping

- time and frequency domain approaches are both problematic for long memory processes
- ullet DWT decorrelates certain time series ${f X}$, including long memory processes (these are ruled out by time and frequency domain bootstrapping because ACS damps down slowly)
- level J_0 partial DWT maps \mathbf{X} to $\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} , with the RVs in the \mathbf{W}_j 's being approximately uncorrelated (note: scaling coefficients \mathbf{V}_{J_0} are still highly correlated)

VII-18

DWT of a Long Memory Process: I

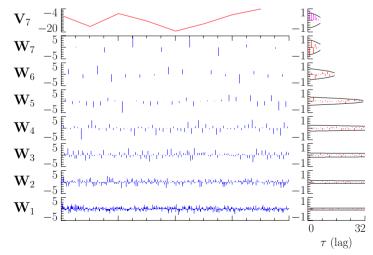


• realization of an FD(0.4) time series \mathbf{X} along with its sample autocorrelation sequence (ACS): for $\tau \geq 0$,

$$\hat{\rho}_{X,\tau} \equiv \frac{\sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\sum_{t=0}^{N-1} X_t^2}$$

• note that ACS dies down slowly

DWT of a Long Memory Process: II



• LA(8) DWT of FD(0.4) series and sample ACSs for each \mathbf{W}_j & \mathbf{V}_7 , along with 95% confidence intervals for white noise

DWT of a Long Memory Process: III

• second example: ACS for FD(0.45)

• unit lag autocorrelations for \mathbf{W}_j using the Haar, D(4) and LA(8) wavelet filters (other autocorrelations are very small)

\overline{j}	Haar	D(4)	LA(8)
1	-0.0626	-0.0797	-0.0767
2	-0.0947	-0.1320	-0.1356
3	-0.1133	-0.1511	-0.1501
4	-0.1211	-0.1559	-0.1535

VII-21

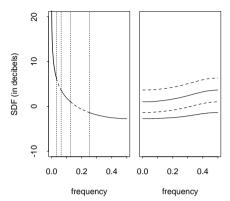
DWT of a Long Memory Process: V

• maximum absolute cross-correlations for wavelet coefficients in \mathbf{W}_j and $\mathbf{W}_{j'}$ for $1 \le j < j' \le 4$

		Haar			D(4)		LA(8)			
$j \backslash j'$	2	3	4	2	3	4	2	3	4	
1	0.13	0.17	0.14	0.09	0.09	0.04	0.06	0.03	0.00	
2		0.17	0.21		0.12	0.11		0.08	0.03	
3			0.18			0.13			0.08	

DWT of a Long Memory Process: IV

ullet spectral density functions (SDFs) for ${f X}$ and ${f W}_j$



- relatively flat (white noise if perfectly flat), but remaining variation well approximated by SDF for AR(2) process
- height increases as j increases (variance of \mathbf{W}_j sets height)

VII-22

Recipe for Wavelet Domain Bootstrapping: I

- 1. given **X** of length $N=2^J$, compute level $J_0=J-2$ partial DWT $\mathbf{W}_1, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (4 coefficients in \mathbf{W}_{J_0} and \mathbf{V}_{J_0})
- 2. randomly sample with replacement $N/2^j$ times from \mathbf{W}_j to create bootstrapped vector $\mathbf{W}_j^{(b)}$, $j=1,\ldots,J_0$
- 3. do the same for \mathbf{V}_{J_0} to create $\mathbf{V}_{J_0}^{(b)}$ (theory lacking here, but better in computer experiments than using just \mathbf{V}_{J_0})
- 4. apply inverse transform to $\mathbf{W}_1^{(b)}, \ldots, \mathbf{W}_{J_0}^{(b)}$ and $\mathbf{V}_{J_0}^{(b)}$ to obtain bootstrapped time series $\mathbf{X}^{(b)}$
- 5. compute unit lag sample autocorrelation $\hat{\rho}_1^{(b)}$
- repeat above many times to build up sample distribution of bootstrapped autocorrelations

VII-23

Recipe for Wavelet Domain Bootstrapping: II

- computer experiments indicate improvement over block bootstrap for FD processes
- \bullet variation: replace **X** by series of length 2N given by

$$\mathbf{X}_{(c)} \equiv [X_0, X_1, \dots, X_{N-2}, X_{N-1}, X_{N-1}, X_{N-2}, \dots, X_1, X_0]^T;$$
i.e., use 'reflection' rather than circular boundary conditions

Motivation for 'Wavestrapping': I

- DWT does not adequately decorrelate all time series
- consider first order moving average process (MA(1)):

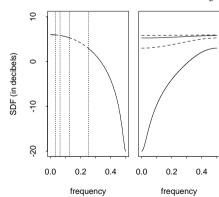
$$X_t = \epsilon_t + 0.99\epsilon_{t-1}$$

VII-25

VII-26

Motivation for 'Wavestrapping': II

• SDFs for MA(1) process and associated \mathbf{W}_{i}



- note that SDF of \mathbf{W}_1 is not approximately flat
- idea: use transform selected from wavelet packet table

Motivation for 'Wavestrapping': III

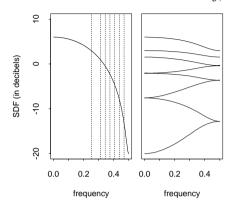
• consider following level $J_0 = 4$ wavelet packet table (WPT):

$\mathbf{W}_{0,0} \equiv \mathbf{X}$															
$\mathbf{W}_{1,0}$							$\mathbf{W}_{1,1}$								
${f W}_{2,0}$ ${f W}_{2,1}$						$\mathbf{W}_{2,2}$				$\mathbf{W}_{2,3}$					
${\bf W}_{3,0}$		$\mathbf{W}_{3,1}$		$\mathbf{W}_{3,2}$		$\mathbf{W}_{3,3}$		$\mathbf{W}_{3,4}$		$\mathbf{W}_{3,5}$		$\mathbf{W}_{3,6}$		$W_{3,7}$	
$\mathbf{W}_{4,0}$	$\mathbf{W}_{4,1}$	$\mathbf{W}_{4,2}$	$\mathbf{W}_{4,3}$	$\mathbf{W}_{4,4}$	$\mathbf{W}_{4,5}$	$\mathbf{W}_{4,6}$	$\mathbf{W}_{4,7}$	$\mathbf{W}_{4,8}$	$\mathbf{W}_{4,9}$	$W_{4,10}$	$W_{4,11}$	$W_{4,12}$	$W_{4,13}$	$W_{4,14}$	$W_{4,15}$
0	1/	16	1	/8	3/	16	1,	/4	5/	16	3/	8	7/	16	1/2
f															

• shaded boxes identify an orthonormal transform that is a better decorrelator of the MA(1) process than the DWT

Motivation for 'Wavestrapping': IV

 \bullet SDFs for MA(1) process and associated $\mathbf{W}_{j,n}$



VII-29

Recipe for Wavestrapping: I

- 1. given **X** of length 2^J , compute level $J_0 = J 2$ WPT (enter step 2 with starting values j = n = 0 and $\mathbf{W}_{0,0} \equiv \mathbf{X}$)
- 2. if $j = J_0$, retain $\mathbf{W}_{j,n}$; if $j < J_0$, do white noise test on $\mathbf{W}_{j,n}$
 - portmanteau test on autocorrelation estimates for $\mathbf{W}_{j,n}$
 - cumulative periodogram test

if fail to reject the null hypothesis, retain $\mathbf{W}_{j,n}$; if reject, discard $\mathbf{W}_{j,n}$ (after transforming it into $\mathbf{W}_{j+1,2n}$ and $\mathbf{W}_{j+1,2n+1}$), and repeat this step twice again (both on $\mathbf{W}_{j+1,2n}$ and $\mathbf{W}_{j+1,2n+1}$)

3. desired adaptively chosen transform consists of all subvectors retained after step 2 applied as many times as needed; randomly sample (with replacement) from each subvector in the transform to create the similarly dimensioned wavestrapped subvectors

Motivation for 'Wavestrapping': V

- first 5 of $\mathbf{W}_{j,n}$ SDFs have variations less than 3 dB, but those for $\mathbf{W}_{4,13}$, $\mathbf{W}_{4,14}$ and $\mathbf{W}_{4,15}$ vary by 3.9, 5.3 and 7.2 dB
- increasing depth of WPT to $J_0=6$ allows us to replace these by
- three j=5 level subvectors $\mathbf{W}_{5,26}, \mathbf{W}_{5,27}, \mathbf{W}_{5,28}$ and
- $-\sin j = 6$ level subvectors $\mathbf{W}_{6.58}, \dots, \mathbf{W}_{6.63}$
- resulting WPT has SDFs that all vary by less than 3 dB
- \bullet idea: adaptively select transform by using white noise tests

VII-30

Recipe for Wavestrapping: II

- 4. apply inverse transform to obtain bootstrapped time series $\mathbf{X}^{(b)}$
- 5. compute unit lag sample autocorrelation $\hat{\rho}_1^{(b)}$
- repeat above many times to build up sample distribution of bootstrapped autocorrelations

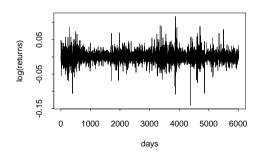
VII-31

Summary of Computer Experiments - I

			Wave			
Process	Boundary	DWT	Port	Pgrm	Block	True
WN						
N = 128	periodic	8.2	8.7	8.8	8.1	8.7
	reflection	8.3	8.6	8.7		
N = 1024	periodic	3.1	3.1	3.1	3.0	3.1
	reflection	3.2	3.2	3.1		
AR(1)						
N = 128	periodic	5.7	5.2	5.1	5.4	4.8
	reflection	5.5	5.1	5.4		
N = 1024	periodic	1.6	1.5	1.5	1.5	1.4
	reflection	1.6	1.5	1.5		
MA(1)						
N = 128	periodic	7.1	6.8	6.8	6.5	6.3
	reflection	7.0	6.8	6.6		
N = 1024	periodic	2.6	2.4	2.3	2.2	2.2
	reflection	2.6	2.4	2.4		
FD						
N = 128	periodic	9.4	8.3	8.5	7.7	10.7
	reflection	9.9	8.8	9.6		
N = 1024	periodic	4.4	4.2	4.2	3.4	5.3
	reflection	4.7	4.5	4.7		

VII-33

Application to BMW Stock Prices - I



- plot shows log of daily returns on BMW share prices
- has small unit lag sample autocorrelation: $\hat{\rho}_1 \doteq 0.081$.
- large sample theory appropriate for Gaussian white noise gives standard error of $1/\sqrt{N} \doteq 0.013$

Summary of Computer Experiments - II

- standard deviations (×100) of unit lag sample autocorrelations given by DWT-based bootstrapping, two forms of wavestrapping and block bootstrap, along with true standard deviations
- four models considered are white noise (WN); AR(1) process $X_t = 0.9X_{t-1} + \epsilon_t$; MA(1) process $X_t = \epsilon_t + 0.99\epsilon_{t-1}$; and fractionally differenced (FD) process with $\delta = 0.45$
- wavestrapping does better than block bootstrap (current state of the art) except for the MA(1) process, for which the block bootstrap is ideally suited

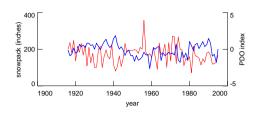
VII-34

Application to BMW Stock Prices - II

- \bullet Gaussianity is suspect: data better modeled by t distribution with 3.9 degrees of freedom
- block bootstrap with block sizes 30, 50, 100, 200 and 500 gives standard errors are 0.012, 0.012, 0.014, 0.016 and 0.015
- DWT-based bootstrap and wavestrap give 0.023 & 0.020
- confirms presence of autocorrelation (small, but presumably exploitable by traders)

VII-35

Applications to Bivariate Climate Time Series - I



- plot shows Pacific decadal oscillation (PDO) index (thick curve) and March 15th snow depth on Mt. Rainier (thin curve)
- sample cross-correlation is

$$\hat{\rho}_{XY} \equiv \frac{\sum_{t=0}^{N-1} (X_t - \overline{X})(Y_t - \overline{Y})}{\left[\sum_{t=0}^{N-1} (X_t - \overline{X})^2 \sum_{t=0}^{N-1} (Y_t - \overline{Y})^2\right]^{1/2}} \doteq -0.27$$

• Q: given such a short series, is this significantly different from zero?

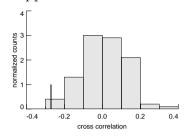
VII-37

Comments on Other Approaches

- ullet stick with DWT, but use parametric or block bootstrap on each subvector \mathbf{W}_{i} of coefficients
- for FD processes, \mathbf{W}_j is close to white noise, but the variation from white noise is captured to a very good approximation by an AR(2) process

Applications to Bivariate Climate Time Series - II

• histogram of wavestrapped cross-correlations says 'yes'



VII-38

References: I

- C. Angelini, D. Cava, G. Katul and B. Vidakovic (2005), 'Resampling Hierarchical Processes in the Wavelet Domain: A Case Study Using Atmospheric Turbulence,' *Physica D*, 207, pp. 24-40
- M. Breakspear, M. J. Brammer, E. T. Bullmore, P. Das and L. M. Williams (2004), 'Spatiotemporal Wavelet Resampling for Functional Neuroimaging Data,' *Human Brain Mapping*, 23, pp. 1–25
- M. Breakspear, M. Brammer and P. A. Robinson (2003), 'Construction of Multivariate Surrogate Sets from Nonlinear Data Using the Wavelet Transform,' *Physica D*, 182, pp. 1– 22
- E. Bullmore, J. Fadili, V. Maxim, L. Şendur, B. Whitcher, J. Suckling, M. Brammer and M. Breakspear (2004), 'Wavelets and Functional Magnetic Resonance Imaging of the Human Brain,' *NeuroImage*, **23**, pp. S234-S249
- E. Bullmore, C. Long, J. Suckling, J. Fadili, G. Calvert, F. Zelaya, T. A. Carpenter and M. Brammer (2001), 'Colored Noise and Computational Inference in Neurophysiological (fMRI) Time Series Analysis: Resampling Methods in Time and Wavelet Domains,' *Human Brain Mapping*, 12, pp. 61–78

References: II

- A. C. Davison and D. V. Hinkley (1997), Bootstrap Methods and their Applications, Cambridge University Press
- H. Feng, T. R. Willemain and N. Shang (2005), 'Wavelet-Based Bootstrap for Time Series Analysis,' Communications in Statistics: Simulation and Computation 34(2), pp. 393–413
- S. Golia (2002), 'Evaluating the GPH Estimator via Bootstrap Technique,' in *Proceedings in Computational Statistics COMPSTAT2002*, edited by W. Härdle and B. Ronz. Heidelberg: Physica–Verlag, pp. 343–8
- D. B. Percival, S. Sardy and A. C. Davison (2001), 'Wavestrapping Time Series: Adaptive Wavelet-Based Bootstrapping,' in *Nonlinear and Nonstationary Signal Processing*, edited by W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young. Cambridge, England: Cambridge University Press, pp. 442–70
- A. M. Sabatini (1999), 'Wavelet-Based Estimation of 1/f-Type Signal Parameters: Confidence Intervals Using the Bootstrap,' *IEEE Transactions on Signal Processing*, 47(12), pp. 3406-9
- B. J Whitcher, 'Wavelet-Based Bootstrapping of Spatial Patterns on a Finite Lattice,' Computational Statistics & Data Analysis 50(9), pp. 2399–421