Wavelet Methods for Time Series Analysis

Part VI: Wavelet-Based Analysis and Synthesis of Long Memory Processes

- DWT well-suited for long memory processes (LMPs)
- basic idea: DWT approximately decorrelates LMPs
- on synthesis side, leads to DWT-based simulation of LMPs
- on analysis side, leads to wavelet-based maximum likelihood and least squares estimators for LMP parameters, along with a test for homogeneity of variance

VI–1

Wavelets and Long Memory Processes: II

- \bullet FD process controlled by two parameters: δ and σ_{ε}^2
- for small f, have $S_X(f) \approx C |f|^{-2\delta}$; i.e., a power law
- $\log(S_X(f))$ vs. $\log(f)$ is approximately linear with slope -2δ
- for large τ_j , the wavelet variance at scale τ_j , namely $\nu_X^2(\tau_j)$, satisfies $\nu_X^2(\tau_j) \approx C' \tau_j^{2\delta-1}$
- $\log(\nu_X^2(\tau_j))$ vs. $\log(\tau_j)$ is approximately linear, slope $2\delta 1$
- approximately 'self-similar' (or 'fractal')
- stationary 'long memory' process (LMP) if $0 < \delta < 1/2$: correlation between X_t and $X_{t+\tau}$ dies down slowly as τ increases

Wavelets and Long Memory Processes: I

- wavelet filters are approximate band-pass filters, with nominal pass-bands $[1/2^{j+1}, 1/2^j]$ (called *j*th 'octave band')
- suppose $\{X_t\}$ has $S_X(\cdot)$ as its spectral density function (SDF)
- \bullet statistical properties of $\{W_{j,t}\}$ are simple if $S_X(\cdot)$ has simple structure within $j{\rm th}$ octave band
- example: fractionally differenced (FD) process

$$(1-B)^{\delta}X_t = \varepsilon_t,$$

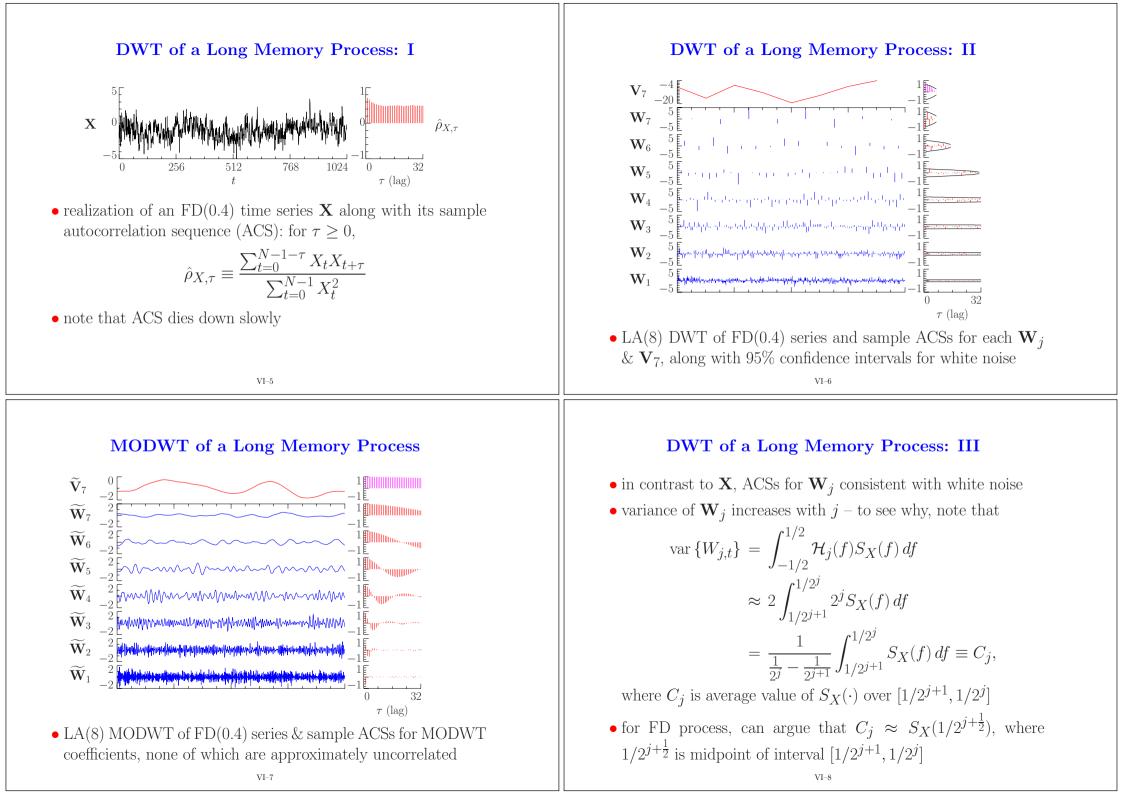
(where B is the backward shift operator such that $(1-B)X_t = X_t - X_{t-1}$) having SDF

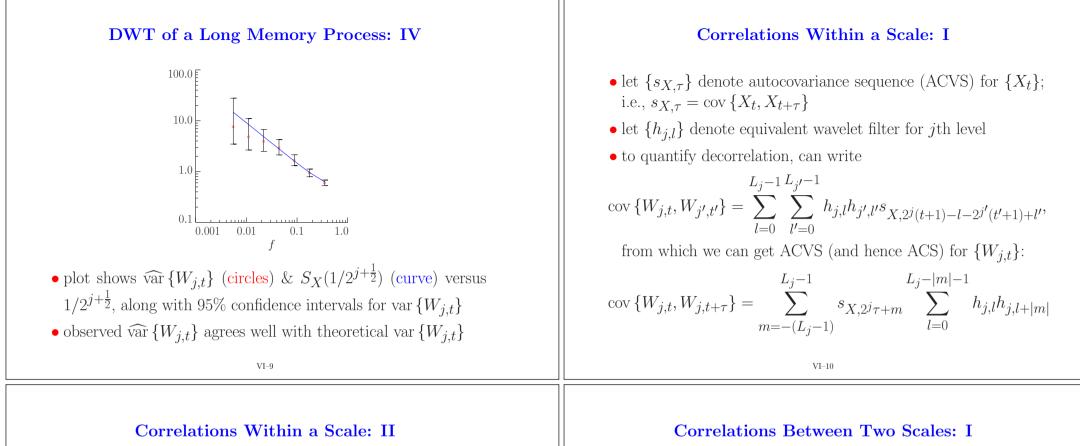
$$S_X(f) = \sigma_{\varepsilon}^2 / [4\sin^2(\pi f)]^{\delta}$$

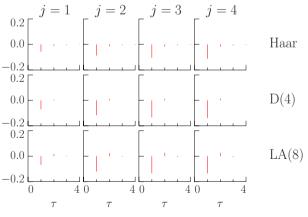
VI–2

Wavelets and Long Memory Processes: III

- power law model ubiquitous in physical sciences
 - voltage fluctuations across cell membranes
 - traffic fluctuations on an expressway
 - impedance fluctuations in geophysical borehole
 - fluctuations in the rotation of the earth
 - X-ray time variability of galaxies
- DWT well-suited to study FD process and other LMPs
 - 'self-similar' filters used on 'self-similar' processes
 - -key idea: DWT approximately decorrelates LMPs







- correlations between $W_{j,t}$ and $W_{j,t+\tau}$ for an FD(0.4) process
- correlations within scale are slightly smaller for Haar
- maximum magnitude of correlation is less than 0.2

• correlation between Haar wavelet coefficients $W_{j,t}$ and $W_{j',t'}$ from FD(0.4) process and for levels satisfying $1 \le j < j' \le 4$

j' = 2 j' = 3 j' = 4

_8 0 8 _ _ _

0

-8 0 8

i = 1

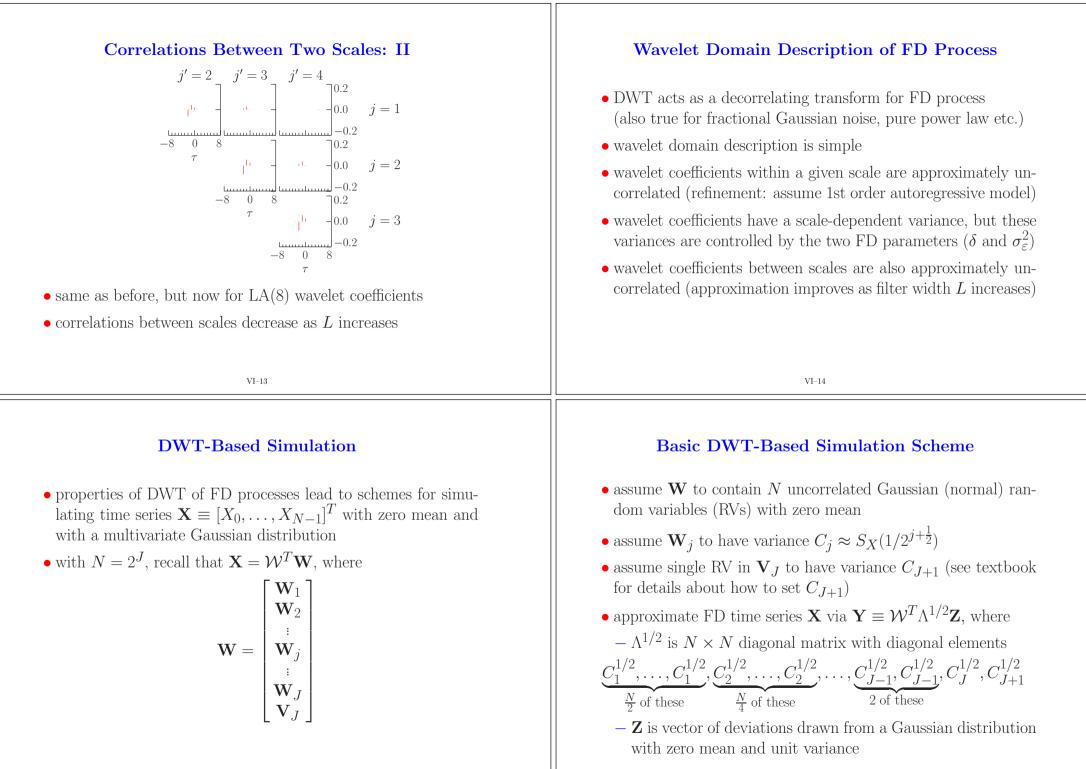
j=2

j=3

0.2

-0.0

10.2



Befinements to Basic Scheme: I Befinements to Basic Scheme: II • covariance matrix for approximation Y does not correspond to • Q: how well does $\{s_{\widetilde{Y}\tau}\}$ match $\{s_{X,\tau}\}$? that of a stationary process • due to circularity, find that $s_{\widetilde{Y},N-\tau} = s_{\widetilde{Y},\tau}$ for $\tau = 1,\ldots,N/2$ • recall \mathcal{W} treats **X** as if it were circular • implies $s_{\widetilde{Y},\tau}$ cannot approximate $s_{X,\tau}$ well for τ close to N • let \mathcal{T} be $N \times N$ 'circular shift' matrix: • can patch up by simulating $\widetilde{\mathbf{Y}}$ with M > N elements and then $\mathcal{T} \begin{vmatrix} I_{0} \\ Y_{1} \\ Y_{2} \\ Y_{2} \\ Y_{2} \end{vmatrix} = \begin{vmatrix} I_{1} \\ Y_{2} \\ Y_{3} \\ Y_{2} \end{vmatrix}; \quad \mathcal{T}^{2} \begin{vmatrix} I_{0} \\ Y_{1} \\ Y_{2} \\ Y_{2} \\ Y_{2} \end{vmatrix} = \begin{vmatrix} I_{2} \\ Y_{3} \\ Y_{0} \\ Y_{1} \end{vmatrix}; \quad \text{etc.}$ extracting first N deviates (M = 4N works well)• let κ be uniformily distributed over $0, \ldots, N-1$ • define $\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$ • $\widetilde{\mathbf{Y}}$ is stationary with ACVS given by, say, $s_{\widetilde{Y},\tau}$ VI-17VI-18**Refinements to Basic Scheme: III Example and Some Notes** M = NM = 2NM = 4N2.52.0 1.51.0 0.564 0 64 0 64 0 • simulated FD(0.4) series (LA(8), N = 1024 and M = 4N) τ τ τ • plot shows true ACVS $\{s_{X,\tau}\}$ (thick curves) for FD(0.4) pro-• notes: cess and wavelet-based approximate ACVSs $\{s_{\widetilde{Y},\tau}\}$ (thin curves) - can form realizations faster than best exact method based on an LA(8) DWT in which an N = 64 series is extracted - efficient 'real-time' simulation of extremely long time series from M = N, M = 2N and M = 4N series (e.g., $N = 2^{30} = 1,073,741,824$ or even longer) - effect of random circular shifting is to render time series non-Gaussian (a Gaussian mixture model) VI-19 VI-20

MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ_{ε}^2 :

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

- given $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ with $N = 2^J$, suppose we want to estimate δ and σ_{ε}^2
- if X is stationary (i.e. $\delta < 1/2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

VI–21

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
 - have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $\Lambda^{1/2}$ is a diagonal matrix, all of whose diagonal elements are positive
 - since covariance matrix for ${\bf Z}$ is $I_N,$ Equation (262c) says covariance matrix for ${\bf Y}$ is

$$\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}}$$

- where $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$ is also diagonal
- can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$
- leads to approximation of log likelihood:

$$-2\log\left(L(\delta,\sigma_{\varepsilon}^{2} \mid \mathbf{X})\right) \approx N\log\left(2\pi\right) + \log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right) + \mathbf{X}^{T}\widetilde{\Sigma}_{\mathbf{X}}^{-1}\mathbf{X}$$

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X} , with (s, t)th element given by $s_{X,s-t}$, and $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant & inverse

• ML estimators of δ and σ_{ε}^2 maximize $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$ or, equivalently, minimize

 $-2\log\left(L(\delta,\sigma_{\varepsilon}^2\mid \mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^T\Sigma_{\mathbf{X}}^{-1}\mathbf{X}$

- exact MLEs computationally intensive, mainly because of the need to invert Σ_X and compute its determinant
- good approximate MLEs of considerable interest

VI-22

MLEs of FD Parameters: IV

• Q: so how does this help us?

– easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$:

$$\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W} \right)^{-1} = \left(\mathcal{W} \right)^{-1} \Lambda^{-1} \left(\mathcal{W}^T \right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$$

where Λ^{-1} is another diagonal matrix, leading to

$$\mathbf{X}^T \widetilde{\boldsymbol{\Sigma}}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \boldsymbol{\mathcal{W}}^T \boldsymbol{\Lambda}^{-1} \boldsymbol{\mathcal{W}} \mathbf{X} = \mathbf{W}^T \boldsymbol{\Lambda}^{-1} \mathbf{W}$$

- easy to compute the determinant of $\widetilde{\Sigma}_{\mathbf{X}}$: $|\widetilde{\Sigma}_{\mathbf{X}}| = |\Delta x^T \Delta \lambda x| = |\Delta x \Delta x \Delta x^T| = |\Delta L| = |\Delta L|$

$$|\Sigma_{\mathbf{X}}| = |\mathcal{W}^{I} \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^{I}| = |\Lambda I_{N}| = |\Lambda| \cdot |I_{N}| = |\Lambda|,$$

and the determinant of a diagonal matrix is just the product of its diagonal elements

MLEs of FD Parameters: V

• define the following three functions of δ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$
$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$
$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left(\frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{\frac{N}{2^{j}}-1} W_{j,t}^{2} \right)$$

MLEs of FD Parameters: VI

• wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta)),$$

• once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^2 is given by $\sigma_{\varepsilon}^2(\tilde{\delta})$

• computer experiments indicate scheme works quite well

VI–26

LSEs of FD Parameters

• one alternative to MLEs are least square estimators (LSEs)

VI-25

- recall that, for large τ and for $\beta = 2\delta - 1$,

$$\log\left(\nu_X^2(\tau_j)\right) \approx \zeta + \beta \log\left(\tau_j\right)$$

- suggests determining δ by regressing log $(\hat{\nu}_X^2(\tau_j))$ on log (τ_j) over range of τ_j
- weighted LSE takes into account fact that variance of log $(\hat{\nu}_X^2(\tau_j))$ depends upon scale τ_j (increases as τ_j increases)

Homogeneity of Variance: I

- because DWT decorrelates LMPs, nonboundary coefficients in \mathbf{W}_j should resemble white noise; i.e., cov $\{W_{j,t}, W_{j,t'}\} \approx 0$ when $t \neq t'$, and var $\{W_{j,t}\}$ should not depend upon t
- \bullet can test for homogeneity of variance in ${\bf X}$ using ${\bf W}_j$ at each level j
- suppose U_0, \ldots, U_{N-1} are independent normal RVs with $E\{U_t\} = 0$ and var $\{U_t\} = \sigma_t^2$
- want to test null hypothesis

$$H_0: \sigma_0^2 = \sigma_1^2 = \dots = \sigma_{N-1}^2$$

• can test H_0 versus a variety of alternatives, e.g., $H_1: \sigma_0^2 = \cdots = \sigma_k^2 \neq \sigma_{k+1}^2 = \cdots = \sigma_{N-1}^2$

using normalized cumulative sum of squares

Homogeneity of Variance: II

 \bullet to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute $D \equiv \max(D^+, D^-)$, where

$$D^{+} \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_k \right) \& D^{-} \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_k - \frac{k}{N-1} \right)$$

- can reject H_0 if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_0
- need to find critical value x_{α} such that $\mathbf{P}[D \ge x_{\alpha}] = \alpha$ for, e.g., $\alpha = 0.01, 0.05$ or 0.1

VI-29

Homogeneity of Variance: IV

• idea: given time series $\{X_t\}$, compute D using nonboundary wavelet coefficients $W_{j,t}$ (there are $M'_j \equiv N_j - L'_j$ of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j - 1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to accurately locate change point based on

$$\widetilde{\mathcal{P}}_k \equiv \frac{\sum_{t=L_j-1}^k \widetilde{W}_{j,t}^2}{\sum_{t=L_j-1}^{N-1} \widetilde{W}_{j,t}^2}, \quad k = L_j - 1, \dots, N - 2$$

along with analogs \widetilde{D}^+_k and \widetilde{D}^-_k of D^+_k and D^-_k

Homogeneity of Variance: III

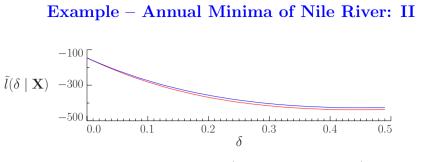
- once determined, can perform α level test of H_0 :
 - compute D statistic from data U_0, \ldots, U_{N-1}
 - reject H_0 at level α if $D \ge x_{\alpha}$
 - fail to reject H_0 at level α if $D < x_{\alpha}$
- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2x^2}$$

(reasonable approximation for $N \ge 128$)

VI–30

- left-hand plot: annual minima of Nile River
- \bullet new measuring device introduced in year 715
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (**x**'s) and after (**o**'s) year 715.5, with 95% confidence intervals based upon $\chi^2_{\eta_3}$ approximation



- based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
 - wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta}\doteq 0.4532$
 - exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

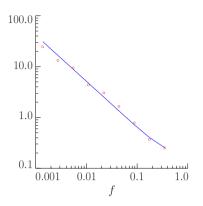
VI–33

Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

				critical levels	
$ au_j$	M'_j		10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165		0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

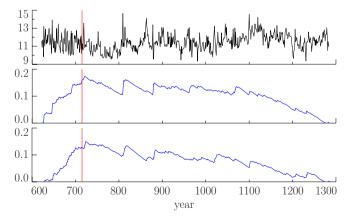
• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_1 \& \tau_2$, but not at larger scales



- using last 512 values again, variance of wavelet coefficients computed via LA(8) MLEs $\tilde{\delta}$ and $\sigma_{\varepsilon}^2(\tilde{\delta})$ (solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles)
- agreement is almost too good to be true!

VI-34

Example – Annual Minima of Nile River: V



• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_1 \& \tau_2$ (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

Summary

- wavelets approximately decorrelate LMPs
- leads to practical and flexible schemes for simulating LMPs
- also leads to schemes for estimating parameters of LMPs
 - approximate maximum likelihood estimators
 - weighted least squares estimator
- can also devise wavelet-based tests for
 - homogeneity of variance
 - trends (see Section 9.4 & Craigmile et al., Environmetrics, 15, 313–35, 2004, for details)

VI-37