Wavelet Methods for Time Series Analysis

Part VI: Wavelet-Based Analysis and Synthesis

of Long Memory Processes

e DWT well-suited for long memory processes (LMPs)
e basic idea: DW'T approximately decorrelates LMPs
e on synthesis side, leads to DWT-based simulation of LMPs

e on analysis side, leads to wavelet-based maximum likelihood
and least squares estimators for LMP parameters, along with a
test for homogeneity of variance
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Wavelets and Long Memory Processes: 1

e wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/2/711/27] (called jth ‘octave band’)

e suppose { Xt} has Sx(-) as its spectral density function (SDF)

e statistical properties of {W;;} are simple if Sx(-) has simple
structure within jth octave band

e example: fractionally differenced (FD) process
(1-DB X =2,

(where B is the backward shift operator such that (1— B)X; =
Xt — Xt—l) having SDF

Sx(f) = o /[4sin’(x f))°
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Wavelets and Long Memory Processes: 11

e F'D process controlled by two parameters: ¢ and ag

o for small f, have Sy (f) &~ C|f]~%; i.e., a power law

e log(Sx(f)) vs. log(f) is approximately linear with slope —20

e for large 7;, the wavelet variance at scale 7;, namely Vg((’rj),
satisfies U%C(Tj) ~ ' 7}25—1

e log (I/%((Tj)) vs. log (7) is approximately linear, slope 26 — 1

e approximately ‘self-similar’ (or ‘fractal’)

e stationary ‘long memory’ process (LMP) if 0 < § < 1/2: cor-
relation between X; and Xy dies down slowly as 7 increases
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Wavelets and Long Memory Processes: III

e power law model ubiquitous in physical sciences

— voltage fluctuations across cell membranes
— traffic fluctuations on an expressway
— impedance fluctuations in geophysical borehole
— fluctuations in the rotation of the earth
— X-ray time variability of galaxies
e DW'T well-suited to study FD process and other LMPs
— ‘self-similar’ filters used on ‘self-similar’ processes

— key idea: DW'T approximately decorrelates LMPs
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DWT of a Long Memory Process: 1
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e rcalization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for 7 > 0,

N—-1-

t=0 TXthH—T
N—-1 y2
=0 Xi

ﬁX,T =

e note that ACS dies down slowly
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DWT of a Long Memory Process: 11
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e LA(8) DWT of FD(0.4) series and sample ACSs for each W
& V7, along with 95% confidence intervals for white noise
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MODWT of a Long Memory Process
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e LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT

coefficients, none of which are approximately uncorrelated
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DWT of a Long Memory Process: III

e in contrast to X, ACSs for W consistent with white noise

e variance of W increases with j — to see why, note that
1/2

var {W;;} = H;(f)Sx(f)df
~1/2

120
2 [ s
1/2]+1
1 1/2
= Sx(fdf =0y,
5] g 1P
where C} is average value of Sy(-) over [1/27%1 1/27]

Q

1
o for FD process, can argue that C; ~ Sy(1/2/72), where
.1 . .
1/2772 is midpoint of interval [1/2/71 1/27]
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DWT of a Long Memory Process: 1V
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1
o plot shows var {W;;} (circles) & Sx(1/2/%2) (curve) versus
1
1/2772 along with 95% confidence intervals for var (W4}

e observed var {W ;} agrees well with theoretical var {W; ;}
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Correlations Within a Scale: 1

e let {sy ;} denote autocovariance sequence (ACVS) for {X¢};
ie., sy, =cov{Xy, Xpir}

e let {h;} denote equivalent wavelet filter for jth level
e to quantify decorrelation, can write
cov (Wit Wik = 3 D hjah S x oy 1) 1—of (1) 40
=0 I'=0
from which we can get ACVS (and hence ACS) for {W ;}:

Lj—l Lj—|m|—1
oV Wit Wissr} = D Sxoirem Do Miiljiiim]
m:—(Lj—l) ZZO

VI-10

Correlations Within a Scale: II
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e correlations between W ; and W 4, for an FD(0.4) process
e correlations within scale are slightly smaller for Haar

e maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: 1
=2 j'=3 j=4
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e correlation between Haar wavelet coefficients W, and W 4
from FD(0.4) process and for levels satisfying 1 < j < j/ <4
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Correlations Between Two Scales: 11
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e same as before, but now for LA(8) wavelet coefficients

e correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

e DWT acts as a decorrelating transform for FD process
(also true for fractional Gaussian noise, pure power law etc.)

e wavelet domain description is simple

e wavelet coefficients within a given scale are approximately un-
correlated (refinement: assume 1st order autoregressive model)

e wavelet coefficients have a scale-dependent variance, but these
variances are controlled by the two FD parameters (§ and o2)

e wavelet coefficients between scales are also approximately un-
correlated (approximation improves as filter width L increases)

VI-14

DWT-Based Simulation

e properties of DWT of FD processes lead to schemes for simu-
lating time series X = [ X, . .. ,XNfl]T with zero mean and
with a multivariate Gaussian distribution

o with NV = 27/, recall that X = WI'W, where

VI-15

Basic DWT-Based Simulation Scheme

e assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

. ‘+l
e assume W to have variance Cj ~ Sx(1/2/72)

e assume single RV in V ; to have variance C ;. (see textbook
for details about how to set C'j. 1)

e approximate FD time series X via Y = wTA/ 27, where

—AYV2Zis Nx N diagonal matrix with diagonal elements

1/2 1/2 1/2 1/2 12 A1/2 A1/2 A1/2
gl "“’Cl J,\C’Q ,...,02 j""OJ—l’CJ—l’CJ ,OJ+1
% of these % of these 2 of these

— 7. is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance
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Refinements to Basic Scheme: 1

e covariance matrix for approximation Y does not correspond to
that of a stationary process

e recall W treats X as if it were circular

e let 7 be N x N ‘circular shift’” matrix:

Yo Y1 Yo Yy
il _[Yo|. ~| Y| _|Y3]|.

T v | = [y T vo| = v | etc.
Y3 Yo Y3 Y]

e let k be uniformily distributed over 0,..., N — 1
o define Y = 77Y
oY is stationary with ACVS given by, say, Sy
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Refinements to Basic Scheme: 11

e (): how well does {8?77_} match {sx -}?

e due to circularity, find that s 5

?,N—T - Y., 1

e implies §3 _ cannot approximate sy well for 7 close to NV

forr=1,...,N/2

e can patch up by simulating Y with M > N elements and then
extracting first N deviates (M = 4N works well)
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Refinements to Basic Scheme: 111
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e plot shows true ACVS {sx -} (thick curves) for FD(0.4) pro-
cess and wavelet-based approximate ACVSs {8? T} (thin curves)

based on an LA(8) DWT in which an N = 64 series is extracted
from M = N, M = 2N and M = 4N series
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Example and Some Notes
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e simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

e notes:

— can form realizations faster than best exact method

— efficient ‘real-time’ simulation of extremely long time series
(e.g, N =230 = 1,073, 741,824 or even longer)

— effect of random circular shifting is to render time series non-
Gaussian (a Gaussian mixture model)
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MLEs of FD Parameters: 1

e ['D process depends on 2 parameters, namely, ¢ and Ug:

o2

Y P

e given X = [X, X1, ... ,XN_l]T with N = 27, suppose we
want to estimate § and o2

e if X is stationary (i.e. § < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method
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MLESs of FD Parameters: 11

e definition of Gaussian likelihood function:

1 Tv—1
21 x) = —XTy X /2
HOoE 1=

where Yx is covariance matrix for X, with (s,#)th element
given by sx ¢, and [Xx| & Ei—l denote determinant & inverse

e ML estimators of ¢ and o2 maximize L(8, 02 | X) or, equiva-
lently, mininize

—2log (L(3,02 | X)) = Nlog (27) + log (|Zx|) + X7 ¥'X

e exact MLEs computationally intensive, mainly because of the
need to invert Xx and compute its determinant

e good approximate MLEs of considerable interest
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MLESs of FD Parameters: 111

e key ideas behind first wavelet-based approximate MLEs

— have seen that we can approximate FD time series X by
Y = WTA1/2Z, where A2 is a diagonal matrix, all of
whose diagonal elements are positive

— since covariance matrix for Z is I, Equation (262¢) says
covariance matrix for Y is

WEA I WTA2)T = WEALZAY 2y = wTAw = 5,
where A = AY2AL/2 i also diagonal
— can consider Xx to be an approximation to >x
e leads to approximation of log likelihood:

—2log (L(6,02 | X)) &~ Nlog (27) + log (|Sx|) + XTE;gX
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MLEs of FD Parameters: IV

e (): so how does this help us?

— casy to invert EX:
Ty = (WTAW)_1 — (W) tal (WT)_1 — WA=,
where A~1 is another diagonal matrix, leading to

XTEX = XIWIa-twx = wia—tw

— easy to compute the determinant of EX:

x| = WIAW] = MWW = [ATy| = [A] - [Ty] = A,

and the determinant of a diagonal matrix is just the product
of its diagonal elements
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MLESs of FD Parameters: V

e define the following three functions of ¢:

: 2 gj+l Y it
Cj(0) = /1/2j+1 R /1/23’+1 i

J
ND(1 —26) N
!/ _ /
Crnl0) = =gy ~ > 550
2 J !
1 VJO -
2 — 2
oZ(0) = — + E E W
TN G0 F o
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MLEs of FD Parameters: VI

e wavelet-based approximate MLE ¢ for § is the value that min-
imizes the following function of d:

[(8 | X) = N log(c(6)) + log(C"}, 1(8)) + Z—log (C(6

e once 4 has been determined, MLE for o2 is given by ¢2(9)

e computer experiments indicate scheme works quite well
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LSEs of FD Parameters

e one alternative to MLEs are least square estimators (LSEs)
— recall that, for large 7 and for g =20 — 1,
log (v (7)) & ¢ + Blog (1)

— suggests determining § by regressing log (ﬁi—(Tj)) on log (74)
over range of 7;

— weighted LSE takes into account fact that variance of log (ﬁ%(T]))
depends upon scale 7; (increases as 7; increases)
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Homogeneity of Variance: 1

e because DWT decorrelates LMPs, nonboundary coefficients in
W should resemble white noise; 1.e., cov {Wj,t, Wjﬂ} ~ 0
when t # ¢/, and var {W; +} should not depend upon ¢

e can test for homogeneity of variance in X using W at each
level j

e suppose Uy, . .., Upn_q are independent normal RVs with E{U;} =
0 and var {U;} = o7

e want to test null hypothesis

L2 2 _ 2
Hy:oj=o01=-=0y_4
e can test H( versus a variety of alternatives, e.g.,
2 _ 2 2 _ _ 2
Hy:o5=" =0 # 0} 1 = =0N_1

using normalized cumulative sum of squares
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Homogeneity of Variance: 11

e to define test statistic D, start with
k 2

> =0 U;

o

and then compute D = max (D", D7), where

k+1 k
DT = — & D™ = S
oglgngaf\%—Q (N —1 Pk) OS%%_Z (P N—1

e can reject Hy if observed D is ‘too large,” where ‘too large’ is
quantified by considering distribution of D under H

Py = k=0,...,N—2

e need to find critical value z, such that P[D > z,] = « for,
e.g., a=0.01,0.05 or 0.1
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)

Homogeneity of Variance: III

e once determined, can perform « level test of H:
— compute D statistic from data Uy, ..., Un_1
— reject Hy at level aif D > x,

— fail to reject Hy at level a if D < x,

e can determine critical values z, in two ways

— Monte Carlo simulations

— large sample approximation to distribution of D:

P[(N/2)Y?D > 2]~ 1+ QZ(_l)lefngxQ
=1

(reasonable approximation for N > 128)
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Homogeneity of Variance: IV

e idea: given time series {X;}, compute D using nonboundary
wavelet coefficients W ; (there are M ; =N; - L; of these):

k
Zt:L’.W ,
sz——————- =L, . .. N;j—2
N J’ 1]
Zt L/ W2

e if null hypothesis rejected at level j, can use nonboundary
MODWT coefficients to accurately locate change point based

o k 5
- en, Wiy

P :
2
S W
along with analogs Dk and D]; of DZ and D

k=Lj—1,...,N—2
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Annual Minima of Nile River
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e left-hand plot: annual minima of Nile River
e new measuring device introduced in year 715
e right: Haar 19%((7']-) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon X%g approximation
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Example — Annual Minima of Nile River: II

—100
16| X) —300

—500

e based upon last 512 values (years 773 to 1284), plot shows
[(6 | X) versus ¢ for the first wavelet-based approximate MLE

using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

— wavelet-based approximate MLE is value minimizing upper
curve: 0 = 0.4532

— exact MLE is value minimizing lower curve: & = 0.4452
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Example — Annual Minima of Nile River: III
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e using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs 6 and ¢2(9) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

e agreement is almost too good to be true!
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Example — Annual Minima of Nile River: IV

e results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels

T M]' D 10% 5% 1%
I year 331 0.1559 0.0945 0.1051  0.1262
2years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8years 41  0.2313 0.2572 0.2864 0.3436

e can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales 71 & 79, but not at larger scales

VI-35

Example — Annual Minima of Nile River: V
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e Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales 71 & 7» (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)

VI-36




Summary

e wavelets approximately decorrelate LMPs
e leads to practical and flexible schemes for simulating LMPs
e also leads to schemes for estimating parameters of LMPs

— approximate maximum likelihood estimators

— weighted least squares estimator
e can also devise wavelet-based tests for

— homogeneity of variance

— trends (see Section 9.4 & Craigmile et al., Environmetrics,
15, 313-35, 2004, for details)
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