Wavelet Methods for Time Series Analysis
Part VI: Matching Pursuit

e idea: approximate X using a few # of ‘time/frequency’ vectors
from large set of such vectors (cf. best basis)

e form ‘dictionary’ of vectors D = {d : v € I'}

—dy = [dygydy 1, dy o], where [|dy||2 = 1

— 7y is vector of parameters connecting d~ to time/frequency;
e.g., v = [j,n, |7 for WP table dictionary

— I' = finite set of possible values for ~

— D contains basis for RY , but can be highly redundant (helps
identify time/frequency content in X)

e matching pursuit successively approximates X with orthogonal
projections onto elements of D
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Background Material

e recall that we can reconstruct a time series X from its DW'T
coefficients W via X = WTW, where W = WX

e jth coefficient in W is (X, Wj,), i.e., the inner product of X
& a column vector W;e whose elements are the jth row of W

e hence we can write
<X> WO‘)
=WIW = Wye, Wie ... Wx_1 (X _W1'>

<X7WN710>
N—

o regard (X, Wj.>Wj. as approximation to X based on just W,
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Matching Pursuit Algorithm: I

e for d, € D, form (X, d~,)dy,, and define residual vector:
R =X — (X, dy,)dy, so that X = (X, d-,)ds, + RV
e note that d-, and R(l) orthogonal'
(A, R X, d,)dy)

= (dy
<d'70’ > <d70’ <X d’YO> d'Y()>
<d’)/()> X> <Xa d’)/()> =0

e hence (X, dy)d, & R are also orthogonal, showing that
2
11 = 114X, dyghdag | + RV = [(X, dog) "+ RV
e minimize energy in residuals by choosing g € I' such that
X,dy )| = X, d
(X, dy)| g??“ 7]
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Matching Pursuit Algorithm: II

e after first step of algorithm, second step is to treat the residuals
in the same manner as X was treated in first step, yielding

R(l) - (R(l), d71>d71 + R(Q)v
with d~, picked such that

(RY,dyy)| = max |(RU, )

WEF
e letting RO = X, after m such steps, have additive decompo-

sition:
m—1

X = 3 (R d RO
k=0
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Matching Pursuit Algorithm: III

e also have an energy decomposition:

m—1
X% = 37 IRW, dy,)de 1+ ROV
k=0
m—1
= ST IRE a2 + RM)|
k=0

e note: as m increases, HR(m)H2

must decrease (must reach zero
under certain conditions)
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Matching Pursuit Dictionaries: 1

e key to matching pursuit is dictionary

e simplest dictionary: DW'T dictionary
— D contains dy = Wje, j =0,..., N —1
— 7 = [j] associates W;q with time/scale
— (X, dy) = Wjis jth DWT coefficient
— Ist step picks W, with largest magnitude:

X = W(O)W(O) + R(l) with R(1> = Z W]WJ.
J#(0)

— 2nd step picks out W; with 2nd largest |W;]|

— for any orthonormal D, matching pursuit approximates X
using coefficients with largest magnitudes
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Matching Pursuit Dictionaries: 11

e larger dictionary: wavelet packet table dictionary (more flexible
than best basis)

e even larger dictionary: above combined with basis vectors cor-
responding to a discrete Fourier transform (DFT)

e level Jo MODWT dictionary

— works for all N, shift invariant, redundant
— D contains vectors whose elements are either
* normalized rows of Wy, j =1,..., Jy, or

* normalized rows of V j,
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Example — Subtidal Sea Levels: 1
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e recall subtidal sea level series X for Crescent City, CA
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Example — Subtidal Sea Levels: 11
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e use Jy = 10 LA(8) MODWT dictionary (96,206 vectors in all)
e above shows first 10 vectors picked by matching pursuit (x £1)
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Example — Subtidal Sea Levels: III
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e next 10 vectors picked by matching pursuit (x + 1)
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
o first 10 are for 7¢ At = 64 to A\jg At = 512 days

o 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: V
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e matching pursuit approximations of orders m = 20, 50 and 200,
along with residuals for m = 200
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Example — Subtidal Sea Levels: VI
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e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary augmented to include basis vectors
corresponding to the DF'T

e k = 0 choice same as before, but k = 1 choice is DFT vector
with period close to one year

o for 2 < k < 200, only k = 65,84 and 192 are DFT vectors
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Example — Subtidal Sea Levels: VII
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e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary consisting of just the basis vectors
corresponding to the DF'T

VI-14

Example — Subtidal Sea Levels: VIII
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e normalized residual sum of squares | R™)||2/||X||? versus num-
ber of terms m in matching pursuit approximation using the
MODWT dictionary (thick curve), the DFT-based dictionary
(dashed) and both dictionaries combined (thin)

e combined dictionary does best for small m, but MODWT dic-
tionary by itself becomes competitive as m increases
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