Wavelet Methods for Time Series Analysis

Part VI: Matching Pursuit

- idea: approximate \mathbf{X} using a few \# of 'time/frequency' vectors from large set of such vectors (cf. best basis)
- form 'dictionary' of vectors $\mathcal{D} \equiv\left\{\mathbf{d}_{\gamma}: \gamma \in \Gamma\right\}$
$-\mathbf{d}_{\gamma}=\left[d_{\gamma, 0}, d_{\gamma, 1}, \ldots, d_{\gamma, N-1}\right]^{T}$, where $\left\|\mathbf{d}_{\gamma}\right\|^{2}=1$
$-\gamma$ is vector of parameters connecting \mathbf{d}_{γ} to time/frequency; e.g., $\gamma=[j, n, t]^{T}$ for WP table dictionary
$-\Gamma=$ finite set of possible values for γ
- \mathcal{D} contains basis for \mathcal{R}^{N}, but can be highly redundant (helps identify time/frequency content in \mathbf{X})
- matching pursuit successively approximates \mathbf{X} with orthogonal projections onto elements of \mathcal{D}

Background Material

- recall that we can reconstruct a time series \mathbf{X} from its DWT coefficients \mathbf{W} via $\mathbf{X}=\mathcal{W}^{T} \mathbf{W}$, where $\mathbf{W} \equiv \mathcal{W} \mathbf{X}$
- j th coefficient in \mathbf{W} is $\left\langle\mathbf{X}, \mathcal{W}_{j \bullet}\right\rangle$, i.e., the inner product of \mathbf{X} \& a column vector $\mathcal{W}_{j \bullet}$ whose elements are the j th row of \mathcal{W}
- hence we can write

$$
\left.\begin{array}{rl}
\mathbf{X}=\mathcal{W}^{T} \mathbf{W} & =\left[\mathcal{W}_{0 \bullet}, \mathcal{W}_{1 \bullet}, \ldots, \mathcal{W}_{N-1} \bullet\right]
\end{array} \begin{array}{c}
\left\langle\mathbf{X}, \mathcal{W}_{0} \bullet\right\rangle \\
\left\langle\mathbf{X}, \mathcal{W}_{1 \bullet}\right\rangle \\
\vdots \\
\left\langle\mathbf{X}, \mathcal{W}_{N-1}\right\rangle
\end{array}\right]
$$

- regard $\left\langle\mathbf{X}, \mathcal{W}_{j \bullet}\right\rangle \mathcal{W}_{j \bullet}$ as approximation to \mathbf{X} based on just $\mathcal{W}_{j \bullet}$ VI-2

Matching Pursuit Algorithm: I

- for $\mathbf{d}_{\gamma_{0}} \in \mathcal{D}$, form $\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}$, and define residual vector: $\mathbf{R}^{(1)} \equiv \mathbf{X}-\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}$ so that $\mathbf{X}=\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}+\mathbf{R}^{(1)}$
- note that $\mathbf{d}_{\gamma_{0}}$ and $\mathbf{R}^{(1)}$ orthogonal:

$$
\begin{aligned}
\left\langle\mathbf{d}_{\gamma_{0}}, \mathbf{R}^{(1)}\right\rangle & =\left\langle\mathbf{d}_{\gamma_{0}}, \mathbf{X}-\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}\right\rangle \\
& =\left\langle\mathbf{d}_{\gamma_{0}}, \mathbf{X}\right\rangle-\left\langle\mathbf{d}_{\gamma_{0}},\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}\right\rangle \\
& =\left\langle\mathbf{d}_{\gamma_{0}}, \mathbf{X}\right\rangle-\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle=0
\end{aligned}
$$

- hence $\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}} \& \mathbf{R}^{(1)}$ are also orthogonal, showing that

$$
\|\mathbf{X}\|^{2}=\left\|\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle \mathbf{d}_{\gamma_{0}}\right\|^{2}+\left\|\mathbf{R}^{(1)}\right\|^{2}=\left|\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(1)}\right\|^{2}
$$

- minimize energy in residuals by choosing $\gamma_{0} \in \Gamma$ such that

$$
\left|\left\langle\mathbf{X}, \mathbf{d}_{\gamma_{0}}\right\rangle\right|=\max _{\gamma \in \Gamma}\left|\left\langle\mathbf{X}, \mathbf{d}_{\gamma}\right\rangle\right|
$$

Matching Pursuit Algorithm: II

- after first step of algorithm, second step is to treat the residuals in the same manner as \mathbf{X} was treated in first step, yielding

$$
\mathbf{R}^{(1)}=\left\langle\mathbf{R}^{(1)}, \mathbf{d}_{\gamma_{1}}\right\rangle \mathbf{d}_{\gamma_{1}}+\mathbf{R}^{(2)},
$$

with $\mathbf{d}_{\gamma_{1}}$ picked such that

$$
\left|\left\langle\mathbf{R}^{(1)}, \mathbf{d}_{\gamma_{1}}\right\rangle\right|=\max _{\gamma \in \Gamma}\left|\left\langle\mathbf{R}^{(1)}, \mathbf{d}_{\gamma}\right\rangle\right|
$$

- letting $\mathbf{R}^{(0)} \equiv \mathbf{X}$, after m such steps, have additive decomposition:

$$
\mathbf{X}=\sum_{k=0}^{m-1}\left\langle\mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}}\right\rangle \mathbf{d}_{\gamma_{k}}+\mathbf{R}^{(m)}
$$

Matching Pursuit Algorithm: III

- also have an energy decomposition:

$$
\begin{aligned}
\|\mathbf{X}\|^{2} & =\sum_{k=0}^{m-1}\left\|\left\langle\mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}}\right\rangle \mathbf{d}_{\gamma_{k}}\right\|^{2}+\left\|\mathbf{R}^{(m)}\right\|^{2} \\
& =\sum_{k=0}^{m-1}\left|\left\langle\mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}}\right\rangle\right|^{2}+\left\|\mathbf{R}^{(m)}\right\|^{2}
\end{aligned}
$$

- note: as m increases, $\left\|\mathbf{R}^{(m)}\right\|^{2}$ must decrease (must reach zero under certain conditions)

Matching Pursuit Dictionaries: I

- key to matching pursuit is dictionary
- simplest dictionary: DWT dictionary
$-\mathcal{D}$ contains $\mathbf{d}_{\gamma} \equiv \mathcal{W}_{j \bullet}, j=0, \ldots, N-1$
$-\gamma=[j]$ associates $\mathcal{W}_{j \bullet}$ with time/scale
$-\left\langle\mathbf{X}, \mathbf{d}_{\gamma}\right\rangle=W_{j}$ is j th DWT coefficient
- 1st step picks W_{j} with largest magnitude:

$$
\mathbf{X}=W_{(0)} \mathbf{W}_{(0)}+\mathbf{R}^{(1)} \text { with } \mathbf{R}^{(1)}=\sum_{j \neq(0)} W_{j} \mathbf{W}_{j \bullet}
$$

- 2nd step picks out W_{j} with 2nd largest $\left|W_{j}\right|$
- for any orthonormal \mathcal{D}, matching pursuit approximates \mathbf{X} using coefficients with largest magnitudes

Matching Pursuit Dictionaries: II

- larger dictionary: wavelet packet table dictionary (more flexible than best basis)
- even larger dictionary: above combined with basis vectors corresponding to a discrete Fourier transform (DFT)
- level J_{0} MODWT dictionary
- works for all N, shift invariant, redundant
- \mathcal{D} contains vectors whose elements are either
* normalized rows of $\widetilde{\mathcal{W}}_{j}, j=1, \ldots, J_{0}$, or
* normalized rows of $\widetilde{\mathcal{V}}_{J_{0}}$

Example - Subtidal Sea Levels: I

- recall subtidal sea level series \mathbf{X} for Crescent City, CA

Example - Subtidal Sea Levels: II

- use $J_{0}=10 \mathrm{LA}(8)$ MODWT dictionary (96,206 vectors in all)
- above shows first 10 vectors picked by matching pursuit $(\times \pm 1)$

Example - Subtidal Sea Levels: III

- next 10 vectors picked by matching pursuit $(x \pm 1)$

Example - Subtidal Sea Levels: IV

- very first $(k=0)$ associated with overall increase in 1982-3
- first 10 are for $\tau_{8} \Delta t=64$ to $\lambda_{10} \Delta t=512$ days
- 7 of first 20 are associated with $\tau_{9} \Delta t=128$ days (needed to account for seasonal variabilty)
- $k=3$ has inverted sign \& picks out gradual dip in Spring, 1984 (cf. 1981, 3, 5, $7 \& 8$); $k=8$ also inverted, but is a boundary effect

Example - Subtidal Sea Levels: V

- matching pursuit approximations of orders $m=20,50$ and 200, along with residuals for $m=200$

Example - Subtidal Sea Levels: VI

- matching pursuit approximations of orders $m=20,50$ and 200, but now using a dictionary augmented to include basis vectors corresponding to the DFT
- $k=0$ choice same as before, but $k=1$ choice is DFT vector with period close to one year
- for $2 \leq k<200$, only $k=65,84$ and 192 are DFT vectors

Example - Subtidal Sea Levels: VII

- matching pursuit approximations of orders $m=20,50$ and 200, but now using a dictionary consisting of just the basis vectors corresponding to the DFT

Example - Subtidal Sea Levels: VIII

- normalized residual sum of squares $\left\|\mathbf{R}^{(\mathbf{m})}\right\|^{2} /\|\mathbf{X}\|^{2}$ versus number of terms m in matching pursuit approximation using the MODWT dictionary (thick curve), the DFT-based dictionary (dashed) and both dictionaries combined (thin)
- combined dictionary does best for small m, but MODWT dictionary by itself becomes competitive as m increases

