Wavelet Methods for Time Series Analysis

Part V: Wavelet Variance and Covariance

e examples of time series to motivate discussion
e decomposition of sample variance using wavelets
e theoretical wavelet variance for stochastic processes

— stationary processes

— nonstationary processes with stationary differences
e sampling theory for Gaussian processes
e 4 examples, including series with time-varying properties
e wavelet covariance (will cover if time permits)

e summary

Examples: Time Series X; Versus Time Index t
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(a) atomic clock frequency deviates (daily observations, N = 1025)
(b) subtidal sea level fluctuations (twice daily, N = 8746)

(c) Nile River minima (annual, N = 663)

(d) vertical shear in the ocean (0.1 meters, N = 4096)

e four series are visually different

e goal of time series analysis is to quantify these differences

V-2

Decomposing Sample Variance of Time Series

e one approach: quantify differences by analysis of variance
o let X, X1,..., Xy_q represent time series with N values
e let X denote sample mean of Xy’s: X = N -1 0 Xt

o let é)'%( denote sample variance of X¢'s:
N—-1

1 _
=v (X; - X)

t=0

e idea is to decompose (analyze, break up) &%( into pieces that
quantify how time series are different

e wavelet variance does analysis based upon differences between
(possibly weighted) adjacent averages over scales
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Empirical Wavelet Variance

e define empirical wavelet variance for scale 7; = 271 as
Lj-1
VX Tj N Z t’ where W]ﬂf = Z hj,lXt—l mod N
=0

oif N =27 , obtain analysis (decomposition) of sample variance:

1 N—-1 5 J
A ~ ~2
SRR DY o P
t=0 j=1

(if N not a power of 2, can analyze variance to any level Jp,

but need additional component involving scaling coefficients)

e interpretation: ﬁg((Tj) is portion of &g( due to changes in av-

erages over scale 7;; i.e., ‘scale by scale” analysis of variance
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Example of Empirical Wavelet Variance

e wavelet variances for time series Xy and Y3 of length N = 16,
each with zero sample mean and same sample variance

20 0.3
Xi 0 L I ] 7%(75)
—20L 1 I I I 0.0 Lt [ I
2 0.3[
Yo o= l [ | [ l { ! J { I (1))
-2 1 I I I 0.0 I 1
0 5 10 15 1 248
t Tj
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Second Example of Empirical Wavelet Variance

e top: part of subtidal sea level data (blue line shows scale of 16)

75
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-25
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40
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1 2 4 8 16 32 64 128
scale

e bottom: empirical wavelet variances ﬁg((Tj)

e note: each W; ; associated with a portion of Xt, so Wth Versus

L o 52
t offers time-based decomposition of VX<Tj)
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Theoretical Wavelet Variance: 1

e now assume Xy is a real-valued random variable (RV)

e let {X¢,t € Z} denote a stochastic process, i.e., collection of
RVs indexed by ‘time’ ¢ (here Z denotes the set of all integers)

e use jth level equivalent MODWT filter {ﬁﬂ} on { X} to create
a new stochastic process:

L,—1
Wit= > hjXiq, tez,
=0

which should be contrasted with
Lj-1

Wj,t = Z hj,lXt—l mod N> tZO,l,...,N— 1
=0

Theoretical Wavelet Variance: 11

e if Y is any RV, let E{Y} denote its expectation
o let var {Y'} denote its variance: var {Y'} = E{(Y — E{Y})?}
e definition of time dependent wavelet variance:
V§(7t(Tj) = var {Wﬁ},
with conditions on Xy so that var {IW; ;} exists and is finite
o yg(’ +(7;) depends on 7; and ¢
e will focus on time independent wavelet variance
z/g((Tj) = var {Wj,t}
(can adapt theory to handle time varying situation)

o Vg((Tj) well-defined for stationary processes and certain related
processes, so let’s review concept of stationarity
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Definition of a Stationary Process

e if U and V are two RVs, denote their covariance by
cov{U,V} = E{(U - E{U})(V — E{V})}
e stochastic process Xy called stationary if
— E{X}} = pyx for all ¢, i.e., constant independent of ¢
— cov{Xt, X¢yr} = sx 7, i.e., depends on lag 7, but not ¢
® sx r, T € Z, is autocovariance sequence (ACVS)

®sx 0= cov{ Xy, Xt} = var{ Xy}; i.e., variance same for all ¢

Spectral Density Functions: I

e spectral density function (SDF) given by

N =

Sx(f)= D sxre 2T f] <

e above requires condition on ACVS such as
[0.@)

S <o

T=—00

(sufficient but not necessary)

Spectral Density Functions: II

e if square summability holds, {sx ;} «— Sx(-) says
1/2 :
| sxne T sy, rez
—1/2 ’
e setting 7 = 0 yields fundamental result:
1/2
[ SxUdr = sxp = var (X2}
12
i.e., SDF decomposes var { X} across frequencies f

e interpretation: Sy (f)Af is the contribution to var { X} due
to frequencies in a small interval of width A f centered at f

White Noise Process: 1

e simplest example of a stationary process is ‘white noise’
e process Xy said to be white noise if

— it has a constant mean E{X;} = uyx

— it has a constant variance var { Xy} = 03(

— cov { X, X¢y+} = 0 for all t and nonzero 7; i.e., distinct RVs

in the process are uncorrelated
e ACVS and SDF for white noise take very simple forms:
2
0%, T=0;
sxr = cov{Xt, Xptr} = { X

0, otherwise.

oo
Sx(f)= Y sxse T =5y

T——00
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White Noise Process: 11

e ACVS (left-hand plot), SDF (middle) and a portion of length
N = 64 of one realization (right) for a white noise process with
py =0 and ag( =1.5

20 20 3
Sxr OJ— Sx(f)1* X; 0
2L oL . . -3
0 2 4 6 0.0 0.5 0 32 64
T f t

e since Sx(f) = 1.5 for all f, contribution Sx(f)Af to Jgf is
the same for all frequencies

Wavelet Variance for Stationary Processes

e for stationary processes, wavelet variance decomposes var { Xy }:

o0
> vi(7y) = var { X}
j=1
(above result similar to one for sample variance)

o Vg((Tj) is thus contribution to var { Xz} due to scale 7;

e note: vx(7;) has same units as Xy, which is important for
interpretability

Wavelet Variance for White Noise Process: 1

e for a white noise process, can show that
Covar{Xy}p  var {Xy}
B 2] B 275 ’

2
vx (7))
SO

S Ve(rj) = var {X;} (% +lply. ) — var {X;},

J=1
as required

e note that

2

log (v (7)) = log (var {X;}/2) — log (),
so plot of log (v (7)) vs. log (7;) is linear with a slope of —1

10
§ = 10°
slope = —1 107

10"10° 10" 102 10°
T

3 Vg((Tj) versus 7; for j = 1,...,8 (left-hand plot), along with

sample of length N = 256 of Gaussian white noise
e largest contribution to var { X} is at smallest scale 1

e note: later on, we will discuss fractionally differenced (FD)
processes that are characaterized by a parameter ¢; when § = 0,
an FD process is the same as a white noise process




Generalization to Certain Nonstationary Processes

e if wavelet filter is properly chosen, Vg((Tj) well-defined for cer-
tain processes with stationary backward differences (increments);
these are also known as intrinsically stationary processes

e first order backward difference of Xy is process defined by

1

xY = x, - X,
e second order backward difference of Xy is process defined by
2 1 1
xP = xMV o xM =X —2x, + X,

e X said to have dth order stationary backward differences if

d

d
=Y ()t

k=0
forms a stationary process (d is a nonnegative integer)
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Examples of Processes with Stationary Increments
Xt, X[(l> X,'(‘Z)

0 AW\\\\N (b)

. fm WW

256 0 256 0

e 1st column shows, from top to bottom, realizations from

a) random walk: Xy = t: €u, & € 18 zero mean white noise
( ) u=1
(b) like (a), but now € has mean of —0.2
random run: Xy = Y., where Y} is a random walk
( ) u 15w

e 2nd & 3rd columns show 1st & 2nd differences Xt( ) and Xt( )
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Wavelet Variance for Processes with
Stationary Backward Differences

e let { X;} be nonstationary with dth order stationary differences

e if we use a Daubechies wavelet filter of width L satisfying L >
2d, then Vg((Tj) is well-defined and finite for all 7;, but now

S Vi) =

7=1

Wavelet Variance for Random Walk Process: 1

e random walk process X; = S e, has first order (d = 1)
stationary differences since Xy — Xy 1 = ¢ (i.e., white noise)

e [ > 2d holds for all wavelets when d = 1; for Haar (L = 2),
9  var{et} 1\ var{e}
with the approximation becoming better as 7; increases

e note that Vg((Tj) increases as 7; increases

e log (Vg((Tj)) o log (75) approximately, so plot of 10g<V§((Tj))
vs. log (7;) is approximately linear with a slope of +1

®as required also have

var 4 €
ZI/XT] 6{t}(1+%+2+%+4+§+---):oo
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Wavelet Variance for Random Walk Process: 11

10’
5=1 100 /
slope~1 107

102
10710° 10" 102 10°
T

o Vg((Tj) versus 7 for j = 1,...,8 (left-hand plot), along with
sample of length N = 256 of a Gaussian random walk process

e smallest contribution to var { X;} is at smallest scale 7

e note: a fractionally differenced process with parameter § = 1
is the same as a random walk process

Fractionally Differenced (FD) Processes: 1

e can create a continuum of processes that ‘interpolate’” between
white noise and random walks using notion of ‘fractional differ-
encing’ (Granger and Joyeux, 1980; Hosking, 1981)

e FD(§) process is determined by 2 parameters 6 and o2, where
—00 < § < o0 and g2 > 0 (02 is less important than o)

o if {X;} is an FD(4) process, its SDF is given by

2 2
o o
S — € €
M=)~ sy
e if § < 1/2, FD process { X} is stationary, and, in particular,

— reduces to white noise if § =0
— has ‘long memory’ or ‘long range dependence’ if § > 0
— is ‘antipersistent” if 0 < 0 (i.e., cov {X¢, Xy} < 0)
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Fractionally Differenced (FD) Processes: 1I

eif 6 > 1/2, FD process {X;} is nonstationary with dth order
stationary backward differences {Y;}
— here d = |0 + 1/2], where |z] is integer part of =
— {Y;} is stationary FD(d — d) process

eif 0 =1, FD process is the same as a random walk process

e using sin(z) ~ x for small z, can claim that, at low frequencies,

o¢ ot

[4sin?(mf))? " (2mf)?
(approximation quite good for f € (0,0.1])

Sx(f) =

e right-hand side describes SDF for a ‘power law’ process with
exponent —29

Fractionally Differenced (FD) Processes: III

e except possibly for two or three smallest scales, have

12
im) = [ AP sk ar

12

1/2 o2
’ /1/2J‘+1 s )

20'2 /1/2] 1 df C 25—1
~ — =0CT°
(27r)25 1/2i+1 f2<5 J

Q

e thus log (ug((rj)) ~ log (') +(20 — 1) log (7;), so a log/log plot
of 1/%((7']') vs. 7j looks approximately linear with slope 26 — 1
for 7; large enough




LA (8) Wavelet Variance for 2 FD Processes

102 [

(5:% 100 E\\\“\
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e left-hand column: V%(Tj) versus 7; based upon LA(8) wavelet
e right-hand: realization of length N = 256 from each FD process

e sce overhead 16 for § = 0 (white noise), which has slope = —1
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LA (8) Wavelet Variance for 2 More FD Processes
6= % 100 /
sloper ~ 2

10'
0= 100 /
slope ~ 1

10710° 10" 102 10°

°) = % is Kolmogorov turbulence; § = 1 is random walk

e note: positive slope indicates nonstationarity, while negative
slope indicates stationarity

Expected Value of Wavelet Coefficients

e in preparation for considering problem of estimating V%(Tj)
given an observed time series, let us consider E{W; ;}

e if {X};} is nonstationary but has dth order stationary incre-
ments, let {Y;} be the stationary process obtained by differenc-
ing { X} a total of d times; if {X;} is stationary, let Y; = X3

e can show that, with uy = E{Y};}, have
— E{W 4} = 0ifeither (i) L > 2d or (i) L = 2d and py = 0
— E{W;4+} #0if py #0and L = 2d

o thus have E{W ;;} = 0 if L is picked large enough (L > 2d is
sufficient, but might not be necessary)

e as the argument that follows shows, highly desirable to have
E{W;} = 0 in order to ease the job of estimating Vg((Tj)
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Estimation of a Process Variance: 1

e suppose {U} is a stationary process with mean pyr = E{U}

and unknown variance 0% = B{(U; — np)*}

e can be difficult to estimate 0[2] for a stationary process
e to understand why, assume first that p7 is known

e when this is the case, can estimate UIQJ using

| V-

29 2

U= E (Ut — py)
=0

e estimator above is unbiased: E {52U} = 0%]




Estimation of a Process Variance: 11

e if 1177 is unknown (more common case), can estimate UZU using
N-1 N-1

1 _ — 1
&%zﬁg(m—m?, where UENtZ;Ut

e can argue that F {(7(2]} = U%] —var {U}
e implies 0 < E{&%]} < 0[2] because var {U} > 0
o E{(}IQJ} — O'IQJ as N — oo if SDF exists ... but, for any
e > 0 (say, 0.00---01) and sample size N (say, N = 101010)7
there is some FD(J) process {U} with 6 close to 1/2 such that
E{&QU} <e€- U2U;
i.e., in general, (7[2] can be badly biased even for very large N
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Estimation of a Process Variance: 111

e example: realization of FD(0.4) process (012] =1& N =1000)

L L L L L L L L J
0 500 1000

e using pr7 = 0 (lower horizontal line), obtain 6[2] = 0.99
e using U = 0.53 (upper line), obtain 6%] =0.71
e note that this is comparable to F {&QU} =0.75

e for this particular example, we would need N > 1010 to get
0'[2] — E{&IQJ} < 0.01, i.e., to reduce the bias so that it is no
more than 1% of true variance 012] =1
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Estimation of a Process Variance: IV

e conclusion: (3[2] can have substantial bias if pg7 is unknown

(can patch up by estimating H, but must make use of model)

o if {X;} stationary with mean px, then, because ), fzj,l =0,

Li-1 Li—1
E{Wjs} =Y hjB{X;}=px > hj;=0
=0 10

® because I/ {WjJ} is known, we can form an unbiased estimator
of var {W ¢} = Vg((Tj)

e more generally, if {X;} is nonstationary with stationary incre-
ments of order d, we can ensure E{W ;;} = 0 if we pick the
filter width L such that L > 2d (in some cases, we might be
able to get away with just L = 2d)
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Wavelet Variance for Processes with
Stationary Backward Differences: I

e conclusions: Vg((Tj) well-defined for { Xy} that is

— stationary: any L will do and E{ijt} =0
— nonstationary with dth order stationary increments: need at
least L > 2d, but might need L > 2d to get E{W;} =0

e if { Xy} is stationary, then

o0
Z I/%((Tj) =var{Xy} < o0
j=1

(recall that each RV in a stationary process must have the same
finite variance)




Wavelet Variance for Processes with
Stationary Backward Differences: 11

e if {X;} is nonstationary, then
[©¢)
2
Z VX(Tj) =00
j=1

e with a suitable construction, we can take the variance of a
nonstationary process with dth order stationary increments to
be oo

e using this construction, we have
0.@)

> v (7y) = var {X;}
j=1
for both the stationary and nonstationary cases
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Background on Gaussian Random Variables

o (i, 0%) denotes a Gaussian (normal) RV with mean j and
variance o

e will write ’
X = N(p,0%)
to mean ‘RV X has the same distribution as a Gaussian RV’

e RV N(0,1) often written as Z (called standard Gaussian or
standard normal)

e let O(-) be standard Gaussian cumulative distribution function:

P(2)=P[Z < 2] = /_Zoo \/(IQW)G—JJQ/Q dr

o inverse ®~1(-) of ®(-) is such that P[Z < ®~1(p)] = p
° CD_l(p) called p x 100% percentage point
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Background on Chi-Square Random Variables

e X said to be a chi-square RV with 7 degrees of freedom if its
probability density function (PDF) is given by

1
fX(W;ﬁ):W

o X727 denotes RV with above PDF

:U<77/2>_16_I/2, x>0 n>0

e 3 important facts: E{X%} = 1; var {X%} = 2n; and, if n is
a positive integer and if Z1,..., 7, are independent N(0,1)
RVs, then

d
Zi+ 4+ 70 =
e let Q(p) denote the pth percentage point for the RV X%:
Plx; < Qy(p)] =p
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Unbiased Estimator of Wavelet Variance: 1

e given a realization of X, X1,..., Xy_1 from a process with
dth order stationary differences, want to estimate V%(Tj)

o for wavelet filter such that L > 2d and E{W;;} = 0, have
— —2
I/g((Tj) = var {W;} = E{Wj’t}

e can base estimator on squares of
Lj-1

Wj,t = Z ﬁj,lXt—lmod]\% t=0,1,...,N—1
=0
e recall that

Li—1
Wie= D hjXiy teZ
=0
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Unbiased Estimator of Wavelet Variance: 11

e comparing

L—l L —1
Wiy = Z hi i Xi—t mod N With W, = Z i X
=0

says that Wj,t = Wj,t if ‘mod N’ not needed; this happens
when L; —1 <t < N (recall that L; = (2/ — 1)(L — 1) + 1)

o if N — L; > 0, unbiased estimator of l/g((Tj) is

1 N—-1 1 N—-1 5

- B —,

vy () = —m—-—— Ws, = — W,

X( J) N — L]. +1 Z Jit 7\{]. Jit
t:Lj—l tZLj—l

wheroMjEN—Lj+1

Statistical Properties of ﬁg((Tj)

e assume that {Wj’t} is Gaussian stationary process with mean

zero and ACVS {s; -}

e suppose {s; 7} is such that

0.@)
S <
=—00
(if Aj = oo, can make it finite usually by just increasing L)

e can show that ﬁg((Tj) is asymptotically Gaussian with mean

Vg((Tj) and large sample variance 24, /Mj; i.e.,
1/2, .
Felry) = vielry) M 0R ()~ A o
(24;/M;)1/? (24,)1/2

approximately for large M; = N — L; + 1
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Estimation of Aj

e in practical applications, need to estimate A; = s 5?,7-

e can argue that, for large Mj, the estimator

L(p)) 2 -
Aj - (SJZO) n Mizl <§§?2)2

T=

—_

is approximately unbiased, where

. N—-1—|7|

7 Z WiiWj i 0< |7 < M;—1
t=L

e Monte Carlo results: Aj reasonably good for M; > 128

Confidence Intervals for ugf(rj): I

e based upon large sample theory, can form a 100(1 — 2p)% con-
fidence interval (CI) for 1/%((7']'):

~2 —1 V245 —1 24;
vx(mj) =7 (1 = p)——=,0x(1;) + 7 (1 —p) ;
S T,
i.e., random interval traps unknown I/g((Tj) with probability
1—2p
o if A; replaced by flj7 approximate 100(1 — 2p)% CI

e critique: lower limit of CI can very well be negative even though
Vg((Tj) > 0 always

e can avoid this problem by using a y2 approximation
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Confidence Intervals for V%(Tj): I1

° X% useful for approximating distribution of linear combinations
of squared Gaussians

d
e assume that ﬁgf(Tj) = V%(Tj)xz/n
— since E{X%} =1, have E{V%(Tj)x%/n} = Vg((Tj)7 as needed
—asn — oo, X% /m converges to a Gaussian RV, as needed

e recalling that var { X%} = 27, we can match variances of ﬁgf('rj)

& l/%((Tj)X% /n to determine ‘equivalent degrees of freedom’ 7:
204 (15)

~2 4 : X\

VaI“{I/X(Tj)} = QVX(Tj)/n yields n = —=2———
var {V%(Tj)}

e can set 7 using ﬁ%—(Tj) & estimate/approximation for var {ﬁ%(’]’j)}
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Three Ways to Set n: 1

1. use large sample theory with appropriate estimates:
B 2V§((Tj) _ 2V§<(Tj) R M; A%(Tj)
— o NQA’/M. suggests 1] = ————
var {v5(75) } i/ M; Aj
2. assume nominal shape for SDF of {X;}: Sx(f) = hC(f),

where C/(+) is known, but h is not; though questionable, get
acceptable Cls using

2
<Zk 1 v Ci(fi >) 1/2 (D)
—1)/2] 5 & C](f>5 3 Hj (f)C(f)df
Zk ! C5(fk) 1/2
3. make an assumption about the effect of wavelet filter on { Xy}
to obtain simple (but effective!) approximation
N3 = maX{Mj/Qj, 1}
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2 =

Three Ways to Set n: 11

e comments on three approaches
L. 7)1 requires estimation of A;
— works well for M; > 128 (5% to 10% errors on average)
— can yield optimistic Cls for smaller M;
2. mo requires specification of shape of Sx ()
— common practice in, e.g., atomic clock literature
3. m3 assumes band-pass approximation

— default method if Mj small and there is no reasonable
guess at shape of Sx ()

Confidence Intervals for I/X(Tj) I11

e after 1 has been determined, can obtain a CI for Vg((Tj)

e can argue that, with prob. 1 — 2p, the random interval

N () no3 ()
Qn(1—p)" Qup)

traps the true unknown ng(fj)

e lower limit is now nonnegative

e get approximate 100(1 — 2p)% CI for V%(Tj), with approxima-
tion improving as N — oo, if we use 7)1 to estimate n

e as N — oo, above CI and Gaussian-based CI converge
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Atomic Clock Deviates: 11

e top plot: errors {X;} in time kept by atomic clock 571 as
compared to time kept at Naval Observatory (measured in mi-
croseconds, where 1,000,000 microseconds = 1 second)

e middle: first backward differences {Xt(l) } in nanoseconds
(1000 nanoseconds = 1 microsecond)

e bottom: second backward differences {Xt<2)}7 also in nanosec-
onds

o if {X;} nonstationary with dth order stationary increments,
need L > 2d, but might need L > 2d to get E{W;} =0

e (): what is an appropriate L here?
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Atomic Clock Deviates: 111
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Atomic Clock Deviates: IV

e square roots of wavelet variance estimates for atomic clock time
errors { X;} based upon unbiased MODWT estimator with
— Haar wavelet (x’s in left-hand plot, with linear fit)
— D(4) wavelet (circles in left- and right-hand plots)
— D(6) wavelet (pluses in left-hand plot).
e Haar wavelet inappropriate

— need {Xt(l)} to be a realization of a stationary process with
mean 0 (stationarity might be OK, but mean 0 is way off)

— see Exer. [320b] for explanation of linear appearance

¢ 95% confidence intervals in the right-hand plot are the square
roots of intervals computed using the chi-square approximation
with 7 given by 0y for j =1,...,6 and by 3 for j =7 & 8
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Wavelet Variance Analysis of Time Series
with Time-Varying Statistical Properties

e cach wavelet coefficient /VIV/N formed using portion of X}
e suppose Xy associated with actual time ¢+t At

x 1o 1s actual time of first observation X
x At is spacing between adjacent observations

® suppose ilj,l is least asymmetric Daubechies wavelet
e can associate Wj,t with an interval of width 27; At centered at
to + (2j(t +1)—1-— ’Vj(-H)| mod N) At,
where, e.g., ] ] = [7(27 — 1) + 1]/2 for LA(8) wavelet

e can thus form ‘localized” wavelet variance analysis (implicitly
assumes stationarity or stationary increments locally)
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Subtidal Sea Level Fluctuations: I

100.0

10.0

1.0 l

0.1

n n n L n n n L n n n J
1980 1984 1988 1991
years

e cstimated time-dependent LA(8) wavelet variances for physical
scale 9 At = 1 day based upon averages over monthly blocks
(30.5 days, i.e., 61 data points)

e plot also shows a representative 95% confidence interval based
upon a hypothetical wavelet variance estimate of 1/2 and a
chi-square distribution with v = 15.25

Subtidal Sea Level Fluctuations: II

100
2 days
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e estimated LA(8) wavelet variances for physical scales 7; At =
2J—2 days, j = 2,...,7, grouped by calendar month
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e left-hand plot: annual minima of Nile River

e right: Haar ﬁg((Tj) before (x’s) and after (o’s) year 715.5, with
95% confidence intervals based upon X%3 approximation




Vertical Shear in the Ocean: 1
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depth (meters)
e selected ‘stationary’ portion of vertical shear measurements

{X¢} (top plot) and their first backward differences {Xtm}
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Vertical Shear in the Ocean: 11

e wavelet variances estimated for vertical shear series using the
unbiased MODWT estimator and the following wavelet filters:
Haar (x’s in left-hand plot, through which two regression lines
have been fit), D(4) (small circles, right-hand plot), D(6) (+’s,
both plots) and LA(8) (big circles, right-hand plot).
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Vertical Shear in the Ocean: II1

v w 1l M
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e D(6) wavelet variance estimates, along with 95% confidence
intervals for true wavelet variance with EDOFs determined
by, from left to right within each group of 3, 7; (estimated
from data), 7o (using a nominal model for Sx(-)) and 73 =

max{M;/27,1}

Pop Quiz!

e (: which wavelet variance plot goes with which time series?
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Wavelet Cross-Covariance Definitions: 1

e for two jointly stationary processes { Xy, t € Z} & {Y;,t € Z}
with means py = E{X;} and py = E{Y}, let

L—l L—l
W = ZthtlandW(t thlY;l
=0 =0

e cross-covariance between {W } and {W } given by

Y
- p{wty) L@J

JXY)
W WJ,m

because {W } & {W } have zero mean since > h ji1=0
by design

Wavelet Cross-Covariance Definitions: 11

e when {X;} and {Y;} are identical
— wavelet autocovariance sequence is obtained

X
sy = B{WIWLL),

Jom it

— in particular, when m = 0, wavelet variance is recovered

S%/I)/() = Var{W } E { {Wg)t()]Q} = V%((Tj)

j7

Wavelet Cross-Covariance Definitions: II1

e similarly, let
Lj—1

V Zgjth zaﬂdV Zgszt z
1=0

e cross-covariance between {V } and {V } given by

XYy —(X) — —
&JmIEU@HQmJ—EHw}EWﬁ}

=F {V§§)V§§)+m} — HXHY

e means of {Vﬁ()} & {Vg?} are px and py since Zlgﬂ =1
by design

Decomposition by Scale

e cross-covariance between { Xy} and {Y;} at lag m given by
sxv,m = cov{Xe, Viym} = E{(X¢ — pux)(Yerm — py)}

e cross-covariance at lag m can be decomposed as
X v (XY) o (XY)
SXYan = DS Ty m = 2
o j 0" Jo PR

e thus can obtain decomposition in terms of either

— wavelet contributions at levels 5 = 1,...,Jy plus scaling
contribution at level Jy (low-frequency part) or

— wavelet contributions at an infinite number of scales
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Estimation of Cross-Covariance: 1

e can base estimator on MODWT of X, ..., Xy_; and
Yb, ce YN—1:
Lj—1 Lj—1
o+ (X)
W( Zh 11Xt lmodNaHdW Zh Yt—1 mod N
[=0 [=0

fort=0,...,N—1

e similarly, let

Li—1 Li-1
V = X mod v and Vi = 3" G5V o
1=0 1=0

Estimation of Cross-Covariance: 11

e recall Wj’t = Wj’t for indices t such that construction of Wj’t
does not depend on the modulo operation — true it ¢ > L; — 1

oif N — L; >0, can construct an estimator of the lag-m cross-
covariance, SQ( Y) , based upon the MODWT:

W ;W ;m
N-—m—1 57 (X) 57 (Y) _ ‘

v Zt Lf th W]t+m7 m=0,1,...,M; — 1,
st = O TTAATTAS _ 1
SWjo,m_ M Zt L ]t Wj,t+|m|’ m——l,...,—[Mj—l],

07 |m| > M';
where Mj =N — Lj+1
. : (XY) -
e similarly, can construct an estimator of s— o remembering
VAV

to subtract estimators of px and uy
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Large Sample Theory

oif {W } and {W } are jointly-stationary linear processes,

then the estimator SQ( Q . is asymptotically Gaussian dis-
R
tributed with a mean of <W W) , and, letting M;(m) =
N—Lj—m+]1,
lim [MQ/M (m )]var{s } S xy) (0)
N=o0 W W m

e here S (xv) (0) is the SDF (evaluated at zero frequency) of
Zp. W7
(XY) — 7w XY 7w XrY)
Wt = Vit Witem = B W
be easily estimated from the MODW'T coefficients

} and can
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Example — EPIC Field Experiment: I

e one goal of East Pacific Investigation of Climate (EPIC) field
experiment (2001) was to observe atmospheric boundary layer
structure along 95° W northward from just below the equator
into the Pacific Intertropical Convergence Zone at 10° N to
12° N

e this region has some of the strongest gradients in sea-surface
temperature (SST) in the tropical oceans, with SSTs increasing
as we move northward

e measurements of vertical velocity and virtual potential tem-
perature were derived from data collected by an aircraft flying
about 30 m above the sea surface




Example — EPIC Field Experiment: II

Leg 37 Leg 32 Leg 27
Lat: 0.8°S Lat: 0.7 N Lat: 23’ N
0.01 0.01 0.01
- \
o> ,,\ 7o ‘t A

= 0 N 0 > 0
1
1
1

-0.01 -0.01 -0.01

0 5 10 15 0 5 10 15 0 5 10 15

level level level

e estimated wavelet covariance and 95% confidence intervals

e south of equator (0.8° S), covariance is near zero at all scales,
but becomes positive & increases as we go north of equator

e has a peak at level j = 7 (scale 256 m) for leg 27

e positive values of wavelet covariance indicate buoyancy flux due
to convection-driven turbulence near sea surface
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Summary

e wavelet variance gives scale-based analysis of variance

e similarly wavelet cross-covariance and cross-correlation useful
for scale-based study of bivariate time series

e in addition to the applications we have considered, the wavelet
variance has been used to analyze
— genome sequences
— changes in variance of soil properties
— canopy gaps in forests
— accumulation of snow fields in polar regions
— boundary layer atmospheric turbulence

— regular and semiregular variables stars
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