Wavelet Methods for Time Series Analysis

Part V: Wavelet Packet Transforms and Best Bases

- discrete wavelet transforms (DWTs)
- yields time/scale analysis of \mathbf{X} of sample size N
- need N to be a multiple of $2^{J_{0}}$ for partial DWT of level J_{0}
- one partial DWT for each level $j=1, \ldots, J_{0}$
- scale τ_{j} related to frequencies in $\left(1 / 2^{j+1}, 1 / 2^{j}\right]$
- scale λ_{j} related to frequencies in $\left(0,1 / 2^{j+1}\right.$]
- splits ($0,1 / 2$] into octave bands
- computed via pyramid algorithm
- maximal overlap DWT also of interest

Wavelet Packet Transforms - Overview

- discrete wavelet packet transforms (DWPTs)
- yields time/frequency analysis of \mathbf{X}
- need N to be a multiple of $2^{J_{0}}$ for DWPT of level J_{0}
- one DWPT for each level $j=1, \ldots, J_{0}$
- splits ($0,1 / 2$] into 2^{j} equal intervals
- splitting resembles DFT (or 'short time' DFT)
- computed via modification of pyramid algorithm
- can 'mix' parts of DWPTs of different levels j, leading to many more orthonormal transforms and to the notion of a 'best basis' for a particular X
- maximal overlap DWPT (MODWPT) also of interest

Wavelet Packets - Basic Concepts: I

- recall that DWT pyramid algorithm can be expressed in terms of matrices \mathcal{A}_{j} and \mathcal{B}_{j} as $\mathbf{V}_{j}=\mathcal{A}_{j} \mathbf{V}_{j-1}$ and $\mathbf{W}_{j}=\mathcal{B}_{j} \mathbf{V}_{j-1}$, where, when, e.g., $L=4$ and $N / 2^{j-1}=16$, we have

$$
\mathcal{A}_{j}=\left[\begin{array}{cccccccccccccccc}
g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} \\
g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0}
\end{array}\right]
$$

(there is a similar formulation for \mathcal{B}_{j} in terms of $\left\{h_{l}\right\}$)

Wavelet Packets - Basic Concepts: II

- 1st stage of DWT pyramid algorithm:

$$
\mathcal{P}_{1} \mathbf{X}=\left[\begin{array}{l}
\mathcal{B}_{1} \\
\mathcal{A}_{1}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right] \equiv\left[\begin{array}{l}
\mathbf{W}_{1,1} \\
\mathbf{W}_{1,0}
\end{array}\right]
$$

- $\mathbf{W}_{1,1} \equiv \mathbf{W}_{1}$ associated with $f \in\left(\frac{1}{4}, \frac{1}{2}\right]$
$-\mathbf{W}_{1,0} \equiv \mathbf{V}_{1}$ associated with $f \in\left[0, \frac{1}{4}\right]$
- \mathcal{P}_{1} is orthonormal:

$$
\begin{aligned}
\mathcal{P}_{1} \mathcal{P}_{1}^{T}=\left[\begin{array}{c}
\mathcal{B}_{1} \\
\mathcal{A}_{1}
\end{array}\right]\left[\begin{array}{ll}
\mathcal{B}_{1}^{T} & \mathcal{A}_{1}^{T}
\end{array}\right] & =\left[\begin{array}{lll}
\mathcal{B}_{1} \mathcal{B}_{1}^{T} & \mathcal{B}_{1} \mathcal{A}_{1}^{T} \\
\mathcal{A}_{1} \mathcal{B}_{1}^{T} & \mathcal{A}_{1} \mathcal{A}_{1}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{I_{N}}{2} & 0_{\frac{N}{2}}^{2} \\
0_{\frac{N}{2}} & I_{\frac{N}{2}}
\end{array}\right]=I_{N}
\end{aligned}
$$

- transform is $J_{0}=1$ partial DWT

Wavelet Packets - Basic Concepts: III

- likewise, 2nd stage defines $J_{0}=2$ partial DWT:

$$
\left[\begin{array}{c}
\mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{A}_{2} \mathcal{A}_{1}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\mathbf{V}_{2}
\end{array}\right] \equiv\left[\begin{array}{l}
\mathbf{W}_{1,1} \\
\mathbf{W}_{2,1} \\
\mathbf{W}_{2,0}
\end{array}\right]
$$

$-\mathbf{W}_{2,1} \equiv \mathbf{W}_{2}$ associated with $f \in\left(\frac{1}{8}, \frac{1}{4}\right]$
$-\mathbf{W}_{2,0} \equiv \mathbf{V}_{2}$ associated with $f \in\left[0, \frac{1}{8}\right]$

- interpretation: we left \mathcal{B}_{1} alone and rotated \mathcal{A}_{1}
- if we were to leave \mathcal{A}_{1} alone and rotate \mathcal{B}_{1} instead, we get a different transform, but one that is still orthonormal:

$$
\left[\begin{array}{c}
\mathcal{A}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{B}_{1} \\
\mathcal{A}_{1}
\end{array}\right] \mathbf{X} \equiv\left[\begin{array}{l}
\mathbf{W}_{2,3} \\
\mathbf{W}_{2,2} \\
\mathbf{W}_{1,0}
\end{array}\right]
$$

V-5

Wavelet Packets - Basic Concepts: IV

- to get yet another orthonormal transform, we can rotate both \mathcal{B}_{1} and \mathcal{A}_{1} :

$$
\left[\begin{array}{l}
\mathcal{A}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{A}_{2} \mathcal{A}_{1}
\end{array}\right] \mathbf{X} \equiv\left[\begin{array}{l}
\mathbf{W}_{2,3} \\
\mathbf{W}_{2,2} \\
\mathbf{W}_{2,1} \\
\mathbf{W}_{2,0}
\end{array}\right]
$$

Wavelet Packets - Basic Concepts: V

- flow diagram for transform from \mathbf{X} to $\mathbf{W}_{2,0}, \mathbf{W}_{2,1}, \mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$:

Wavelet Packets - Basic Concepts: VI

- can argue $\mathbf{W}_{2,0}, \mathbf{W}_{2,1}, \mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$ are associated with $f \in\left[0, \frac{1}{8}\right],\left(\frac{1}{8}, \frac{1}{4}\right],\left(\frac{1}{4}, \frac{3}{8}\right]$ and $\left(\frac{3}{8}, \frac{1}{2}\right]$
- scheme sometimes called a 'regular' DWT because it splits [0, $\frac{1}{2}$] split into 4 'regular' subintervals, each of width $1 / 8$
- basis for argument is the following facts:
$-\mathbf{V}_{1}$ related to $f \in\left[0, \frac{1}{4}\right]$ portion of \mathbf{X}
- \mathbf{W}_{1} related to $f \in\left(\frac{1}{4}, \frac{1}{2}\right]$ portion of \mathbf{X} but with reversal of order of frequencies

Wavelet Packets - Basic Concepts: VII

- flow diagram in frequency domain:

V-9

Wavelet Packets - Basic Concepts: IX

- can use level $j=2$ DWPT to produce an additive decomposition (similar to an MRA):

$$
\begin{aligned}
& \mathbf{X}=\left[\mathcal{B}_{1}^{T} \mathcal{A}_{2}^{T}, \mathcal{B}_{1}^{T} \mathcal{B}_{2}^{T}, \mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T}, \mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T}\right]\left[\begin{array}{l}
\mathbf{W}_{2,3} \\
\mathbf{W}_{2,2} \\
\mathbf{W}_{2,1} \\
\mathbf{W}_{2,0}
\end{array}\right] \\
&=\mathcal{B}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{W}_{2,3}+\mathcal{B}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2,2}+\mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2,1}+\mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{W}_{2,0} \\
&-\mathcal{B}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{W}_{2,3} \text { associated with } f \in\left(\frac{3}{8}, \frac{1}{2}\right] \\
&-\mathcal{B}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2,2} \text { associated with } f \in\left(\frac{1}{4}, \frac{3}{8}\right] \\
&-\mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2,1} \text { associated with } f \in\left(\frac{1}{8}, \frac{1}{4}\right] \\
&-\mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{W}_{2,0} \text { associated with } f \in\left[0, \frac{1}{8}\right]
\end{aligned}
$$

Wavelet Packets - Basic Concepts: VIII

- transform from \mathbf{X} to $\mathbf{W}_{2,0}, \mathbf{W}_{2,1}, \mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$ is called a level $j=2$ discrete wavelet packet transform
- abbreviated as DWPT
- splitting of $\left[0, \frac{1}{2}\right]$ similar to DFT
- unlike DFT, DWPT coefficients localized (similar to so-called 'short time' Fourier transform)
- DWPT is 'time/frequency'; DWT is 'time/scale'
- because level $j=2$ DWPT is an orthonormal transform, we obtain an energy decomposition:

$$
\|\mathbf{X}\|^{2}=\sum_{n=0}^{3}\left\|\mathbf{W}_{2, n}\right\|^{2}
$$

V-10

DWPTs of General Levels: I

- can generalize scheme to define DWPTs for levels $j=0,1,2,3, \ldots$ (with $\mathbf{W}_{0,0}$ defined to be \mathbf{X})
- idea behind DWPT is to use $G(\cdot)$ and $H(\cdot)$ to split each of the 2^{j-1} vectors on level $j-1$ into 2 new vectors, ending up with a level j transform with 2^{j} vectors
- given $\mathbf{W}_{j-1, n}$'s, here is the rule for generating $\mathbf{W}_{j, n}$'s:
- if n in $\mathbf{W}_{j-1, n}$ is even:
* use $G(\cdot)$ to get $\mathbf{W}_{j, 2 n}$ by transforming $\mathbf{W}_{j-1, n}$
* use $H(\cdot)$ to get $\mathbf{W}_{j, 2 n+1}$ by transforming $\mathbf{W}_{j-1, n}$
- if n in $\mathbf{W}_{j-1, n}$ is odd:
* use $H(\cdot)$ to get $\mathbf{W}_{j, 2 n}$ by transforming $\mathbf{W}_{j-1, n}$
* use $G(\cdot)$ to get $\mathbf{W}_{j, 2 n+1}$ by transforming $\mathbf{W}_{j-1, n}$

DWPTs of General Levels: II

- example of rule, yielding level $j=3$ DWPT in the bottom row

DWPTs of General Levels: III

- note: $\mathbf{W}_{j, 0}$ and $\mathbf{W}_{j, 1}$ correspond to vectors \mathbf{V}_{j} and \mathbf{W}_{j} in a j th level partial DWT
- $\mathbf{W}_{j, n}, n=0, \ldots, 2^{j}-1$, is associated with $f \in\left(\frac{n}{2^{j+1}}, \frac{n+1}{2^{j+1}}\right]$
- n is called the 'sequency' index
- in terms of circular filtering, we can write
$W_{j, n, t}=\sum_{l=0}^{L-1} u_{n, l} W_{j-1,\left\lfloor\frac{n}{2}\right\rfloor, 2 t+1-l \bmod N / 2^{j}}, \quad t=0, \ldots, \frac{N}{2^{j}}-1$,
where $W_{j, n, t}$ is the t th element of $\mathbf{W}_{j, n}$ and

$$
u_{n, l} \equiv \begin{cases}g_{l}, & \text { if } n \bmod 4=0 \text { or } 3 \\ h_{l}, & \text { if } n \bmod 4=1 \text { or } 2\end{cases}
$$

V-14

DWPTs of General Levels: V

- letting $c_{j, n, m}$ be m th element of $\mathbf{c}_{j, n}$, then

$$
U_{j, n}(f)=\prod_{m=0}^{j-1} M_{c_{j, n, m}}\left(2^{m} f\right)
$$

- example: $\mathbf{c}_{3,3}=[0,1,0]^{T}$ says

$$
U_{3,3}(f)=M_{0}(f) M_{1}(2 f) M_{0}(4 f)=G(f) H(2 f) G(4 f)
$$

DWPTs of General Levels: VI

- contents of $\mathbf{c}_{j, n}$ for $j=1,2 \& 3$ and $n=0, \ldots, 2^{j}-1$

DWPTs of General Levels: VIII

- $\mathbf{W}_{j, n}$ nominally associated with bandwidth $1 / 2^{j+1}$ (corresponding frequency interval is $\mathcal{I}_{j, n} \equiv\left(\frac{n}{2^{j+1}}, \frac{n+1}{2^{j+1}}\right.$)
- $\mathbf{W}_{j, 0}$ same as \mathbf{V}_{j} in level j partial DWT
- since \mathbf{V}_{j} has scale $\lambda_{j}=2^{j}$, can say $\mathbf{W}_{j, 0}$ has 'time width' λ_{j}
- each $\left\{u_{j, n, l}\right\}$ has width L_{j}, so each $\mathbf{W}_{j, n}$ has time width λ_{j}
- $j=0$: time width is unity and bandwidth is $1 / 2$
- $j=J$: time width is $N=2^{J}$ and bandwidth is $1 / 2 N$
- note that time width \times bandwidth is constant, which is an example of 'reciprocity relationship'

DWPTs of General Levels: VII

- squared gain functions $\left|U_{3, n}(\cdot)\right|^{2}$ using $\operatorname{LA}(8)\left\{g_{l}\right\} \&\left\{h_{l}\right\}$

- note overlap in $n=3$ and 4 bands - not well separated

V-18

Wavelet Packet Tables/Trees: I

- collection of DWPTs called a wavelet packet table (or tree), with the tree nodes being labeled by the doublets (j, n) :

$j=0$	$\mathbf{W}_{0,0}=\mathbf{X}$							
$j=1$	$\mathbf{W}_{1,0}$				$\mathbf{W}_{1,1}$			
${ }^{j=2}$	$\mathbf{W}_{2,0}$		$\mathbf{W}_{2,1}$		$\mathbf{W}_{2,2}$		$\mathbf{W}_{2,3}$	
$j=3$	$\mathbf{W}_{3,0}$	$\mathbf{W}_{3,1}$	$\mathbf{W}_{3,2}$	$\mathbf{W}_{3,3}$	$\mathbf{W}_{3,4}$	$\mathrm{W}_{3,5}$	$\mathbf{W}_{3,6}$	$\mathbf{W}_{3,7}$
	-		$\frac{3}{10}$,		

- nodes $\mathcal{C} \equiv\left\{(j, n): n=0, \ldots, 2^{j}-1\right\}$ for row j form a DWPT
- nonoverlapping complete covering of $\left[0, \frac{1}{2}\right]$ yields coefficients for an orthonormal transform \mathbf{O} ('disjoint dyadic decomposition')
- let's consider 2 sets of doublets yielding such a decomposition

Wavelet Packet Tables/Trees: II

- $\mathcal{C}=\{(3,0),(3,1),(2,1),(1,1)\}$ yields the DWT:

- $\mathcal{C}=\{(2,0),(3,2),(3,3),(1,1)\}$ yields another \mathbf{O} :

V-21

Optimal Orthonormal Transform: II

- consider following 2 unit norm vectors:

$$
\mathbf{W}_{j, n}^{(1)}=\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]^{T} \text { and } \mathbf{W}_{j, n}^{(2)}=[1,0,0,0]^{T}
$$

- example: 'entropy-based' cost function

$$
m\left(\left|W_{j, n, t}\right|\right)=-W_{j, n, t}^{2} \log \left(W_{j, n, t}^{2}\right)
$$

(since $|x| \log (|x|) \rightarrow 0$ as $x \rightarrow 0$, will interpret $0 \log (0)$ as 0)

- here $M\left(\mathbf{W}_{j, n}^{(1)}\right)=4 \cdot\left(-\frac{1}{4} \log \frac{1}{4}\right)>0$ and $M\left(\mathbf{W}_{j, n}^{(2)}\right)=0$ (lower cost if energy is concentrated in a few $\left|W_{j, n, t}\right|$'s)

Optimal Orthonormal Transform: I

- WP table yields many O's: does one matching X 'optimally'?
- Coifman \& Wickerhauser (1992) proposed notion of 'best basis'
- form WP table out to level J, and assign 'cost' to $\mathbf{W}_{j, n}$ via

$$
M\left(\mathbf{W}_{j, n}\right) \equiv \sum_{t=0}^{N_{j}-1} m\left(\left|W_{j, n, t}\right|\right)
$$

where $m(\cdot)$ is real-valued cost function (require $m(0)=0$)

- let \mathcal{C} be any collection of indices in the set \mathcal{N} of all possible indices forming an orthonormal transform
- 'optimal' such transform satisfies

$$
\min _{\mathcal{C} \in \mathcal{N}} \sum_{(j, n) \in \mathcal{C}} M\left(\mathbf{W}_{j, n}\right)
$$

V-22

Optimal Orthonormal Transform: III

- continue looking at $\mathbf{W}_{j, n}^{(1)}=\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right]^{T} \& \mathbf{W}_{j, n}^{(2)}=[1,0,0,0]^{T}$
- 2nd example: threshold cost function

$$
m\left(\left|W_{j, n, t}\right|\right)= \begin{cases}1, & \text { if }\left|W_{j, n, t}\right|>\delta \\ 0, & \text { otherwise }\end{cases}
$$

if $\delta=1 / 4, M\left(\mathbf{W}_{j, n}^{(1)}\right)=4$ and $M\left(\mathbf{W}_{j, n}^{(2)}\right)=1$
(lower cost if there are only a few large $\left|W_{j, n, t}\right|$'s)

- 3rd example: ℓ_{p} cost function $m\left(\left|W_{j, n, t}\right|\right)=\left|W_{j, n, t}\right|^{p}$
if $p=1, M\left(\mathbf{W}_{j, n}^{(1)}\right)=2$ and $M\left(\mathbf{W}_{j, n}^{(2)}\right)=1$
(same pattern as before)
- once costs assigned, need to find optimal transform

Optimal Orthonormal Transform: IV

- example: consider Haar DWPTs out to level $j=3$:

$$
\left[\begin{array}{l}
\mathbf{W}_{1,1} \\
\mathbf{W}_{1,0}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{B}_{1} \\
\mathcal{A}_{1}
\end{array}\right] \mathbf{X},\left[\begin{array}{l}
\mathbf{W}_{2,3} \\
\mathbf{W}_{2,2} \\
\mathbf{W}_{2,1} \\
\mathbf{W}_{2,0}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{A}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{A}_{2} \mathcal{A}_{1}
\end{array}\right] \mathbf{X},
$$

$$
\left[\begin{array}{l}
\mathbf{W}_{3,7} \\
\mathbf{W}_{3,6} \\
\mathbf{W}_{3,5} \\
\mathbf{W}_{3,4} \\
\mathbf{W}_{3,3} \\
\mathbf{W}_{3,2} \\
\mathbf{W}_{3,1} \\
\mathbf{W}_{3,0}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{A}_{3} \mathcal{A}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{3} \mathcal{A}_{2} \mathcal{B}_{1} \\
\mathcal{B}_{3} \mathcal{B}_{2} \mathcal{B}_{1} \\
\mathcal{A}_{3} \mathcal{B}_{2} \mathcal{B}_{1} \\
\mathcal{A}_{3} \mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{B}_{3} \mathcal{B}_{2} \mathcal{A}_{1} \\
\mathcal{B}_{3} \mathcal{A}_{2} \mathcal{A}_{1} \\
\mathcal{A}_{3} \mathcal{A}_{2} \mathcal{A}_{1}
\end{array}\right] \mathbf{X}
$$

Optimal Orthonormal Transform: VI

- Haar DWPT coefficients, levels $j=1,2$ and 3 (three underlined coefficents correspond to basis vectors used in forming \mathbf{X}):

Optimal Orthonormal Transform: V

- let X be following series of length $N=8$:

$$
\mathbf{X}=\sqrt{ } 2\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{ } 2} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]+\sqrt{ } 8\left[\begin{array}{c}
\frac{1}{\sqrt{8}} \\
-\frac{1}{\sqrt{ } 8} \\
-\frac{1}{\sqrt{ } 8} \\
\frac{1}{\sqrt{ } 8} \\
\frac{1}{\sqrt{ } 8} \\
-\frac{1}{\sqrt{ } 8} \\
-\frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{8}}
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
-2 \\
2
\end{array}\right]
$$

- note that \mathbf{X} is a linear combination of transposes of 1st row of \mathcal{A}_{1}, 2nd row of $\mathcal{A}_{2} \mathcal{B}_{1}$ and single row of $\mathcal{A}_{3} \mathcal{B}_{2} \mathcal{B}_{1}$

Optimal Orthonormal Transform: VII

- cost table using $-W_{j, n, t}^{2} \log \left(W_{j, n, t}^{2}\right)$ cost function:

$\begin{aligned} & j=0 \\ & j=1 \end{aligned}$	1.45							
	0.28				0.88			
$j=2$	0.19		0.19		0.72		0.36	
$j=3$	0.12	0.12	0.12	0.12	0.32	0.00	0.28	0.28

- algorithm to find 'best' basis
- mark all costs of 'childern' nodes at bottom
- compare cost of children with their 'parent'
* if parent cheaper, mark parent node
* if children cheaper, replace cost of parent
- repeat for each level; when done, look for top-marked nodes

Optimal Orthonormal Transform: VIII

- final step (best basis includes 3 vectors forming \mathbf{X}):

$\begin{aligned} & j=0 \\ & j=1 \end{aligned}$	0.96							
	0.28				0.68			
$j=2$	0.19		0.19		0.32		$\underline{0.36}$	
$j=3$	0.12	$\underline{0.12}$	$\underline{0.12}$	0.12	0.32	$\underline{0.00}$	$\underline{0.28}$	$\underline{0.28}$

Maximal Overlap DWPT: I

- recall relationship between DWT and MODWT
- MODWT: no downsampling and hence 'shift invariant'
- uses MODWT filters: $\tilde{h}_{l} \equiv h_{l} / \sqrt{ } 2$ and $\tilde{g}_{l} \equiv g_{l} / \sqrt{ } 2$
- level J_{0} MODWT maps \mathbf{X} to $J_{0}+1$ vectors $\widetilde{\mathbf{W}}_{1}, \widetilde{\mathbf{W}}_{2}, \ldots$, $\widetilde{\mathbf{W}}_{J_{0}}, \widetilde{\mathbf{V}}_{J_{0}}$, all of length N (arbitrary)
- with LA wavelet, can align (time shift) using $\mathcal{T}^{\nu_{j}} \widetilde{\mathbf{W}}_{j}$
- MODWT multiresolution analysis and analysis of variance:

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \widetilde{\mathcal{D}}_{j}+\widetilde{\mathcal{S}}_{J_{0}} \text { and }\|\mathbf{X}\|^{2}=\sum_{j=1}^{J_{0}}\left\|\widetilde{\mathbf{W}}_{j}\right\|^{2}+\left\|\widetilde{\mathbf{V}}_{J_{0}}\right\|^{2}
$$

- $\widetilde{\mathcal{D}}_{j}$ is output from zero phase filter

V-30

Maximal Overlap DWPT: II

- similarly, can generalize DWPT to MODWPT

Maximal Overlap DWPT: III

- uses renormalized DWPT filters
- every $\widetilde{\mathbf{W}}_{j, n}$ is now a vector of length N
- with LA wavelet, can align using $\mathcal{T}^{\nu}{ }^{j, n} \widetilde{\mathbf{W}}_{j, n}$
- let \mathcal{C} be indices for disjoint dyadic decomposition
- MODWPT additive decomposition and analysis of variance:

$$
\mathbf{X}=\sum_{(j, n) \in \mathcal{C}} \widetilde{\mathcal{D}}_{j, n} \text { and }\|\mathbf{X}\|^{2}=\sum_{(j, n) \in \mathcal{C}}\left\|\widetilde{\mathbf{W}}_{j, n}\right\|^{2}
$$

- $\widetilde{\mathcal{D}}_{j, n}$ is analogous to MODWT detail (and is created by applying inverse MODWPT to $\widetilde{\mathbf{W}}_{j, n}$ and vectors of zeros)
- $\widetilde{\mathcal{D}}_{j, n}$ is output from zero phase filter

Example - Analysis of Solar Physics Data: I

- path of Ulysses spacecraft (records magnetic field of heliosphere)

V-33

Example - Analysis of Solar Physics Data: III

- 4 different level $j=4$ DWPTs, each partitioning $(0,1 / 2 \Delta t$] into 16 intervals

Example - Analysis of Solar Physics Data: II

- magnetic field measurements of polar region of sun recorded hourly from 4 Dec 1993 to 24 May 1994 ($\Delta t=1 / 24$ day)
- Ulysses moved from 4 AU to 3 AU (explains upward trend)
- a, b, c, d are fast solar wind streams from polar coronal holes
- two classifications for these 'shocks'
- corotating interaction regions (CIRs) - recur every solar rotation (about 25 days)
- fast coronal mass ejections (CMEs) - transient in nature

V-34

Example - Analysis of Solar Physics Data: IV

- level $j=4$ LA(8) DWPT coefficients $\mathbf{W}_{4, n}, n=0, \ldots, 4$, after time alignments (derived from study of phase functions)

Example - Analysis of Solar Physics Data: V

- best basis transform using LA(8) filter and $-W_{j, n, t}^{2} \log \left(W_{j, n, t}^{2}\right)$ cost function

Example - Analysis of Solar Physics Data: VII

- will summarize using a modified time/frequency plot, which indicates locations of
- 100 largest values in $\mathcal{T}^{-\left|\nu_{4,0}\right|} \widetilde{\mathbf{W}}_{4,0}$
- 100 largest values in $\mathcal{T}^{-\left|\nu_{4,1}\right|} \widetilde{\mathbf{W}}_{4,1}$
- 100 largest values in $\mathcal{T}^{-\left|\nu_{4, n}\right|} \widetilde{\mathbf{W}}_{4, n}, n=2, \ldots, 15$
(in fact these all occur in $n=2, \ldots, 6$)

Example - Analysis of Solar Physics Data: VI

- level $j=4 \mathrm{LA}(8)$ MODWPT coefficients $\mathbf{W}_{4, n}, n=0, \ldots, 4$, after time alignments

> V-38

Example - Analysis of Solar Physics Data: VIII

- 4 events coherently broad-band; events a, c, d are recurrent; b is transient; a might be two events (recurrent \& transient)

