Wavelet Methods for Time Series Analysis

Part V: Wavelet Packet Transforms and Best Bases

e discrete wavelet transforms (DWTs)
— yields time/scale analysis of X of sample size N
—need N to be a multiple of 270 for partial DWT of level J
— one partial DWT for each level j =1,...,J
— scale 7; related to frequencies in (1/ 20+1 1/97]
— scale \; related to frequencies in (0, 1/ 2J H]
— splits (0,1/2] into octave bands
— computed via pyramid algorithm

— maximal overlap DWT also of interest
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Wavelet Packet Transforms — Overview

e discrete wavelet packet transforms (DWPTSs)

— yields time/frequency analysis of X

— need N to be a multiple of 270 for DWPT of level Jo
— one DWPT for each level j =1,...,Jy

— splits (0,1/2] into 27 equal intervals

— splitting resembles DFT (or ‘short time” DFT)

— computed via modification of pyramid algorithm

— can ‘mix’ parts of DWPTs of different levels j, leading to
many more orthonormal transforms and to the notion of a
‘best basis’ for a particular X

— maximal overlap DWPT (MODWPT) also of interest

Wavelet Packets — Basic Concepts: 1

e recall that DWT pyramid algorithm can be expressed in terms
of matrices A; and Bj as V; = A]_'Vj_l and W; = B;V;_q,
where, when, e.g., L = 4 and N/2~7_1 = 16, we have

(1900 0000000000 0 g3
939291900 00000000000
00g3gpgrgo0 000000000

4|00 0065999000000 00

77100000 0g3gog19g00 000 00
00000000Gg¢29 90000
000000000 0O0Gggrg1g00 O
0

00000000000 g39aq g,
)

(there is a similar formulation for B; in terms of {h;}
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Wavelet Packets — Basic Concepts: 11

e 1st stage of DWT pyramid algorithm:
n[1)x- 8-

Ay Vil  [Wipg
— W1 = W associated with f € (%, %]
— W g = Vy associated with f € [0, %L]
e Py is orthonormal:
i T T
Peef = ) 181 AT = [ b
Iy Ox
= oy Iy | =¥
L2 2

e transform is Jy = 1 partial DWT
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Wavelet Packets — Basic Concepts: III

e likewise, 2nd stage defines Jy = 2 partial DWT:

By W, Wi
BoA | X= |Wy| = |Wy
AQ.Al Vs W2,0

— Wy 1 = W) associated with f € (%
— Wy ) = Vy associated with f € [0, g
e interpretation: we left By alone and rotated A;

e if we were to leave A; alone and rotate By instead, we get a
different transform, but one that is still orthonormal:

AoBBy Wy
6251 X = WQ,Q
Aq Wio

Wavelet Packets — Basic Concepts: 1V

e to get yet another orthonormal transform, we can rotate both

By and Aj:

AoBy Wy 3

BB} — | W2z

By Ay | Wa,

A Ay Woy
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Wavelet Packets — Basic Concepts: V

e flow diagram for transform from X to Wy o, Wg 1, Wy 9 and
Wy 5

Wavelet Packets — Basic Concepts: VI

e can argue Wy, Wo 1, Wy o and Wy 3 are associated with
17 ¢1 1y (1 3 31
f € [078]7 (g»zL (ng] and (87?]
e scheme sometimes called a ‘regular’ DWT because it splits [0, l]
split into 4 ‘regular’ subintervals, each of width 1/8

DO

e basis for argument is the following facts:
— V related to f € [0, %] portion of X

— W related to f € (le, %] portion of X but with reversal of
order of frequencies




Wavelet Packets — Basic Concepts: VII

e flow diagram in frequency domain:

|~

Gk

v) B Wi,
/
X
()
S | ol I
l W2,3

=1

| l ‘N

Wavelet Packets — Basic Concepts: VIII

e transform from X to Wy g, Wy 1, Wy 5 and Wy 3 is called a
level j = 2 discrete wavelet packet transform
— abbreviated as DWPT
— splitting of [0, %] similar to DFT
— unlike DFT, DWPT coefficients localized (similar to so-called

‘short time” Fourier transform)

— DWPT is ‘time/frequency’; DWT is ‘time/scale’

e because level 7 = 2 DWPT is an orthonormal transform, we
obtain an energy decomposition:

3
X[ =) W,
n=0
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Wavelet Packets — Basic Concepts: IX

e can use level 7 = 2 DWPT to produce an additive decomposi-
tion (similar to an MRA):

X = |Bl A}, BB}, AB] AT AY| |07

= Bl Ay Was+ B B Way + AT By W + AT A Way
- B?Angg associated with f € (%, %]
— Bl BI'W, 5 associated with f € 4, %]
— ATBI'W, | associated with f € (%, 1]
- A1T~/42TW270 associated with f € [0, 5

OOl |
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DWPTs of General Levels: 1

e can generalize scheme to define DWPTs for levels j = 0, 1,2, 3, ...
(with W ( defined to be X)

e idea behind DWPT is to use G(-) and H(-) to split each of the
271 vectors on level J — linto 2 new vectors, ending up with
a level 7 transform with 27 vectors

e given W;_q s, here is the rule for generating W ,’s:
—ifnin W;_q, is even:

* use G(-) to get W o, by transforming W;_y ,

*use H(-) to get W0, 11 by transforming W;_1 ,
—ifnin W;_q, is odd:

* use H(-) to get W o, by transforming W,_q ,

* use G(-) to get W o, 41 by transforming W;_1 ,,
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DWPTs of General Levels: 11

e example of rule, yielding level 7 = 3 DWPT in the bottom row

=0 Wiy =X
G(H) H(%)
12 12
j=1 W1,0 Wi
! l ! l
a0
12 12 12 12
Jj=2 WQ,() W271 W272 W2,3

el [HGE) [HE) eqh) )] B [HE) [e6h)

=3 | Wao | Ws1 | Wio| Was | Wiy | Wis | Wag | Wiy

1
0 16

ool
—
o
TS,
S|
w0
=
=Y
o

DWPTs of General Levels: II1

e note: W g and W, 1 correspond to vectors V; and W in a
gth level partial DWT

i . . . 1
oW, ,,n=0,...,2/ — 1 is associated with f € (#, g]—tl]
e 1 is called the ‘sequency’ index
e in terms of circular filtering, we can write

L—1 N

Wj,n,t - % un;le—1,L%J72t+l—l mod N/2J t=0,..., Y

where W; , ¢ 1s the tth element of W , and

g;, ifnmod4=0or3;
Uy | =
.l hy, ifnmod4=1or2.

1

9

DWPTs of General Levels: 1V

e can also get W, by filtering X and downsampling;

L1 N
Wint = Z Win g Xojft41]~1-1 mod N+ £ =01y 5L
1=0

where {u;, 1} is the equivalent filter associated with W,
olet {uj, 1} «— Ujn(-),n=0,...,2/ —1
e to construct Uj ,,(-), define My(f) = G(f) & My(f) = H(f)
elet 9= [0] & e 1 =[1] &, for j > 1, create c;, recursively

— by appending 0 to Cj1,|2] if n mod 4 =0 or 3 or

— by appending 1 to Cj_1,13 if nmod4=1or2

DWPTs of General Levels: V

e letting ¢; p, my be mth element of ¢; ;,, then

j—1

U])ﬂ(f) - H Mcj,n,m(me)
m=0

e example: ¢33 = [0, 1, 017 says
Uss(f) = Mo(f)M1(2f)Mo(4f) = G(f)H(2f)G(4f)




DWPTs of General Levels: VI

e contents of ¢; forj=1,2&3andn=0,...,20 —1

= X

! !

12 12
j=1 O 1

! !
Gl) H(x,) H(x) Glxy)
12 12 12 12

=2 0,0 0,1 1,1 1,0

el [HGE) [HE) eqh) )] B [HE) c6)
2 2 2 2 2

=3 10,0,0(0,0,110,1,1]0,1,0(1,1,0|1,1,1{1,0,1|1,0,0

) )

DWPTs of General Levels: VII

o squared gain functions |Us ,,(-)|” using LA(8) {g;} & {h;}

n=>0

:

n=1

?

T
3
I

S
3 3
I I
H=~ w [N

:

y

S PO WO ®O KO ®

16 f
e note overlap in n = 3 and 4 bands — not well separated
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DWPTs of General Levels: VIII

® W, nominally associated with bandwidth 1/ o)+l

n_ n+l
57T 5551))

(corresponding frequency interval is Z; ,, = (
o W, o same as V in level j partial DWT
e since V; has scale A\; = 2J can say W o has ‘time width’ A;
o cach {u;,, 1} has width L;, so ecach W , has time width A;
e j = 0: time width is unity and bandwidth is 1/2
e j = J: time width is N = 27 and bandwidth is 1/2N

e note that time width x bandwidth is constant, which is an
example of ‘reciprocity relationship’

Wavelet Packet Tables/Trees: 1

e collection of DWPTs called a wavelet packet table (or tree),
with the tree nodes being labeled by the doublets (7, n):

7=0 W()’(] =X
j=1 Wl,O WLI
j=2 Wy Wy, Wy, Wy
=3 | Wso| Wa1 | Wso| Wiz | Wi, | Wss | Wias | Wiy
0 1 1 3 1 5 3 e 1
16 8 16 4 16 8 16 2

enodesC = {(j,n) :n=0,...,2/ —1} for row j form a DWPT

e nonoverlapping complete covering of [0, %] yields coefficients for
an orthonormal transform O (‘disjoint dyadic decomposition’)

e let’s consider 2 sets of doublets yielding such a decomposition
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Wavelet Packet Tables/Trees: 11

eC =1{(3,0),(3,1),(2,1),(1,1)} yields the DWT:

j=1 W171
Jj=2 W2,1
=3 | Wz | W3z

e C=1{(2,0),(3,2),(3,3),(1,1)} yields another O:

J=1 Wl,l
j=2 WQ,[)
Jj=3 Wi | Wiy

Optimal Orthonormal Transform: I

e WP table yields many O’s: does one matching X ‘optimally’?
e Coifman & Wickerhauser (1992) proposed notion of ‘best basis’

e form WP table out to level J, and assign ‘cost’ to W ;, via
Nj—1
MW= m(Wjnl)
t=0
where m(-) is real-valued cost function (require m(0) = 0)

e let C be any collection of indices in the set A of all possible
indices forming an orthonormal transform

e ‘optimal’ such transform satisfies

Optimal Orthonormal Transform: II

e consider following 2 unit norm vectors:

M _Tr1117 (2) _ T
W]-’n = |:§7§,§,§:| and W],TL_ [1,0,0,0]
e example: ‘entropy-based’ cost function
m(’Wj,n,tD - _sz,n,t log(WjQ,n,t)
(since |z|log(|z|) — 0 as x — 0, will interpret 0log(0) as 0)
1 2
e here M(W)) =4+ (~dlog ) > 0 and (W) =0
(lower cost if energy is concentrated in a few [W; , 4|’s)

Optimal Orthonormal Transform: III
T
e continue looking at Wg}% = E, %, %, %] & Wf% =[1,0,0, O]T
e 2nd example: threshold cost function

):{1, if (W 4] > 0;

m(|W;
( gt 0, otherwise.

. 1 2
if 5 =1/4, M(W')) =4 and MW)) =1
(lower cost if there are only a few large [W; ,, 4['s)
e 3rd example: £ cost function m(|W; , 4) = |W; 4P
. 1 2
itp=1 MWy =2.amd MW?) =1
(same pattern as before)

e once costs assigned, need to find optimal transform
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Optimal Orthonormal Transform: IV

e example: consider Haar DWPTs out to level j = 3:

Wy 3 AoBBy
lwul _ l[ﬁ} x| Wa2z2| _ | BB
Wi A 77 [ Wa Bo Ay |

Wy Ao Ay

W37 A3 A28y
W36 B3 A3y
W35 B3BoBBy

W34 A3BoBy
W33 A3Bo Ay
W3 B3By Ay
W3, B3 Ay Ay
(W30 | A3AA;

Optimal Orthonormal Transform: V

e let X be following series of length N = 8§ :

e L -
7 0 —? 0
0 0 —1¢8 ~1
0 0 1 1

8
2 NG
0 i _ L 0
2 \/5
0 _1 _ L —92
2 Ve
0 1 1 )
L | 2] | V8 |7

e note that X is a linear combination of transposes of
Ist row of Aj, 2nd row of A9B; and single row of A3Bo84
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Optimal Orthonormal Transform: VI

e Haar DWPT coefficients, levels j = 1,2 and 3 (three underlined
coefficents correspond to basis vectors used in forming X):

=0 X =[2,0,-1,1,0,0, —2,2]"

j=1 [1/2,0,0,0] [—v/2,v/2,0, /8]

j=2 [1,0] [—1,0] 2,2] [0,2]
=3 | ) | [Fal ] A | =) WL | e | v

Optimal Orthonormal Transform: VII

; 2 2 -
e cost table using —W7, , 10g(Wj,n,t> cost function:
j=0 1.45
j=1 0.28 0.88
J=2 0.19 0.19 0.72 0.36
j=3 1012 0.12 | 0.12| 0.12 | 0.32 | 0.00 | 0.28 | 0.28

e algorithm to find ‘best’ basis

— mark all costs of ‘childern” nodes at bottom
— compare cost of children with their ‘parent’
x if parent cheaper, mark parent node
x if children cheaper, replace cost of parent
— repeat for each level; when done, look for top-marked nodes
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Optimal Orthonormal Transform: VIII

e final step (best basis includes 3 vectors forming X):

J=0 0.96

Jj=1 0.28 0.68

j=2 0.19 0.19 0.32 0.36
j=3 10121012 | 0.12 | 0.12 | 0.32 | 0.00 | 0.28 | 0.28

Maximal Overlap DWPT: I

e recall relationship between DW'T and MODW'T
e MODWT: no downsampling and hence ‘shift invariant’
o uses MODWT filters: iy = hy/+/2 and §; = g;/+/2

e level Jy MODWT maps X to Jy + 1 vectors Wl, Wg, C
W, Vi, all of length N (arbitrary)

e with LA wavelet, can align (time shift) using 7" jo

e MODWT multiresolution analysis and analysis of variance:
Jo Jo
D) < 2 W12 \/ 2
X =YDy + 8, and X7 = Y [WI1P+ [V
J=1 j=1

° ﬁj is output from zero phase filter
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Maximal Overlap DWPT: 11

e similarly, can generalize DWPT to MODWPT

j=0 Wy =X
A 1
) H(%)
! !
J=1 W1,0 Wi,
B _ |
a(x) H(Z) H(Z) G(%)
! !
j=2 Wy, Wy, Wy, W3
1 . 1 . A
e AR AR ledp] ledp] (AR (AR [edp)
1 ! ! l ! ! ! !
i=3 | W30 | Wsi | Wss| Wiz | Wsy Ws,s Wi Ws,?

Maximal Overlap DWPT: III

e uses renormalized DWPT filters

e cvery ij is now a vector of length N

e with LA wavelet, can align using TV-%”W]‘,H

e let C be indices for disjoint dyadic decomposition

e MODWPT additive decomposition and analysis of variance:

= 2 A7 2
X= ) Dj,and [X["= > [Wj,l
(j,n)eC (j,n)ec

° ﬁj,n is analogous to MODWT detail (and is created by apply-
ing inverse MODWPT to W ;, and vectors of zeros)

® Dj , is output from zero phase filter
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Example — Analysis of Solar Physics Data: I

e path of Ulysses spacecraft (records magnetic field of heliosphere)

Jupiter
February 1992

Example — Analysis of Solar Physics Data: 11

9 a p I d
{ . Do hendhohmhin X

0 1 1 1 1 1 1 J
0 25 50 75 100 125 150 175
t (days from 1 Dec 1993)

e magnetic field measurements of polar region of sun recorded
hourly from 4 Dec 1993 to 24 May 1994 (At = 1/24 day)

e Ulysses moved from 4 AU to 3 AU (explains upward trend)
e a, b, c, d are fast solar wind streams from polar coronal holes
e two classifications for these ‘shocks’

— corotating interaction regions (CIRs) — recur every solar ro-
tation (about 25 days)

— fast coronal mass ejections (CMEs) — transient in nature
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Example — Analysis of Solar Physics Data: III

n=15 1413 12 11 10 9 8 7 6 5 4 3 2 1

0
75
5.0
Haar 25 @ o o o oo
0.0 - ettt
—2.5 i i i L i i i L i i i L i i i J
75
5.0
D(4) QJ«U»“
0.0 o 'u :h_:'
—2.5 L L L L L L L L L L L L L L L J
75
5.0
C(6) Q»JM
0.0 hoprpandbein
—2.5 i i i | i i i | i i i | i i i J
750
5.0
LAB) 2o © 0 o
0.0 ol
—2.5 L L L 1 L L L L L L L L L L L J
0 1024 2048 3072 4096

n

e 4 different level j = 4 DWPTs, each partitioning (0, 1/2 At]
into 16 intervals

Example — Analysis of Solar Physics Data: IV

il RIS g “w“\‘w[ o ‘l “ e i ‘H‘\‘Ww‘w\‘ s T*3W4’1
T_SW_/LQ
T_3W43
T Wy

0 25 50 75 100 125 150 175
t (days from 1 Dec 1993)

e level j = 4 LA(8) DWPT coefficients Wy ,,, n = 0,. .., 4, after
time alignments (derived from study of phase functions)
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Example — Analysis of Solar Physics Data: V

7=0
j=1
]=2
j=3
j=4
j=5
7=06

0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 120
f

e best basis transform using LA(8) filter and _W]‘Q,n,t log(WJZ’mt)
cost function

Example — Analysis of Solar Physics Data: VI

7745{)\\7470

“WWWWWWWW T W,
rwwwww%wwwu T5TW,,

:WWW 4 ,]—749@4"3
#‘,%MMW#‘ Tﬁ5lW4$4

-
1
k3
E
E | 3
- | 3
8
3
* | =
k2B 3
Q P
E
=
Yk 3
IS

0 25 50 75 100 125 150 175
t (days from 1 Dec 1993)

e level j = 4 LA(8) MODWPT coefficients Wy ,, n =0, . ..
after time alignments
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Example — Analysis of Solar Physics Data: VII

e will summarize using a modified time/frequency plot, which
indicates locations of

— 100 largest values in T_|”4=0|{7\v7470
— 100 largest values in T_|”4=1|\A7\7471

— 100 largest values in T_|”4=”|\A7\74,n, n=2...,15
(in fact these all occur inn = 2,...,6)

Example — Analysis of Solar Physics Data: VIII

0 ‘ 0
| | !
| NE
| | 3
f 3F * n
4
5
6
7
6 1 1 1 1 1 1
2r a p o d
“WMMMWMMM X
0 L L L 1 L L J

0 25 50 75 100 125 150 175
t (days from 1 Dec 1993)

e 4 events coherently broad-band; events a, ¢, d are recurrent; b
is transient; @ might be two events (recurrent & transient)
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