Wavelet Methods for Time Series Analysis

Part V: Wavelet Packet Transforms and Best Bases

- discrete wavelet transforms (DWTs)
 - yields time/scale analysis of X of sample size N
 - need N to be a multiple of 2^{J_0} for partial DWT of level J_0
 - one partial DWT for each level $j = 1, \ldots, J_0$
 - scale τ_j related to frequencies in $(1/2^{j+1}, 1/2^j]$
 - scale λ_i related to frequencies in $(0, 1/2^{j+1}]$
 - splits (0, 1/2] into octave bands
 - computed via pyramid algorithm
 - maximal overlap DWT also of interest

V-1

Wavelet Packets – Basic Concepts: I

• recall that DWT pyramid algorithm can be expressed in terms of matrices \mathcal{A}_j and \mathcal{B}_j as $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$ and $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$, where, when, e.g., L = 4 and $N/2^{j-1} = 16$, we have

(there is a similar formulation for \mathcal{B}_j in terms of $\{h_l\}$)

Wavelet Packet Transforms - Overview

- discrete wavelet packet transforms (DWPTs)
 - yields time/frequency analysis of X
 - need N to be a multiple of 2^{J_0} for DWPT of level J_0
 - one DWPT for each level $j=1,\ldots,J_0$
 - splits (0, 1/2] into 2^j equal intervals
 - splitting resembles DFT (or 'short time' DFT)
 - computed via modification of pyramid algorithm
 - can 'mix' parts of DWPTs of different levels j, leading to many more orthonormal transforms and to the notion of a 'best basis' for a particular \mathbf{X}
 - maximal overlap DWPT (MODWPT) also of interest

V-2

Wavelet Packets – Basic Concepts: II

• 1st stage of DWT pyramid algorithm:

$$\mathcal{P}_1\mathbf{X} = egin{bmatrix} \mathcal{B}_1 \ \mathcal{A}_1 \end{bmatrix} \mathbf{X} = egin{bmatrix} \mathbf{W}_1 \ \mathbf{V}_1 \end{bmatrix} \equiv egin{bmatrix} \mathbf{W}_{1,1} \ \mathbf{W}_{1,0} \end{bmatrix}$$

- $-\mathbf{W}_{1,1} \equiv \mathbf{W}_1$ associated with $f \in (\frac{1}{4}, \frac{1}{2}]$
- $-\mathbf{W}_{1,0} \equiv \mathbf{V}_1$ associated with $f \in [0,\frac{1}{4}]$
- \mathcal{P}_1 is orthonormal:

$$\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{B}_{1} \\ \mathcal{A}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{B}_{1}^{T} & \mathcal{A}_{1}^{T} \end{bmatrix} = \begin{bmatrix} \mathcal{B}_{1}\mathcal{B}_{1}^{T} & \mathcal{B}_{1}\mathcal{A}_{1}^{T} \\ \mathcal{A}_{1}\mathcal{B}_{1}^{T} & \mathcal{A}_{1}\mathcal{A}_{1}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} I_{N} & 0_{N} \\ 0_{N} & I_{N} \\ \end{bmatrix} = I_{N}$$

• transform is $J_0 = 1$ partial DWT

Wavelet Packets - Basic Concepts: III

• likewise, 2nd stage defines $J_0 = 2$ partial DWT:

$$\begin{bmatrix} \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{A}_2 \mathcal{A}_1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \mathbf{V}_2 \end{bmatrix} \equiv \begin{bmatrix} \mathbf{W}_{1,1} \\ \mathbf{W}_{2,1} \\ \mathbf{W}_{2,0} \end{bmatrix}$$

- $-\mathbf{W}_{2,1} \equiv \mathbf{W}_2$ associated with $f \in (\frac{1}{8}, \frac{1}{4}]$
- $-\mathbf{W}_{2,0} \equiv \mathbf{V}_2$ associated with $f \in [0, \frac{1}{8}]$
- ullet interpretation: we left \mathcal{B}_1 alone and rotated \mathcal{A}_1
- if we were to leave A_1 alone and rotate B_1 instead, we get a different transform, but one that is still orthonormal:

$$\begin{bmatrix} \mathcal{A}_2 \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{B}_1 \\ \mathcal{A}_1 \end{bmatrix} \mathbf{X} \equiv \begin{bmatrix} \mathbf{W}_{2,3} \\ \mathbf{W}_{2,2} \\ \mathbf{W}_{1,0} \end{bmatrix}$$

V-5

Wavelet Packets - Basic Concepts: IV

• to get yet another orthonormal transform, we can rotate both \mathcal{B}_1 and \mathcal{A}_1 :

$$\begin{bmatrix} \mathcal{A}_2 \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{A}_2 \mathcal{A}_1 \end{bmatrix} \mathbf{X} \equiv \begin{bmatrix} \mathbf{W}_{2,3} \\ \mathbf{W}_{2,2} \\ \mathbf{W}_{2,1} \\ \mathbf{W}_{2,0} \end{bmatrix}$$

V-6

Wavelet Packets – Basic Concepts: V

• flow diagram for transform from \mathbf{X} to $\mathbf{W}_{2,0}, \, \mathbf{W}_{2,1}, \, \mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$:

Wavelet Packets – Basic Concepts: VI

- can argue $\mathbf{W}_{2,0}$, $\mathbf{W}_{2,1}$, $\mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$ are associated with $f \in [0, \frac{1}{8}], (\frac{1}{8}, \frac{1}{4}], (\frac{1}{4}, \frac{3}{8}]$ and $(\frac{3}{8}, \frac{1}{2}]$
- scheme sometimes called a 'regular' DWT because it splits $[0, \frac{1}{2}]$ split into 4 'regular' subintervals, each of width 1/8
- basis for argument is the following facts:
 - \mathbf{V}_1 related to $f \in [0, \frac{1}{4}]$ portion of \mathbf{X}
 - \mathbf{W}_1 related to $f \in (\frac{1}{4}, \frac{1}{2}]$ portion of \mathbf{X} but with reversal of order of frequencies

V-7

V-8

Wavelet Packets - Basic Concepts: VII

• flow diagram in frequency domain:

Wavelet Packets - Basic Concepts: VIII

- transform from \mathbf{X} to $\mathbf{W}_{2,0}$, $\mathbf{W}_{2,1}$, $\mathbf{W}_{2,2}$ and $\mathbf{W}_{2,3}$ is called a level j=2 discrete wavelet packet transform
 - abbreviated as DWPT
 - splitting of $[0, \frac{1}{2}]$ similar to DFT
 - unlike DFT, DWPT coefficients localized (similar to so-called 'short time' Fourier transform)
 - DWPT is 'time/frequency'; DWT is 'time/scale'
- because level j=2 DWPT is an orthonormal transform, we obtain an energy decomposition:

$$\|\mathbf{X}\|^2 = \sum_{n=0}^3 \|\mathbf{W}_{2,n}\|^2$$

V-10

Wavelet Packets – Basic Concepts: IX

• can use level j=2 DWPT to produce an additive decomposition (similar to an MRA):

$$\mathbf{X} = \begin{bmatrix} \mathcal{B}_1^T \mathcal{A}_2^T, \mathcal{B}_1^T \mathcal{B}_2^T, \mathcal{A}_1^T \mathcal{B}_2^T, \mathcal{A}_1^T \mathcal{A}_2^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_{2,3} \\ \mathbf{W}_{2,2} \\ \mathbf{W}_{2,1} \\ \mathbf{W}_{2,0} \end{bmatrix}$$
$$= \mathcal{B}_1^T \mathcal{A}_2^T \mathbf{W}_{2,3} + \mathcal{B}_1^T \mathcal{B}_2^T \mathbf{W}_{2,2} + \mathcal{A}_1^T \mathcal{B}_2^T \mathbf{W}_{2,1} + \mathcal{A}_1^T \mathcal{A}_2^T \mathbf{W}_{2,0}$$

- $-\mathcal{B}_1^T \mathcal{A}_2^T \mathbf{W}_{2,3}$ associated with $f \in (\frac{3}{8}, \frac{1}{2}]$
- $-\mathcal{B}_1^T\mathcal{B}_2^T\mathbf{W}_{2,2}$ associated with $f \in (\frac{1}{4}, \frac{3}{8}]$
- $-\mathcal{A}_1^T\mathcal{B}_2^T\mathbf{W}_{2,1}$ associated with $f \in (\frac{1}{8}, \frac{1}{4}]$
- $-\mathcal{A}_1^T\mathcal{A}_2^T\mathbf{W}_{2,0}$ associated with $f \in [0, \frac{1}{8}]$

DWPTs of General Levels: I

- can generalize scheme to define DWPTs for levels j = 0, 1, 2, 3, ... (with $\mathbf{W}_{0,0}$ defined to be \mathbf{X})
- idea behind DWPT is to use $G(\cdot)$ and $H(\cdot)$ to split each of the 2^{j-1} vectors on level j-1 into 2 new vectors, ending up with a level j transform with 2^j vectors
- given $\mathbf{W}_{i-1,n}$'s, here is the rule for generating $\mathbf{W}_{i,n}$'s:
 - if n in $\mathbf{W}_{i-1,n}$ is even:
 - * use $G(\cdot)$ to get $\mathbf{W}_{j,2n}$ by transforming $\mathbf{W}_{j-1,n}$
 - * use $H(\cdot)$ to get $\mathbf{W}_{j,2n+1}$ by transforming $\mathbf{W}_{j-1,n}$
 - if n in $\mathbf{W}_{i-1,n}$ is odd:
 - * use $H(\cdot)$ to get $\mathbf{W}_{j,2n}$ by transforming $\mathbf{W}_{j-1,n}$
 - * use $G(\cdot)$ to get $\mathbf{W}_{j,2n+1}$ by transforming $\mathbf{W}_{j-1,n}$

DWPTs of General Levels: II

 \bullet example of rule, yielding level j=3 DWPT in the bottom row

DWPTs of General Levels: III

- ullet note: $\mathbf{W}_{j,0}$ and $\mathbf{W}_{j,1}$ correspond to vectors \mathbf{V}_j and \mathbf{W}_j in a jth level partial DWT
- $\mathbf{W}_{j,n}$, $n=0,\ldots,2^{j}-1$, is associated with $f\in(\frac{n}{2^{j+1}},\frac{n+1}{2^{j+1}}]$
- \bullet *n* is called the 'sequency' index
- in terms of circular filtering, we can write

$$W_{j,n,t} = \sum_{l=0}^{L-1} u_{n,l} W_{j-1,\lfloor \frac{n}{2} \rfloor, 2t+1-l \mod N/2^j}, \quad t = 0, \dots, \frac{N}{2^j} - 1,$$

where $W_{j,n,t}$ is the tth element of $\mathbf{W}_{j,n}$ and

$$u_{n,l} \equiv \begin{cases} g_l, & \text{if } n \bmod 4 = 0 \text{ or } 3; \\ h_l, & \text{if } n \bmod 4 = 1 \text{ or } 2. \end{cases}$$

 V_{-14}

DWPTs of General Levels: IV

 \bullet can also get $\mathbf{W}_{i,n}$ by filtering \mathbf{X} and downsampling:

$$W_{j,n,t} = \sum_{l=0}^{L_j-1} u_{j,n,l} X_{2^j[t+1]-1-l \mod N}, \quad t = 0, 1, \dots, \frac{N}{2^j}-1,$$

where $\{u_{j,n,l}\}$ is the equivalent filter associated with $\mathbf{W}_{j,n}$

- let $\{u_{j,n,l}\} \longleftrightarrow U_{j,n}(\cdot), n = 0, \dots, 2^j 1$
- to construct $U_{j,n}(\cdot)$, define $M_0(f) = G(f) \& M_1(f) = H(f)$
- let $\mathbf{c}_{1,0} \equiv [0] \& \mathbf{c}_{1,1} \equiv [1] \&$, for j > 1, create $\mathbf{c}_{j,n}$ recursively
 - by appending 0 to $\mathbf{c}_{j-1,\lfloor\frac{n}{2}\rfloor}$ if $n \mod 4 = 0$ or 3 or
 - by appending 1 to $\mathbf{c}_{j-1,\lfloor \frac{n}{2} \rfloor}$ if $n \mod 4 = 1$ or 2

DWPTs of General Levels: V

• letting $c_{j,n,m}$ be mth element of $\mathbf{c}_{j,n}$, then

$$U_{j,n}(f) = \prod_{m=0}^{j-1} M_{c_{j,n,m}}(2^m f)$$

• example: $\mathbf{c}_{3,3} = [0, 1, 0]^T$ says

$$U_{3,3}(f) = M_0(f)M_1(2f)M_0(4f) = G(f)H(2f)G(4f)$$

DWPTs of General Levels: VI

• contents of $c_{j,n}$ for j = 1, 2 & 3 and $n = 0, ..., 2^{j} - 1$

DWPTs of General Levels: VII

• squared gain functions $|U_{3,n}(\cdot)|^2$ using LA(8) $\{g_l\}$ & $\{h_l\}$

• note overlap in n=3 and 4 bands – not well separated

V-18

DWPTs of General Levels: VIII

- $\mathbf{W}_{j,n}$ nominally associated with bandwidth $1/2^{j+1}$ (corresponding frequency interval is $\mathcal{I}_{j,n} \equiv (\frac{n}{2^{j+1}}, \frac{n+1}{2^{j+1}}]$)
- ullet $\mathbf{W}_{j,0}$ same as \mathbf{V}_j in level j partial DWT
- since \mathbf{V}_j has scale $\lambda_j = 2^j$, can say $\mathbf{W}_{j,0}$ has 'time width' λ_j
- ullet each $\{u_{j,n,l}\}$ has width L_j , so each $\mathbf{W}_{j,n}$ has time width λ_j
- j = 0: time width is unity and bandwidth is 1/2
- j = J: time width is $N = 2^J$ and bandwidth is 1/2N
- \bullet note that time width \times bandwidth is constant, which is an example of 'reciprocity relationship'

Wavelet Packet Tables/Trees: I

• collection of DWPTs called a wavelet packet table (or tree), with the tree nodes being labeled by the doublets (j, n):

j=0	$\mathbf{W}_{0,0} = \mathbf{X}$									
j=1		W	1,0		$\mathbf{W}_{1,1}$					
j=2	$\mathbf{W}_{2,0}$		$\mathbf{W}_{2,1}$		$\mathbf{W}_{2,2}$		$\mathbf{W}_{2,3}$			
j=3	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$\mathbf{W}_{3,2}$	$\mathbf{W}_{3,3}$	$old W_{3,4} old W_{3,5}$		$\mathbf{W}_{3,6}$	$\mathbf{W}_{3,7}$		
($\frac{1}{1}$	1 <u>1</u> 6	3 1	6	<u>1</u>	<u>5</u> <u>6</u> 8	3 1	7 <u>1</u> 6 2		

- nodes $C \equiv \{(j, n) : n = 0, \dots, 2^{j} 1\}$ for row j form a DWPT
- nonoverlapping complete covering of $[0, \frac{1}{2}]$ yields coefficients for an orthonormal transform **O** ('disjoint dyadic decomposition')
- let's consider 2 sets of doublets yielding such a decomposition

Wavelet Packet Tables/Trees: II

• $C = \{(3,0), (3,1), (2,1), (1,1)\}$ yields the DWT:

j=0							
j=1					W	1,1	
j=2			V	$\mathbf{V}_{2,1}$			
j=3	$\mathbf{W}_{3,0}$	$\mathbf{W}_{3,1}$					

• $C = \{(2,0), (3,2), (3,3), (1,1)\}$ yields another **O**:

V-21

Optimal Orthonormal Transform: I

- WP table yields $many \ \mathbf{O}$'s: does one matching \mathbf{X} 'optimally'?
- Coifman & Wickerhauser (1992) proposed notion of 'best basis'
- \bullet form WP table out to level J, and assign 'cost' to $\mathbf{W}_{i,n}$ via

$$M(\mathbf{W}_{j,n}) \equiv \sum_{t=0}^{N_j-1} m(|W_{j,n,t}|)$$

where $m(\cdot)$ is real-valued cost function (require m(0) = 0)

- ullet let $\mathcal C$ be any collection of indices in the set $\mathcal N$ of all possible indices forming an orthonormal transform
- 'optimal' such transform satisfies

$$\min_{\mathcal{C} \in \mathcal{N}} \sum_{(j,n) \in \mathcal{C}} M(\mathbf{W}_{j,n})$$

V-22

Optimal Orthonormal Transform: II

• consider following 2 unit norm vectors:

$$\mathbf{W}_{j,n}^{(1)} = \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix}^T$$
 and $\mathbf{W}_{j,n}^{(2)} = [1, 0, 0, 0]^T$

• example: 'entropy-based' cost function

$$m(|W_{j,n,t}|) = -W_{j,n,t}^2 \log(W_{j,n,t}^2)$$

(since $|x| \log(|x|) \to 0$ as $x \to 0$, will interpret $0 \log(0)$ as 0)

• here $M(\mathbf{W}_{j,n}^{(1)}) = 4 \cdot (-\frac{1}{4}\log\frac{1}{4}) > 0$ and $M(\mathbf{W}_{j,n}^{(2)}) = 0$ (lower cost if energy is concentrated in a few $|W_{j,n,t}|$'s)

Optimal Orthonormal Transform: III

- continue looking at $\mathbf{W}_{j,n}^{(1)} = \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix}^T \& \mathbf{W}_{j,n}^{(2)} = [1, 0, 0, 0]^T$
- 2nd example: threshold cost function

$$m(|W_{j,n,t}|) = \begin{cases} 1, & \text{if } |W_{j,n,t}| > \delta; \\ 0, & \text{otherwise.} \end{cases}$$

if $\delta = 1/4$, $M(\mathbf{W}_{j,n}^{(1)}) = 4$ and $M(\mathbf{W}_{j,n}^{(2)}) = 1$ (lower cost if there are only a few large $|W_{j,n,t}|$'s)

- 3rd example: ℓ_p cost function $m(|W_{j,n,t}|) = |W_{j,n,t}|^p$ if p = 1, $M(\mathbf{W}_{j,n}^{(1)}) = 2$ and $M(\mathbf{W}_{j,n}^{(2)}) = 1$ (same pattern as before)
- once costs assigned, need to find optimal transform

Optimal Orthonormal Transform: IV

• example: consider Haar DWPTs out to level j = 3:

$$\begin{bmatrix} \mathbf{W}_{1,1} \\ \mathbf{W}_{1,0} \end{bmatrix} = \begin{bmatrix} \mathcal{B}_1 \\ \mathbf{A}_1 \end{bmatrix} \mathbf{X}, \quad \begin{bmatrix} \mathbf{W}_{2,3} \\ \mathbf{W}_{2,2} \\ \mathbf{W}_{2,1} \\ \mathbf{W}_{2,0} \end{bmatrix} = \begin{bmatrix} \mathcal{A}_2 \mathcal{B}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_2 \mathcal{A}_1 \end{bmatrix} \mathbf{X},$$

$$\begin{bmatrix} \mathbf{W}_{3,7} \\ \mathbf{W}_{3,6} \\ \mathbf{W}_{3,5} \\ \mathbf{W}_{3,4} \\ \mathbf{W}_{3,3} \\ \mathbf{W}_{3,2} \\ \mathbf{W}_{3,1} \\ \mathbf{W}_{3,0} \end{bmatrix} = \begin{bmatrix} \mathcal{A}_3 \mathcal{A}_2 \mathcal{B}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{B}_1 \\ \mathcal{B}_3 \mathcal{B}_2 \mathcal{B}_1 \\ \mathcal{A}_3 \mathcal{B}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \\ \mathcal{B}_3 \mathcal{A}_2 \mathcal{A}_1 \end{bmatrix} \mathbf{X}$$

Optimal Orthonormal Transform: V

• let **X** be following series of length N=8:

$$\mathbf{X} = \sqrt{2} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \end{bmatrix} + \sqrt{8} \begin{bmatrix} \frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ \frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ -\frac{1}{\sqrt{8}} \\ 0 \\ 0 \\ -2 \\ 2 \end{bmatrix}$$

• note that X is a linear combination of transposes of 1st row of \mathcal{A}_1 , 2nd row of $\mathcal{A}_2\mathcal{B}_1$ and single row of $\mathcal{A}_3\mathcal{B}_2\mathcal{B}_1$

V-26

Optimal Orthonormal Transform: VI

V-25

• Haar DWPT coefficients, levels j = 1, 2 and 3 (three underlined coefficients correspond to basis vectors used in forming \mathbf{X}):

j=0	$\mathbf{X} = [2, 0, -1, 1, 0, 0, -2, 2]^T$									
j=1		$[\underline{\sqrt{2}},0]$	[0, 0, 0]		$[-\sqrt{2},\sqrt{2},0,\sqrt{8}]$					
j=2	[1, 0]		[-1, 0]		[2, 2]		[0, 2]			
j=3	$\left[\frac{1}{\sqrt{2}}\right]$	$\left[-\frac{1}{\sqrt{2}}\right]$	$\left[\frac{1}{\sqrt{2}}\right]$	$\left[-\frac{1}{\sqrt{2}}\right]$	[<u>√8</u>]	[0]	$[\sqrt{2}]$	$[\sqrt{2}]$		

Optimal Orthonormal Transform: VII

• cost table using $-W_{j,n,t}^2 \log(W_{j,n,t}^2)$ cost function:

j=0	1.45								
j=1	0.28				0.88				
j=2	0.19		0.19		0.72		0.36		
j=3	0.12	0.12	0.12	0.12	0.32	0.00	0.28	0.28	

- algorithm to find 'best' basis
 - mark all costs of 'childern' nodes at bottom
 - compare cost of children with their 'parent'
 - * if parent cheaper, mark parent node
 - * if children cheaper, replace cost of parent
 - repeat for each level; when done, look for top-marked nodes

Optimal Orthonormal Transform: VIII

• final step (best basis includes 3 vectors forming **X**):

j=0	0.96								
j=1	0.28				0.68				
j=2	0.19		0.19		0.32		<u>0.36</u>		
j=3	0.12	0.12	0.12	0.12	0.32	0.00	0.28	0.28	

V-29

Maximal Overlap DWPT: I

- recall relationship between DWT and MODWT
- MODWT: no downsampling and hence 'shift invariant'
- uses MODWT filters: $\tilde{h}_l \equiv h_l/\sqrt{2}$ and $\tilde{g}_l \equiv g_l/\sqrt{2}$
- level J_0 MODWT maps \mathbf{X} to J_0+1 vectors $\widetilde{\mathbf{W}}_1$, $\widetilde{\mathbf{W}}_2$, ..., $\widetilde{\mathbf{W}}_{J_0}$, $\widetilde{\mathbf{V}}_{J_0}$, all of length N (arbitrary)
- ullet with LA wavelet, can align (time shift) using $\mathcal{T}^{\nu_j}\widetilde{\mathbf{W}}_j$
- MODWT multiresolution analysis and analysis of variance:

$$\mathbf{X} = \sum_{j=1}^{J_0} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0} \text{ and } \|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\widetilde{\mathbf{W}}_j\|^2 + \|\widetilde{\mathbf{V}}_{J_0}\|^2$$

• $\widetilde{\mathcal{D}}_i$ is output from zero phase filter

V-30

Maximal Overlap DWPT: II

• similarly, can generalize DWPT to MODWPT

Maximal Overlap DWPT: III

- uses renormalized DWPT filters
- every $\widetilde{\mathbf{W}}_{j,n}$ is now a vector of length N
- with LA wavelet, can align using $\mathcal{T}^{\nu_{j,n}}\widetilde{\mathbf{W}}_{j,n}$
- \bullet let \mathcal{C} be indices for disjoint dyadic decomposition
- MODWPT additive decomposition and analysis of variance:

$$\mathbf{X} = \sum_{(j,n)\in\mathcal{C}} \widetilde{\mathcal{D}}_{j,n} \text{ and } \|\mathbf{X}\|^2 = \sum_{(j,n)\in\mathcal{C}} \|\widetilde{\mathbf{W}}_{j,n}\|^2$$

- $\widetilde{\mathcal{D}}_{j,n}$ is analogous to MODWT detail (and is created by applying inverse MODWPT to $\widetilde{\mathbf{W}}_{j,n}$ and vectors of zeros)
- $\widetilde{\mathcal{D}}_{i,n}$ is output from zero phase filter

V - 32

Example - Analysis of Solar Physics Data: I

• path of Ulysses spacecraft (records magnetic field of heliosphere)

Example - Analysis of Solar Physics Data: II

- magnetic field measurements of polar region of sun recorded hourly from 4 Dec 1993 to 24 May 1994 ($\Delta t = 1/24 \text{ day}$)
- Ulysses moved from 4 AU to 3 AU (explains upward trend)
- \bullet a, b, c, d are fast solar wind streams from polar coronal holes
- two classifications for these 'shocks'
 - corotating interaction regions (CIRs) recur every solar rotation (about 25 days)
 - fast coronal mass ejections (CMEs) transient in nature

V - 34

Example – Analysis of Solar Physics Data: III

• 4 different level j=4 DWPTs, each partitioning $(0,1/2\Delta t]$ into 16 intervals

Example – Analysis of Solar Physics Data: IV

• level j = 4 LA(8) DWPT coefficients $\mathbf{W}_{4,n}$, $n = 0, \dots, 4$, after time alignments (derived from study of phase functions)

V - 35

Example - Analysis of Solar Physics Data: V

• best basis transform using LA(8) filter and $-W_{j,n,t}^2 \log(W_{j,n,t}^2)$ cost function

V - 37

Example - Analysis of Solar Physics Data: VI

• level j = 4 LA(8) MODWPT coefficients $\mathbf{W}_{4,n}$, $n = 0, \dots, 4$, after time alignments

V - 38

Example – Analysis of Solar Physics Data: VII

- will summarize using a modified time/frequency plot, which indicates locations of
 - 100 largest values in $\mathcal{T}^{-|\nu_{4,0}|}\widetilde{\mathbf{W}}_{4,0}$
 - 100 largest values in $\mathcal{T}^{-|\nu_{4,1}|}\widetilde{\mathbf{W}}_{4,1}$
 - 100 largest values in $\mathcal{T}^{-|\nu_{4,n}|}\widetilde{\mathbf{W}}_{4,n}$, $n=2,\ldots,15$ (in fact these all occur in $n=2,\ldots,6$)

Example - Analysis of Solar Physics Data: VIII

• 4 events coherently broad-band; events a, c, d are recurrent; b is transient; a might be two events (recurrent & transient)