Wavelet Methods for Time Series Analysis	Wavelet Packet Transforms – Overview				
Part IV: Wavelet Packets, Best Bases and Matching Pursuit • discrete wavelet transforms (DWTs) – yields time/scale analysis of X of sample size N – need N to be a multiple of 2^{J_0} for partial DWT of level J_0 – one partial DWT for each level $j = 1, \ldots, J_0$ – scale τ_j related to frequencies in $(1/2^{j+1}, 1/2^j)$ – scale λ_j related to frequencies in $(0, 1/2^{j+1}]$ – splits $(0, 1/2]$ into octave bands – computed via pyramid algorithm – maximal overlap DWT also of interest	 discrete wavelet packet transforms (DWPTs) yields time/frequency analysis of X need N to be a multiple of 2^{J0} for DWPT of level J0 one DWPT for each level j = 1,, J0 splits (0, 1/2] into 2^j equal intervals computed via modification of pyramid algorithm can 'mix' parts of DWPTs of different levels j, leading to many more orthonormal transforms and to the notion of a 'best basis' for a particular X maximal overlap DWPT (MODWPT) also of interest 				
IV-1	IV-2				
Wavelet Packets – Basic Concepts: I • 1st stage of DWT pyramid algorithm: $\mathcal{P}_{1}\mathbf{X} = \begin{bmatrix} \mathbf{W}_{1} \\ \mathbf{V}_{1} \end{bmatrix} \equiv \begin{bmatrix} \mathbf{W}_{1,1} \\ \mathbf{W}_{1,0} \end{bmatrix}$ $-\mathbf{W}_{1,1} \equiv \mathbf{W}_{1} \text{ associated with } f \in (\frac{1}{4}, \frac{1}{2}]$ $-\mathbf{W}_{1,0} \equiv \mathbf{V}_{1} \text{ associated with } f \in [0, \frac{1}{4}]$ $\mathcal{P}_{1} \mathbf{W}_{1} = \begin{bmatrix} I_{N} & 0_{N} \\ 0_{N} & I_{N} \\ 0_{N} & I_{N} \\ 0_{N} & I_{N} \\ 0 \end{bmatrix} = I_{N}$ • transform is $J_{0} = 1$ partial DWT	Wavelet Packets – Basic Concepts: II • likewise, 2nd stage defines $J_0 = 2$ partial DWT: $\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \mathbf{V}_2 \end{bmatrix} \equiv \begin{bmatrix} \mathbf{W}_{1,1} \\ \mathbf{W}_{2,1} \\ \mathbf{W}_{2,0} \end{bmatrix}$ $- \mathbf{W}_{2,1} \equiv \mathbf{W}_2 \text{ associated with } f \in (\frac{1}{8}, \frac{1}{4}]$ $- \mathbf{W}_{2,0} \equiv \mathbf{V}_2 \text{ associated with } f \in [0, \frac{1}{8}]$				

IV-4

IV-3

DWPTs of General Levels: I

- can generalize scheme to define DWPTs for levels j = 0, 1, 2, 3, ... (with $\mathbf{W}_{0,0}$ defined to be \mathbf{X})
- idea behind DWPT is to use $G(\cdot)$ and $H(\cdot)$ to split each of the 2^{j-1} vectors on level j-1 into 2 new vectors, ending up with a level j transform with 2^j vectors
- given $\mathbf{W}_{j-1,n}$'s, here is the rule for generating $\mathbf{W}_{j,n}$'s:
 - if n in $\mathbf{W}_{j-1,n}$ is even:
 - * use $G(\cdot)$ to get $\mathbf{W}_{j,2n}$ by transforming $\mathbf{W}_{j-1,n}$ * use $H(\cdot)$ to get $\mathbf{W}_{j,2n+1}$ by transforming $\mathbf{W}_{j-1,n}$
 - if n in $\mathbf{W}_{j-1,n}$ is odd:
 - * use $H(\cdot)$ to get $\mathbf{W}_{j,2n}$ by transforming $\mathbf{W}_{j-1,n}$
 - * use $G(\cdot)$ to get $\mathbf{W}_{j,2n+1}$ by transforming $\mathbf{W}_{j-1,n}$
 - IV–9

DWPTs of General Levels: III

- note: $\mathbf{W}_{j,0}$ and $\mathbf{W}_{j,1}$ correspond to vectors \mathbf{V}_j and \mathbf{W}_j in a *j*th level partial DWT
- $\mathbf{W}_{j,n}$, $n = 0, \dots, 2^j 1$, is associated with $f \in (\frac{n}{2^{j+1}}, \frac{n+1}{2^{j+1}}]$
- $\bullet~n$ is called the 'sequency' index
- in terms of circular filtering, we can write

$$W_{j,n,t} = \sum_{l=0}^{L-1} u_{n,l} W_{j-1,\lfloor \frac{n}{2} \rfloor, 2t+1-l \mod N/2^{j}}, \quad t = 0, \dots, \frac{N}{2^{j}} - 1,$$

where $W_{j,n,t}$ is the *t*th element of $\mathbf{W}_{j,n}$ and

$$u_{n,l} \equiv \begin{cases} g_l, & \text{if } n \mod 4 = 0 \text{ or } 3; \\ h_l, & \text{if } n \mod 4 = 1 \text{ or } 2. \end{cases}$$

IV-11

DWPTs of General Levels: II

- by appending 0 to $\mathbf{c}_{j-1,\lfloor \frac{n}{2} \rfloor}$ if $n \mod 4 = 0$ or 3 or
- by appending 1 to $\mathbf{c}_{j-1,\lfloor \frac{n}{2} \rfloor}$ if $n \mod 4 = 1$ or 2

 \bullet example of rule, yielding level j=3 DWPT in the bottom row

DWPTs of General Levels: V

• letting $c_{j,n,m}$ be *m*th element of $\mathbf{c}_{j,n}$, then

$$U_{j,n}(f) = \prod_{m=0}^{j-1} M_{c_{j,n,m}}(2^m f)$$

• example: $\mathbf{c}_{3,3} = [0, 1, 0]^T$ says

$$U_{3,3}(f) = M_0(f)M_1(2f)M_0(4f) = G(f)H(2f)G(4f)$$

IV-13

DWPTs of General Levels: VII

• squared gain functions $|U_{3,n}(\cdot)|^2$ using LA(8) $\{g_l\}$ & $\{h_l\}$

DWPTs of General Levels: VI

• contents of $\mathbf{c}_{j,n}$ for j = 1, 2 & 3 and $n = 0, \dots, 2^j - 1$

DWPTs of General Levels: VIII

- $\mathbf{W}_{j,n}$ nominally associated with bandwidth $1/2^{j+1}$ (corresponding frequency interval is $\mathcal{I}_{j,n} \equiv (\frac{n}{2^{j+1}}, \frac{n+1}{2^{j+1}}]$)
- $\mathbf{W}_{j,0}$ same as \mathbf{V}_j in level j partial DWT
- since \mathbf{V}_j has scale $\lambda_j = 2^j$, can say $\mathbf{W}_{j,0}$ has 'time width' λ_j
- each $\{u_{j,n,l}\}$ has width L_j , so each $\mathbf{W}_{j,n}$ has time width λ_j
- j = 0: time width is unity and bandwidth is 1/2
- j = J: time width is $N = 2^J$ and bandwidth is 1/2N
- \bullet note that time width \times bandwidth is constant, which is an example of 'reciprocity'

Wavelet Packet Tables/Trees: I

• collection of DWPTs called a wavelet packet table (or tree), with the tree nodes being labeled by the doublets (j, n):

j=0	$\mathbf{W}_{0,0} = \mathbf{X}$									
$j{=}1$	$\mathbf{W}_{1,0}$						$\mathbf{W}_{1,1}$			
j=2	V	$V_{2,0}$	$\mathbf{W}_{2,1}$		$\mathbf{W}_{2,2}$		$\mathbf{W}_{2,3}$			
j=3	$\mathbf{W}_{3,0}$	$\mathbf{W}_{3,1}$	$\mathbf{W}_{3,2}$	$\mathbf{W}_{3,3}$	$\mathbf{W}_{3,4}$	$\mathbf{W}_{3,5}$	$\mathbf{W}_{3,6}$	$\mathbf{W}_{3,7}$		
	$0 \frac{1}{1}$	$\frac{1}{6}$ $\frac{1}{8}$	3 1	<u>3</u> 6	$\frac{1}{4}$ $\frac{1}{1}$	<u>5</u> 6 8	$\frac{3}{8}$ $\frac{7}{1}$	7 <u>1</u> 6 2		

• nodes $\mathcal{C} \equiv \{(j, n) : n = 0, \dots, 2^j - 1\}$ for row j form a DWPT

- nonoverlapping complete covering of $[0, \frac{1}{2}]$ yields coefficients for an orthonormal transform **O** ('disjoint dyadic decomposition')
- let's consider 2 sets of doublets yielding such a decomposition

IV-17

Optimal Orthonormal Transform: I

- WP table yields *many* **O**'s: is one 'optimal'?
- Coifman & Wickerhauser (1992) proposed notion of 'best basis'
- form WP table out to level J, and assign 'cost' to $\mathbf{W}_{j,n}$ via

$$M(\mathbf{W}_{j,n}) \equiv \sum_{t=0}^{N_j - 1} m(|W_{j,n,t}|)$$

where $m(\cdot)$ is real-valued cost function (require m(0) = 0)

- let \mathcal{C} be any collection of indices in the set \mathcal{N} of all possible indices forming an orthonormal transform
- 'optimal' such transform satisfies

$$\min_{\mathcal{C}\in\mathcal{N}}\sum_{(j,n)\in\mathcal{C}}M(\mathbf{W}_{j,n})$$

IV-19

Wavelet Packet Tables/Trees: II

Optimal Orthonormal Transform: II

• consider following 2 unit norm vectors:

$$\mathbf{W}_{j,n}^{(1)} = \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix}^T \text{ and } \mathbf{W}_{j,n}^{(2)} = [1, 0, 0, 0]^T$$

• example: 'entropy-based' cost function

$$m(|W_{j,n,t}|) = -W_{j,n,t}^2 \log(W_{j,n,t}^2)$$

(since
$$|x| \log(|x|) \to 0$$
 as $x \to 0$, will interpret $0 \log(0)$ as 0)

• here
$$M(\mathbf{W}_{j,n}^{(1)}) = 4 \cdot (-\frac{1}{4}\log\frac{1}{4}) > 0$$
 and $M(\mathbf{W}_{j,n}^{(2)}) = 0$
(lower cost if energy is concentrated in a few $|W_{j,n,t}|$'s)

Optimal Orthonormal Transform: III

• continue looking at
$$\mathbf{W}_{j,n}^{(1)} = \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix}^T \& \mathbf{W}_{j,n}^{(2)} = [1, 0, 0, 0]^T$$

• 2nd example: threshold cost function

$$m(|W_{j,n,t}|) = \begin{cases} 1, & \text{if } |W_{j,n,t}| > \delta \\ 0, & \text{otherwise.} \end{cases}$$

if $\delta = 1/4$, $M(\mathbf{W}_{j,n}^{(1)}) = 4$ and $M(\mathbf{W}_{j,n}^{(2)}) = 1$ (lower cost if there are only a few large $|W_{j,n,t}|$'s)

- 3rd example: ℓ_p cost function $m(|W_{j,n,t}|) = |W_{j,n,t}|^p$ if p = 1, $M(\mathbf{W}_{j,n}^{(1)}) = 2$ and $M(\mathbf{W}_{j,n}^{(2)}) = 1$ (same pattern as before)
- once costs assigned, need to find optimal transform

IV-21

Optimal Orthonormal Transform: V

• Haar DWPT coefficients, levels j = 1, 2 and 3 (three underlined coefficients correspond to basis vectors used in forming **X**):

j = 0	$\mathbf{X} = [2, 0, -1, 1, 0, 0, -2, 2]^T$									
$j{=}1$		$[\sqrt{2}, 0]$	[0, 0, 0]		$[-\sqrt{2},\sqrt{2},0,\sqrt{8}]$					
j=2	[1, 0]		[-1, 0]		[2, 2]		[0, 2]			
j=3	$\left[\frac{1}{\sqrt{2}}\right]$	$\left[-\frac{1}{\sqrt{2}}\right]$	$\left[\frac{1}{\sqrt{2}}\right]$	$\left[-\frac{1}{\sqrt{2}}\right]$	[<u>√8]</u>	[0]	$\left[\sqrt{2}\right]$	$\left[\sqrt{2}\right]$		

Optimal Orthonormal Transform: IV

Optimal Orthonormal Transform: VI

IV-22

• cost table using	$-W_{j,n,t}^2\log$	$g(W_{j,n,t}^2)\cos$	st function:
--------------------	--------------------	----------------------	--------------

j=0	1.45								
$j{=}1$		0.2	28		0.88				
j=2	0.19 0.19				0.72 0.36				
j=3	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>	<u>0.32</u>	<u>0.00</u>	0.28	<u>0.28</u>	

- algorithm to find 'best' basis
 - mark all costs of 'childern' nodes at bottom
 - compare cost of children with their 'parent'
 - \ast if parent cheaper, mark parent node
 - \ast if children cheaper, replace cost of parent
 - repeat for each level; when done, look for top-marked nodes

Optimal Orthonormal Transform: VII

• final step (best basis includes 3 vectors forming **X**):

j=0	0.96									
$j{=}1$		<u>0.</u>	<u>28</u>		0.68					
j=2	0.19		0.19		0.32		<u>0.36</u>			
j=3	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>	<u>0.12</u>	<u>0.32</u>	<u>0.00</u>	<u>0.28</u>	<u>0.28</u>		

Example – Analysis of Solar Physics Data: I

• path of Ulysses spacecraft (records magnetic field of heliosphere)

Example – Analysis of Solar Physics Data: II

IV-25

- magnetic field measurements of polar region of sun recorded hourly from 4 Dec 1993 to 24 May 1994 ($\Delta t = 1/24$ day)
- Ulysses moved from 4 AU to 3 AU (explains upward trend)
- a, b, c, d are fast solar wind streams from polar coronal holes
- two classifications for these 'shocks'
 - corotating interaction regions (CIRs) recur every solar rotation (about 25 days)
 - fast coronal mass ejections (CMEs) transient in nature

Example – Analysis of Solar Physics Data: III

• 4 different level j = 4 DWPTs, each partitioning $(0, 1/2 \Delta t]$ into 16 intervals

Matching Pursuit Algorithm: II

• after first step of algorithm, second step is to treat the residuals in the same manner as **X** was treated in first step, yielding

$$\mathbf{R}^{(1)} = \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma_1} \rangle \mathbf{d}_{\gamma_1} + \mathbf{R}^{(2)},$$

with \mathbf{d}_{γ_1} picked such that

$$\left| \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma_1} \rangle \right| = \max_{\gamma \in \Gamma} \left| \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma} \rangle \right|$$

• letting $\mathbf{R}^{(0)} \equiv \mathbf{X}$, after *m* such steps, have additive decomposition:

$$\mathbf{X} = \sum_{k=0}^{m-1} \langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_k} \rangle \mathbf{d}_{\gamma_k} + \mathbf{R}^{(m)}$$

IV-37

Matching Pursuit Dictionaries: I

- key to matching pursuit is dictionary
- simplest dictionary: DWT dictionary
 - $-\mathcal{D}$ contains $\mathbf{d}_{\gamma} \equiv \mathcal{W}_{j\bullet}, j = 0, \dots, N-1$
 - $-\gamma = [j]$ associates $\mathcal{W}_{j\bullet}$ with time/scale
 - $-\langle \mathbf{X}, \mathbf{d}_{\gamma} \rangle = W_j$ is *j*th DWT coefficient
 - 1st step picks W_j with largest magnitude:

$$\mathbf{X} = W_{(0)}\mathbf{W}_{(0)} + \mathbf{R}^{(1)} \text{ with } \mathbf{R}^{(1)} = \sum_{j \neq (0)} W_j \mathbf{W}_{j \bullet}$$

- 2nd step picks out W_j with 2nd largest $|W_j|$
- for any orthonormal \mathcal{D} , matching pursuit approximates **X** using coefficients with largest magnitudes

Matching Pursuit Algorithm: III

• also have an energy decomposition:

$$\|\mathbf{X}\|^{2} = \sum_{k=0}^{m-1} \|\langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}} \rangle \mathbf{d}_{\gamma_{k}} \|^{2} + \|\mathbf{R}^{(m)}\|^{2}$$
$$= \sum_{k=0}^{m-1} |\langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}} \rangle|^{2} + \|\mathbf{R}^{(m)}\|^{2}$$

• note: as m increases, $\|\mathbf{R}^{(m)}\|^2$ must decrease (must reach zero under certain conditions)

IV-38

Matching Pursuit Dictionaries: II

- larger dictionary: wavelet packet table dictionary (more flexible than best basis)
- even larger dictionary: above combined with basis vectors corresponding to a discrete Fourier transform (DFT)
- level J_0 MODWT dictionary
 - works for all N, shift invariant, redundant
 - $\ \mathcal{D}$ contains vectors whose elements are either
 - * normalized rows of $\widetilde{\mathcal{W}}_j, j = 1, \ldots, J_0$, or
 - * normalized rows of $\widetilde{\mathcal{V}}_{J_0}$

