Wavelet Methods for Time Series Analysis

Part IV: Wavelet Packets, Best Bases and Matching Pursuit

e discrete wavelet transforms (DWTs)
— yields time/scale analysis of X of sample size N
—need N to be a multiple of 270 for partial DWT of level J
— one partial DWT for each level j =1,...,J
— scale 7; related to frequencies in (1/ 20+1 1/97]
— scale \; related to frequencies in (0, 1/ 2J H]
— splits (0,1/2] into octave bands
— computed via pyramid algorithm
— maximal overlap DWT also of interest
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Wavelet Packet Transforms — Overview

e discrete wavelet packet transforms (DWPTSs)

— yields time/frequency analysis of X

— need N to be a multiple of 270 for DWPT of level Jo
— one DWPT for each level j =1,...,Jy

— splits (0,1/2] into 27 equal intervals

— computed via modification of pyramid algorithm

— can ‘mix’ parts of DWPTs of different levels j, leading to
many more orthonormal transforms and to the notion of a
‘best basis’ for a particular X

— maximal overlap DWPT (MODWPT) also of interest
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Wavelet Packets — Basic Concepts: 1

e 1st stage of DW'T pyramid algorithm:

Wi _ W 1]
P X — f— ’
! [VJ lWLo

— Wy 1 = Wy associated with [ € (}p %]
— W j = Vy associated with f € [0, i]

e P; is orthonormal:

Iy Opn

2
Oy In
2 2

e transform is Jy = 1 partial DWT
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Wavelet Packets — Basic Concepts: 11

e likewise, 2nd stage defines Jy = 2 partial DW'T:

W, Wi
W2 = W2,1
Vo Wi

— Wy 1 = Wy associated with f € (%, %1]
— Wy ) = V3 associated with f € [0, %]
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Wavelet Packets — Basic Concepts: III

e flow diagram for transform from X to Wy o, Wo 1, Wy 9 and
W 3
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Wavelet Packets — Basic Concepts: 1V

e can argue Wy, Wy 1, Woo and Wy 3 are associated with
fe.g (54 (38 and &3

e scheme sometimes called a ‘regular’ DW'T because it splits [0, %]
split into 4 ‘regular’ subintervals, each of width 1/8

e basis for argument is the following facts:
— V related to f € [0, %] portion of X

— W related to f € (zlp %] portion of X but with reversal of
order of frequencies
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Wavelet Packets — Basic Concepts: V

e flow diagram in frequency domain:
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Wavelet Packets — Basic Concepts: VI

e transform from X to Wy o, Wy 1, Wy 9 and Wy 3 is called a
level j = 2 discrete wavelet packet transform
— abbreviated as DWPT
— splitting of [0, %] similar to DET
— unlike DFT, DWPT coefficients localized
— DWPT is ‘time/frequency’; DWT is ‘time/scale’

e because level 7 = 2 DWPT is an orthonormal transform, we
obtain an energy decomposition:

| 2

3
X7 =) [Wo,
n=0
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DWPTs of General Levels: 1

e can generalize scheme to define DWPTs for levels j = 0,1,2,3, ...

(with Wy defined to be X)

e idea behind DWPT is to use G(-) and H(-) to split each of the
23~ 1 vectors on level J — 1 into 2 new vectors, ending up with
a level j transform with 2/ vectors

e given W;_q ;,’s, here is the rule for generating W ,’s:
—ifnin Wj_q, is even:

* use G(-) to get W o, by transforming W;_q

x use H(-) to get W 2,11 by transforming W;_1 ,,
—ifnin Wj_q, is odd:

* use H(-) to get W o, by transforming W;_q

* use G(-) to get W o, 1 by transforming W;_1 ,,
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DWPTs of General Levels: 11

e example of rule, yielding level j = 3 DWPT in the bottom row

j=0 Wyo=X
l !
G(E) H(%)
12 12
j=1 Wu) Wi
! ! ! !
() H(x;) Hix) G(x)
12 12 12 12
j=2 WQ{V[) W2,1 W2,2 W2,3

=3 | Wso| Wa1| Wsa| Wiss| Wiy | Wss | Wi | Wiy
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DWPTs of General Levels: 111

e note: W g and W, 1 correspond to vectors V; and W in a
gth level partial DWT

oW, ,,n=0,..., 2J — 1, is associated with f € (#, gjiﬁ]
e n is called the ‘sequency’ index

e in terms of circular filtering, we can write

N
Win = Z“nlW —1,[3],2t+1-1 mod N/2J’ t:0,..,,§—

where ij’t is the tth element of W, and

g;, ifnmod4=0or3;
h;, iftnmod4=1or?2.

Up | =

)
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DWPTs of General Levels: TV

e can also get W, by filtering X and downsampling;

Lj-1 .
nt = ZZ% Ui n 0 X9t 41]—1—1 mod N» =051, .,5—1,
where {Uj,n,l} is the equivalent filter associated with W,

olet {u;, 1} «— Ujn(),n=0,... 20 —1
e to construct Uj ,,(-), define My(f) = G(f) & My(f) = H(f)
elet ¢ =[0] & c11 = [1] &, for j > 1, create c;,, recursively
— by appending 0 to 1,2 if n mod 4 =0 or 3 or
— by appending 1 to Cj_1,3 if nmod4=1or2
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DWPTs of General Levels: V

e letting ¢; , ym be mth element of c; j,, then

g—1
Uj,n(f) = H Mcj-7n7m(2mf>

m=0
e example: ¢33 = [0,1, 0]7 says
Uss(f) = Mo(f)M1(2f)Mo(4f) = G(f)H(2f)G(4f)
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DWPTs of General Levels: VI

ocontentsofcj’nforj:1,2&3andn:0,...,2j—1

j=0 X

1 1

G(x) H(x)

12 12

j=1 O 1
1 1
Gl H(x,) H(x;) Gl
12 12 12 12

=2 0,0 0,1 1,1 1,0

e [HGE) [HGE) G@E) (@) [HGE) [HEE)| G6h)

i=3 10,0,0(0,0,1]0,1,1]0,1,0|1,1,0|1,1,1|1,0,1|1,0,0

) ?
0 i 1 3 1
16 8 16 4 16 8 16 2
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DWPTs of General Levels: VII

o squared gain functions |Us ,,(-)|* using LA(8) {g;} & {;}

im | | ’I”LZO
e
0 | 1

8 —

0( \ﬂ l L n=2
8 —

0( /{/\}\ n=3
8 p—

U( /*/\4\ ! ! n=d
8 —

(]( S M\ n_5
8( n==06
0 | | J

8 J—

U( ! | 1 | | | /—l n="7
T

7
e note overlap in n = 3 and 4 bands — not well separated
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DWPTs of General Levels: VIII

e W, nominally associated with bandwidth 1/ 2/ +1
(corresponding frequency interval is Z; ,, = (#, gj—ﬂ])

e W o same as V in level j partial DWT

e since V; has scale \; = 2J . can say W o has ‘time width” A;
e cach {u;, 1} has width L;, so cach W, has time width A;

e j = 0: time width is unity and bandwidth is 1/2
e j = J: time width is N = 27 and bandwidth is 1/2N

e note that time width x bandwidth is constant, which is an

example of ‘reciprocity’
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Wavelet Packet Tables/Trees: 1

e collection of DWPTs called a wavelet packet table (or tree),
with the tree nodes being labeled by the doublets (j,n):

7=0 WQA’O =X
j=1 Wi Wi,
7=2 Wgﬂo W?,l WQ’Q Wg’g
=3 | W3o| W31 | Wis| W33 | W3, | Wss | Wse| Wsy
0 i 1 3 1 5 3 T 1
16 8 16 4 16 8 16 2

enodesC = {(j,n) :n=0,...,2/ —1} for row j form a DWPT

e nonoverlapping complete covering of [0, %] yields coefficients for
an orthonormal transform O (‘disjoint dyadic decomposition’)

e let’s consider 2 sets of doublets yielding such a decomposition
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Wavelet Packet Tables/Trees: 11

eC=1{(3,0),(3,1),(2,1),(1,1)} yields the DWT:

j=1 Wi
7j=2 WQ_’l
j=3 W370 Wg_’l

o C={(2,0),(3,2),(3,3),(1,1)} yields another O:

J=1 W171
j=2 WQA’O
J=3 W372 Wgﬁg
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Optimal Orthonormal Transform: I

e WP table yields many O’s: is one ‘optimal’?
e Coifman & Wickerhauser (1992) proposed notion of ‘best basis’

e form WP table out to level J, and assign ‘cost’ to W ;, via
Nj—1
M(Wj,) = > m(Wjnl)
t=0
where m/(+) is real-valued cost function (require m(0) = 0)

e let C be any collection of indices in the set A of all possible
indices forming an orthonormal transform

e ‘optimal’ such transform satisfies

Optimal Orthonormal Transform: II

e consider following 2 unit norm vectors:

1 T 2 T
wil) = [%,%,%,%} and W) = [1,0,0,0]
e example: ‘entropy-based’ cost function
2 2
m(‘Wj,n,t ) - _Wj,n,t 1og(Wj,n,t)
(since |z|log(]z|) — 0 as & — 0, will interpret 0log(0) as 0)
1 2
e here M(W)) =4+ (~Llog ) > 0 and M(W'?)) =0
(lower cost if energy is concentrated in a few |[W; , 4|’s)
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Optimal Orthonormal Transform: III
T
e continue looking at Wg?l = [%, %, %, %} & Wf)l = [1,0,0,0"
e 2nd example: threshold cost function

1, if |W; > 0;
m<|wj,n,t|>={ Wi

0, otherwise.

if 5= 1/4, M(W')) = 4and M(W'?)) =1

,n
(lower cost if there are only a few large [Wj ,, 4|’s)

p

e 3rd example: £} cost function m(|Wj,,¢|) = [Wj 4
itp =1, MW))=2amd MW) =1
(same pattern as before)

e once costs assigned, need to find optimal transform
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Optimal Orthonormal Transform: IV

e let X be following series of length N = 8§ :

- . -
ST I I e I
7 0 s 0
0 0 NG —1
0 0 . 1
X =2 o | T2 s ] = 0
~3Z NG
0 1 _\/L 0
7 NG
0 1 —L -2
2 NE
0 : . 2
L | 2 | V8 R
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Optimal Orthonormal Transform: V

e Haar DWPT coefficients, levels j = 1,2 and 3 (three underlined
coefficents correspond to basis vectors used in forming X):

=0 X =[2,0,-1,1,0,0, —2,2]"

j=1 [1/2,0,0,0] [—v/2,v/2,0, /8]

j=2 [1,0] [—1,0] 2,2] [0,2]
=3 | ) | [Fal ] A | =) WL | e | v
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Optimal Orthonormal Transform: VI

; 2 2 -
e cost table using —W7, , 10g(Wj,n,t> cost function:
j=0 1.45
j=1 0.28 0.88
J=2 0.19 0.19 0.72 0.36
j=3 1012 0.12 | 0.12| 0.12 | 0.32 | 0.00 | 0.28 | 0.28

e algorithm to find ‘best’ basis

— mark all costs of ‘childern” nodes at bottom
— compare cost of children with their ‘parent’
x if parent cheaper, mark parent node
x if children cheaper, replace cost of parent
— repeat for each level; when done, look for top-marked nodes
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Optimal Orthonormal Transform: VII

e final step (best basis includes 3 vectors forming X):

J=0 0.96

Jj=1 0.28 0.68

j=2 0.19 0.19 0.32 0.36
j=3 10121012 | 0.12 | 0.12 | 0.32 | 0.00 | 0.28 | 0.28
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Example — Analysis of Solar Physics Data: I

e path of Ulysses spacecraft (records magnetic field of heliosphere)

Jupiter
February 1992

, 1993
24 May 1 Dec
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Example — Analysis of Solar Physics Data: II

2 a pooc d
{ st o X

0 25 50 75 100 125 150 175
t (days from 1 Dec 1993)

e magnetic field measurements of polar region of sun recorded
hourly from 4 Dec 1993 to 24 May 1994 (At = 1/24 day)

e Ulysses moved from 4 AU to 3 AU (explains upward trend)
e a, b, ¢, d are fast solar wind streams from polar coronal holes
e two classifications for these ‘shocks’

— corotating interaction regions (CIRs) — recur every solar ro-
tation (about 25 days)

— fast coronal mass ejections (CMEs) — transient in nature
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Example — Analysis of Solar Physics Data: III

n=1514 13 1211 10 9 8 7 6 5 4 3 2 1

0
7.5
5.0
Haar 25— : . . : : : : : : : . . . i

bl
0.0 : sl
—2.5 ! ! ! 1 ! ! ! 1 ! ! ! 1 ! ! ! J

ol JM
D(4)2.5~“““““““

0.0 et

—2.5 L L L 1 L L L 1 L L L 1 L L L |
7.5

C(6)212:»,J‘Uu

0.0 Lot

. opreli

—-2.5 i i i | i i i | i i i | i i i J
7.5

50
LA(S)ZM“““““““WM

0.0 TR,
-2.5

! ! ! 1 ! ! ! 1 ! ! ! 1 ! ! !
0 1024 2048 3072 4096

n

e 4 different level 7 = 4 DWPTs, each partitioning (0, 1/2 At]
into 16 intervals
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Example — Analysis of Solar Physics Data: IV

772W4‘0

[ : : :
Wil H\‘ ‘HH‘\ oy Ay “\H‘M‘H“\‘UI‘\“ it i \‘H ol ‘\‘ s H‘ ”M‘\““\‘ \‘\‘\HHH\ { T—3W4’1
Y. 0 TR \l eyl T TSWy g

L 0. | I ! il I “ ettt T73W4,3
2r a p oo c d ’
Uk bttt M‘ m LM/MWLW\/MW X
0 L L L L L L J

0 25 50 75 100 125 150 175

t (days from 1 Dec 1993)
e level j = 4 LA(8) DWPT coefficients Wy ,, n = 0,. .., 4, after
time alignments (derived from study of phase functions)
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Example — Analysis of Solar Physics Data: V

7=0
j=1
] =2
7=3
j=4
j=5
7=6

0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 120
f

e best basis transform using LA(8) filter and —W]-Qn .
cost function

2
log(W7y0)
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Example — Analysis of Solar Physics Data: VI

-
T 1
IS
(ol
[}
S
e

0 25 50 5 100 125 150 175
t (days from 1 Dec 1993)

e level j = 4 LA(8) MODWPT coefficients Wy ,, n = 0,...,4,

after time alignments
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Example — Analysis of Solar Physics Data: VII

e will summarize using a modified time/frequency plot, which
indicates locations of

— 100 largest values in T—MO'VV&O
— 100 largest values in T_‘V471|\A7\/7471

— 100 largest val W mn=2...,15
(in fact these all occur inn = 2,...,6)
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Example — Analysis of Solar Physics Data: VIII

n

o = o>
T 1 T T
= . .
-~ .
o
= . .

0 25 50 5 100 125 150 175
t (days from 1 Dec 1993)

e 4 events coherently broad-band; events a, ¢, d are recurrent; b
is transient; a might be two events (recurrent & transient)
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Matching Pursuit — Basics

e idea: approximate X using a few # of ‘time/frequency’ vectors
from large set of such vectors (cf. best basis)

e form ‘dictionary’ of vectors D = {dy : vy € I'}

—dy = [dygodyrs ey dyyo1]”

— each vector has unit norm: ||d||? = ZN ld% =1

— v is vector of parameters connecting d7 to time/frequency;
e.g., v = [j,n, |7 for WP table dictionary

— [' = finite set of possible values for ~

— D contains basis for RY, but can be highly redundant (helps
identify time/frequency content in X)

e matching pursuit successively approximates X with orthogonal
projections onto elements of D
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Background Material

e recall that we can reconstruct a time series X from its DW'T
coefficients W via X = WI'W |, where W = WX

e jth coefficient in W is (X, Wj,), i.e., the inner product of X
& a column vector W;e whose elements are the jth row of W

e hence we can write

<X, W[)o>
X — WTW = [W007 Wl.; R WN—l.] <X7 Wl.>
<X, WN_10>
N— 1
]IO

e regard (X, Wjqe)Wj,e as approximation to X based on just Wi,
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Matching Pursuit Algorithm: I

e for d, € D, form (X, d~,)dy,, and define residual vector:
R =X — (X, dy,)dy, so that X = (X, dy,)ds, + R

e Eixer. [240] says that d, and R orthogonal:
<d’maR<1)> - <d’Yon - (X, d’m>d’m>

= <dW07X> - <d707 <X’ d%> d70>
= <d707X> - <X,d%> =0

e hence (X, dy)dy, & R are also orthogonal, showing that
2
1X[1% = [[(X. dyg)dig 2 + IRW)? = [(X, dy)|* + RO

e minimize energy in residuals by choosing vy € I" such that
X,d = max [(X,d
0, )| = ma| (X, )
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Matching Pursuit Algorithm: II

e after first step of algorithm, second step is to treat the residuals
in the same manner as X was treated in first step, yielding

R(l) - <R(1)7 d’yl>d’yl + R(2>7
with d~, picked such that

e letting R = X, after m such steps, have additive decompo-
sition:

V=37

Matching Pursuit Algorithm: III

e also have an energy decomposition:

m—1
X% = 3" RE oy )dyy | + IR0V
k 0
= Z\ B, )%+ R

e note: as m increases, |R™)||2 must decrease (must reach zero

under certain conditions)
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Matching Pursuit Dictionaries: I

e key to matching pursuit is dictionary
e simplest dictionary: DWT dictionary
— D contains dy =W, j =0,...,N =1
— v = [j] associates W, with time/scale
— (X, dy) = Wjis jth DWT coefficient
— 1st step picks W with largest magnitude:

X = Wy W +RWY with R( Z WiW

— 2nd step picks out W with 2nd largest \W]\

— for any orthonormal D, matching pursuit approximates X
using coefficients with largest magnitudes
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Matching Pursuit Dictionaries: 11

e larger dictionary: wavelet packet table dictionary (more flexible
than best basis)

e cven larger dictionary: above combined with basis vectors cor-
responding to a discrete Fourier transform (DFT)

e level Jo MODWT dictionary
— works for all N, shift invariant, redundant
— D contains vectors whose elements are either
* normalized rows of Wj, g=1,...,Jy, or

* normalized rows of V.
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Example — Subtidal Sea Levels: 1

—20H]

—40[ ; ; ; I ; ; ; ( ; ; ; )

1980 1984 1988 1991
years

e recall subtidal sea level series X for Crescent City, CA

V41

Example — Subtidal Sea Levels: 11

0 T~ A1
L . . I . . . 1 . . . )
1 T
L . . I . . . I . . . ;o
2 T
L . . I . . . I . . . ;o
3 T
L . . I . . . ! . . . ;9
4 T8
k L . . I . . . I . . . J
5 e Ao
L . . 1 . . . n . . )
6 Tg
L . . I . . . I . . . ;o
7 T
L . . I . . . I . . . ;8
8 T
. . . ! . . . ! . . . ;9
9 ( T
. . . I . . . 1 . . . ;110
1980 1984 1988 1991

years

e use Jy = 10 LA(8) MODWT dictionary (96,206 vectors in all)
e above shows first 10 vectors picked by matching pursuit (x £1)
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Example — Subtidal Sea Levels: 111

10 T6

LI . . 1 . . . 1 . . . ;10

11 T9
L. . . ] . . . ] . . . ]

12 } 75
L . . . 1 . . . 1 . . . ]

13 78
L. . . ] . . . ] . . . ]

14 ll' T
k L. . . ] . . . ] . . . ]

15 ‘\h« | | | T6

16 T

L. . l\/\d‘ ] . . . ] . . . ;T

17 yhv T6
L . . . 1 . . . 1 . . . ]

18 T9
L L L | L L L | L L L J

19 Hf\ T

L L L 1 L L L 1 L L L J 6

1980 1984 1988 1991

years

e next 10 vectors picked by matching pursuit (x £ 1)
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Example — Subtidal Sea Levels: IV

80
60
[
401
I
20 I Ml il i T
k=0 H‘\'I’“ WA i wﬂ‘ ”N ,‘”,Mh ﬂ” ‘I‘ mr il w‘" u il w le‘w.m‘ X
—40 H L H | H | H L J
1980 1981 1988 1991

e very first (k = () associated with overall increase in 1982-3
o first 10 are for 73 At = 64 to A\jg At = 512 days
e 7 of first 20 are associated with 9 At = 128 days (needed to

account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

V44




Example — Subtidal Sea Levels: V

1

L L L L J
1980 1984

1988 1991

e matching pursuit approximations of orders m = 20, 50 and 200,
along with residuals for m = 200
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Example — Subtidal Sea Levels: VI

WWMWMM m =200
L L 1 L L 1 L |

1980 1984 1988 1991
years

e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary augmented to include basis vectors
corresponding to the DFT

e k = 0 choice same as before, but k = 1 choice is DFT vector
with period close to one year

o for 2 < k < 200, only k = 65,84 and 192 are DFT vectors
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Example — Subtidal Sea Levels: VII

R/WW»W\/V\MW m =20

WMWVWWWWWW m =200
E . . . ! . . . ! . . . |

1980 1984 1988 1991

e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary consisting of just the basis vectors
corresponding to the DFT
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Example — Subtidal Sea Levels: VIII

1.0

0.5

0.0 L L L L 1 L L L L 1 L L L L 1 L L L L J
0 50 100 150 200

m

e normalized residual sum of squares ||R™)||2/||X||2 versus num-

ber of terms m in matching pursuit approximation using the

MODWT dictionary (thick curve), the DET-based dictionary
(dashed) and both dictionaries combined (thin)

e combined dictionary does best for small m, but MODW'T dic-
tionary by itself becomes competitive as m increases
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