
Wavelet Methods for Time Series Analysis

Part IV: Wavelet Packets, Best Bases and Matching Pursuit

• discrete wavelet transforms (DWTs)

− yields time/scale analysis of X of sample size N

− need N to be a multiple of 2J0 for partial DWT of level J0

− one partial DWT for each level j = 1, . . . , J0

− scale τj related to frequencies in (1/2j+1, 1/2j]

− scale λj related to frequencies in (0, 1/2j+1]

− splits (0, 1/2] into octave bands

− computed via pyramid algorithm

− maximal overlap DWT also of interest

IV–1

Wavelet Packet Transforms – Overview

• discrete wavelet packet transforms (DWPTs)

− yields time/frequency analysis of X

− need N to be a multiple of 2J0 for DWPT of level J0

− one DWPT for each level j = 1, . . . , J0

− splits (0, 1/2] into 2j equal intervals

− computed via modification of pyramid algorithm

− can ‘mix’ parts of DWPTs of different levels j, leading to
many more orthonormal transforms and to the notion of a
‘best basis’ for a particular X

− maximal overlap DWPT (MODWPT) also of interest

IV–2

Wavelet Packets – Basic Concepts: I

• 1st stage of DWT pyramid algorithm:

P1X =

[
W1
V1

]
≡

[
W1,1
W1,0

]
− W1,1 ≡ W1 associated with f ∈ (1

4,
1
2]

− W1,0 ≡ V1 associated with f ∈ [0, 1
4]

• P1 is orthonormal:

P1PT
1 =

[
IN

2
0N

2
0N

2
IN

2

]
= IN

• transform is J0 = 1 partial DWT

IV–3

Wavelet Packets – Basic Concepts: II

• likewise, 2nd stage defines J0 = 2 partial DWT:⎡⎣W1
W2
V2

⎤⎦ ≡
⎡⎣W1,1
W2,1
W2,0

⎤⎦
− W2,1 ≡ W2 associated with f ∈ (1

8,
1
4]

− W2,0 ≡ V2 associated with f ∈ [0, 1
8]

IV–4

Wavelet Packets – Basic Concepts: III

• flow diagram for transform from X to W2,0, W2,1, W2,2 and
W2,3:

G(k
N1

) −→
↓2

W2,0

↗
G(k

N) −→
↓2

W1,0

↗ ↘
H(k

N1
) −→

↓2
W2,1

X
H(k

N1
) −→

↓2
W2,2

↘ ↗
H(k

N) −→
↓2

W1,1

↘
G(k

N1
) −→

↓2
W2,3

IV–5

Wavelet Packets – Basic Concepts: IV

• can argue W2,0, W2,1, W2,2 and W2,3 are associated with

f ∈ [0, 1
8], (1

8,
1
4], (1

4,
3
8] and (3

8,
1
2]

• scheme sometimes called a ‘regular’ DWT because it splits [0, 1
2]

split into 4 ‘regular’ subintervals, each of width 1/8

• basis for argument is the following facts:

− V1 related to f ∈ [0, 1
4] portion of X

− W1 related to f ∈ (1
4,

1
2] portion of X but with reversal of

order of frequencies

IV–6

Wavelet Packets – Basic Concepts: V

• flow diagram in frequency domain:

↗

↘

↗↘

↗↘

X

G(k
N) ↓2

W1,0

H(k
N) ↓2

W1,1

G(k
N1

) ↓2
W2,0

H(k
N1

) ↓2
W2,1

H(k
N1

) ↓2

W2,2

G(k
N1

) ↓2

W2,3

IV–7

Wavelet Packets – Basic Concepts: VI

• transform from X to W2,0, W2,1, W2,2 and W2,3 is called a
level j = 2 discrete wavelet packet transform

− abbreviated as DWPT

− splitting of [0, 1
2] similar to DFT

− unlike DFT, DWPT coefficients localized

− DWPT is ‘time/frequency’; DWT is ‘time/scale’

• because level j = 2 DWPT is an orthonormal transform, we
obtain an energy decomposition:

‖X‖2 =

3∑
n=0

‖W2,n‖2

IV–8

DWPTs of General Levels: I

• can generalize scheme to define DWPTs for levels j = 0, 1, 2, 3, . . .
(with W0,0 defined to be X)

• idea behind DWPT is to use G(·) and H(·) to split each of the
2j−1 vectors on level j − 1 into 2 new vectors, ending up with
a level j transform with 2j vectors

• given Wj−1,n’s, here is the rule for generating Wj,n’s:

− if n in Wj−1,n is even:

∗ use G(·) to get Wj,2n by transforming Wj−1,n

∗ use H(·) to get Wj,2n+1 by transforming Wj−1,n

− if n in Wj−1,n is odd:

∗ use H(·) to get Wj,2n by transforming Wj−1,n

∗ use G(·) to get Wj,2n+1 by transforming Wj−1,n

IV–9

DWPTs of General Levels: II

• example of rule, yielding level j = 3 DWPT in the bottom row

W0,0 = X

↓
G(k

N)

↓2

↓
H(k

N)

↓2
W1,0 W1,1

↓
G(k

N1
)

↓2

↓
H(k

N1
)

↓2

↓
H(k

N1
)

↓2

↓
G(k

N1
)

↓2
W2,0 W2,1 W2,2 W2,3

↓
G(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
G(k

N2
)

↓2

↓
G(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
G(k

N2
)

↓2

j=0

j=1

j=2

j=3 W3,0 W3,1 W3,2 W3,3 W3,4 W3,5 W3,6 W3,7

0 1
16

1
8

3
16

1
4

5
16

3
8

7
16

1
2

IV–10

DWPTs of General Levels: III

• note: Wj,0 and Wj,1 correspond to vectors Vj and Wj in a
jth level partial DWT

• Wj,n, n = 0, . . . , 2j − 1, is associated with f ∈ (n
2j+1,

n+1
2j+1]

• n is called the ‘sequency’ index

• in terms of circular filtering, we can write

Wj,n,t =

L−1∑
l=0

un,lWj−1,	n
2
,2t+1−l mod N/2j, t = 0, . . . ,

N

2j
−1,

where Wj,n,t is the tth element of Wj,n and

un,l ≡
{

gl, if n mod 4 = 0 or 3;

hl, if n mod 4 = 1 or 2.

IV–11

DWPTs of General Levels: IV

• can also get Wj,n by filtering X and downsampling:

Wj,n,t =

Lj−1∑
l=0

uj,n,lX2j[t+1]−1−l mod N, t = 0, 1, . . . ,
N

2j
−1,

where {uj,n,l} is the equivalent filter associated with Wj,n

• let {uj,n,l} ←→ Uj,n(·), n = 0, . . . , 2j − 1

• to construct Uj,n(·), define M0(f) = G(f) & M1(f) = H(f)

• let c1,0 ≡ [0] & c1,1 ≡ [1] &, for j > 1, create cj,n recursively

− by appending 0 to cj−1,	n
2
 if n mod 4 = 0 or 3 or

− by appending 1 to cj−1,	n
2
 if n mod 4 = 1 or 2

IV–12

DWPTs of General Levels: V

• letting cj,n,m be mth element of cj,n, then

Uj,n(f) =

j−1∏
m=0

Mcj,n,m(2mf)

• example: c3,3 = [0, 1, 0]T says

U3,3(f) = M0(f)M1(2f)M0(4f) = G(f)H(2f)G(4f)

IV–13

DWPTs of General Levels: VI

• contents of cj,n for j = 1, 2 & 3 and n = 0, . . . , 2j − 1

X

↓
G(k

N)

↓2

↓
H(k

N)

↓2
0 1

↓
G(k

N1
)

↓2

↓
H(k

N1
)

↓2

↓
H(k

N1
)

↓2

↓
G(k

N1
)

↓2
0, 0 0, 1 1, 1 1, 0

↓
G(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
G(k

N2
)

↓2

↓
G(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
H(k

N2
)

↓2

↓
G(k

N2
)

↓2

j=0

j=1

j=2

j=3 0, 0, 0 0, 0, 1 0, 1, 1 0, 1, 0 1, 1, 0 1, 1, 1 1, 0, 1 1, 0, 0

0 1
16

1
8

3
16

1
4

5
16

3
8

7
16

1
2

IV–14

DWPTs of General Levels: VII

• squared gain functions |U3,n(·)|2 using LA(8) {gl} & {hl}
n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

8

0
8

0
8

0

8

0

8

0

8

0

8

0

8

0
0 1

16
1
8

3
16

1
4

5
16

3
8

7
16

1
2

f

• note overlap in n = 3 and 4 bands – not well separated

IV–15

DWPTs of General Levels: VIII

• Wj,n nominally associated with bandwidth 1/2j+1

(corresponding frequency interval is Ij,n ≡ (n
2j+1,

n+1
2j+1])

• Wj,0 same as Vj in level j partial DWT

• since Vj has scale λj = 2j, can say Wj,0 has ‘time width’ λj

• each {uj,n,l} has width Lj, so each Wj,n has time width λj

• j = 0: time width is unity and bandwidth is 1/2

• j = J : time width is N = 2J and bandwidth is 1/2N

• note that time width × bandwidth is constant, which is an
example of ‘reciprocity’

IV–16

Wavelet Packet Tables/Trees: I

• collection of DWPTs called a wavelet packet table (or tree),
with the tree nodes being labeled by the doublets (j, n):

W0,0 = X

W1,0 W1,1

W2,0 W2,1 W2,2 W2,3

j=0

j=1

j=2

j=3 W3,0 W3,1 W3,2 W3,3 W3,4 W3,5 W3,6 W3,7

0 1
16

1
8

3
16

1
4

5
16

3
8

7
16

1
2

• nodes C ≡ {(j, n) : n = 0, . . . , 2j−1} for row j form a DWPT

• nonoverlapping complete covering of [0, 1
2] yields coefficients for

an orthonormal transform O (‘disjoint dyadic decomposition’)

• let’s consider 2 sets of doublets yielding such a decomposition

IV–17

Wavelet Packet Tables/Trees: II

• C = {(3, 0), (3, 1), (2, 1), (1, 1)} yields the DWT:

W1,1

W2,1

j=0

j=1

j=2

j=3 W3,0 W3,1

• C = {(2, 0), (3, 2), (3, 3), (1, 1)} yields another O:

W1,1

W2,0

j=0

j=1

j=2

j=3 W3,2 W3,3

IV–18

Optimal Orthonormal Transform: I

• WP table yields many O’s: is one ‘optimal’?

• Coifman & Wickerhauser (1992) proposed notion of ‘best basis’

• form WP table out to level J , and assign ‘cost’ to Wj,n via

M(Wj,n) ≡
Nj−1∑
t=0

m(|Wj,n,t|)

where m(·) is real-valued cost function (require m(0) = 0)

• let C be any collection of indices in the set N of all possible
indices forming an orthonormal transform

• ‘optimal’ such transform satisfies

min
C∈N

∑
(j,n)∈C

M(Wj,n)

IV–19

Optimal Orthonormal Transform: II

• consider following 2 unit norm vectors:

W
(1)
j,n =

[
1
2,

1
2,

1
2,

1
2

]T
and W

(2)
j,n = [1, 0, 0, 0]T

• example: ‘entropy-based’ cost function

m(|Wj,n,t|) = −W 2
j,n,t log(W 2

j,n,t)

(since |x| log(|x|) → 0 as x → 0, will interpret 0 log(0) as 0)

• here M(W
(1)
j,n) = 4 · (−1

4 log 1
4) > 0 and M(W

(2)
j,n) = 0

(lower cost if energy is concentrated in a few |Wj,n,t|’s)

IV–20

Optimal Orthonormal Transform: III

• continue looking at W
(1)
j,n =

[
1
2,

1
2,

1
2,

1
2

]T
& W

(2)
j,n = [1, 0, 0, 0]T

• 2nd example: threshold cost function

m(|Wj,n,t|) =

{
1, if |Wj,n,t| > δ;

0, otherwise.

if δ = 1/4, M(W
(1)
j,n) = 4 and M(W

(2)
j,n) = 1

(lower cost if there are only a few large |Wj,n,t|’s)
• 3rd example: �p cost function m(|Wj,n,t|) = |Wj,n,t|p

if p = 1, M(W
(1)
j,n) = 2 and M(W

(2)
j,n) = 1

(same pattern as before)

• once costs assigned, need to find optimal transform

IV–21

Optimal Orthonormal Transform: IV

• let X be following series of length N = 8 :

X =
√

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−1
2

1
2

−1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
√

8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
8

− 1√
8

− 1√
8

1√
8

1√
8

− 1√
8

− 1√
8

1√
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

0

− 1

1

0

0

− 2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IV–22

Optimal Orthonormal Transform: V

• Haar DWPT coefficients, levels j = 1, 2 and 3 (three underlined
coefficents correspond to basis vectors used in forming X):

X = [2, 0,−1, 1, 0, 0,−2, 2]T

[
√

2, 0, 0, 0] [−√
2,
√

2, 0,
√

8]

[1, 0] [−1, 0] [2, 2] [0, 2]

j=0

j=1

j=2

j=3 [1√
2] [− 1√

2] [1√
2] [− 1√

2] [
√

8] [0] [
√

2] [
√

2]

IV–23

Optimal Orthonormal Transform: VI

• cost table using −W 2
j,n,t log(W 2

j,n,t) cost function:

1.45

0.28 0.88

0.19 0.19 0.72 0.36

j=0

j=1

j=2

j=3 0.12 0.12 0.12 0.12 0.32 0.00 0.28 0.28

• algorithm to find ‘best’ basis

− mark all costs of ‘childern’ nodes at bottom

− compare cost of children with their ‘parent’

∗ if parent cheaper, mark parent node

∗ if children cheaper, replace cost of parent

− repeat for each level; when done, look for top-marked nodes

IV–24

Optimal Orthonormal Transform: VII

• final step (best basis includes 3 vectors forming X):

0.96

0.28 0.68

0.19 0.19 0.32 0.36

j=0

j=1

j=2

j=3 0.12 0.12 0.12 0.12 0.32 0.00 0.28 0.28

IV–25

Example – Analysis of Solar Physics Data: I

• path of Ulysses spacecraft (records magnetic field of heliosphere)

Jupiter
February 1992Sun

Launch 43◦

62◦

1994
199324 May
4 Dec

IV–26

Example – Analysis of Solar Physics Data: II

a b c d

X

2

1

0
0 25 50 75 100 125 150 175

t (days from 1 Dec 1993)

• magnetic field measurements of polar region of sun recorded
hourly from 4 Dec 1993 to 24 May 1994 (∆t = 1/24 day)

• Ulysses moved from 4 AU to 3 AU (explains upward trend)

• a, b, c, d are fast solar wind streams from polar coronal holes

• two classifications for these ‘shocks’

− corotating interaction regions (CIRs) – recur every solar ro-
tation (about 25 days)

− fast coronal mass ejections (CMEs) – transient in nature

IV–27

Example – Analysis of Solar Physics Data: III

n = 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Haar

D(4)

C(6)

LA(8)

7.5
5.0

2.5

0.0
−2.5

7.5
5.0

2.5

0.0
−2.5

7.5
5.0

2.5

0.0
−2.5

7.5
5.0

2.5

0.0
−2.5

0 1024 2048 3072 4096
n

• 4 different level j = 4 DWPTs, each partitioning (0, 1/2 ∆t]
into 16 intervals

IV–28

Example – Analysis of Solar Physics Data: IV

a b c d

T −2W4,0

T −3W4,1

T −3W4,2

T −3W4,3

T −3W4,4

X

2

1

0
0 25 50 75 100 125 150 175

t (days from 1 Dec 1993)

• level j = 4 LA(8) DWPT coefficients W4,n, n = 0, . . . , 4, after
time alignments (derived from study of phase functions)

IV–29

Example – Analysis of Solar Physics Data: V

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0
f

• best basis transform using LA(8) filter and −W 2
j,n,t log(W 2

j,n,t)
cost function

IV–30

Example – Analysis of Solar Physics Data: VI

a b c d

T −45W̃4,0

T −53W̃4,1

T −57W̃4,2

T −49W̃4,3

T −51W̃4,4

X

2

1

0
0 25 50 75 100 125 150 175

t (days from 1 Dec 1993)

• level j = 4 LA(8) MODWPT coefficients W4,n, n = 0, . . . , 4,
after time alignments

IV–31

Example – Analysis of Solar Physics Data: VII

• will summarize using a modified time/frequency plot, which
indicates locations of

− 100 largest values in T −|ν4,0|W̃4,0

− 100 largest values in T −|ν4,1|W̃4,1

− 100 largest values in T −|ν4,n|W̃4,n, n = 2, . . . , 15
(in fact these all occur in n = 2, . . . , 6)

IV–32

Example – Analysis of Solar Physics Data: VIII

a b c d

0

1

2

3
n

4

5

6

7

X

f

0

3

6
2

1

0
0 25 50 75 100 125 150 175

t (days from 1 Dec 1993)

• 4 events coherently broad-band; events a, c, d are recurrent; b
is transient; a might be two events (recurrent & transient)

IV–33

Matching Pursuit – Basics

• idea: approximate X using a few # of ‘time/frequency’ vectors
from large set of such vectors (cf. best basis)

• form ‘dictionary’ of vectors D ≡ {dγ : γ ∈ Γ}
− dγ =

[
dγ,0, dγ,1, . . . , dγ,N−1

]T
− each vector has unit norm: ‖dγ‖2 =

∑N−1
l=0 d2

γ,l = 1

− γ is vector of parameters connecting dγ to time/frequency;

e.g., γ = [j, n, t]T for WP table dictionary

− Γ = finite set of possible values for γ

− D contains basis for RN , but can be highly redundant (helps
identify time/frequency content in X)

• matching pursuit successively approximates X with orthogonal
projections onto elements of D

IV–34

Background Material

• recall that we can reconstruct a time series X from its DWT
coefficients W via X = WTW, where W ≡ WX

• jth coefficient in W is 〈X,Wj•〉, i.e., the inner product of X
& a column vector Wj• whose elements are the jth row of W

• hence we can write

X = WTW = [W0•,W1•, . . . ,WN−1•]

⎡⎢⎢⎣
〈X,W0•〉
〈X,W1•〉

...
〈X,WN−1•〉

⎤⎥⎥⎦
=

N−1∑
j=0

〈X,Wj•〉Wj•

• regard 〈X,Wj•〉Wj• as approximation to X based on just Wj•
IV–35

Matching Pursuit Algorithm: I

• for dγ0 ∈ D, form 〈X,dγ0〉dγ0, and define residual vector:

R(1) ≡ X − 〈X,dγ0〉dγ0 so that X = 〈X,dγ0〉dγ0 + R(1)

• Exer. [240] says that dγ0 and R(1) orthogonal:

〈dγ0,R
(1)〉 =

〈
dγ0,X − 〈X,dγ0〉dγ0

〉
= 〈dγ0,X〉 − 〈

dγ0, 〈X,dγ0

〉
dγ0〉

= 〈dγ0,X〉 − 〈X,dγ0〉 = 0

• hence 〈X,dγ0〉dγ0 & R(1) are also orthogonal, showing that

‖X‖2 = ‖〈X,dγ0〉dγ0‖2 + ‖R(1)‖2 =
∣∣〈X,dγ0〉

∣∣2 + ‖R(1)‖2

• minimize energy in residuals by choosing γ0 ∈ Γ such that∣∣〈X,dγ0〉
∣∣ = max

γ∈Γ

∣∣〈X,dγ〉
∣∣

IV–36

Matching Pursuit Algorithm: II

• after first step of algorithm, second step is to treat the residuals
in the same manner as X was treated in first step, yielding

R(1) = 〈R(1),dγ1〉dγ1 + R(2),

with dγ1 picked such that∣∣∣〈R(1),dγ1〉
∣∣∣ = max

γ∈Γ

∣∣∣〈R(1),dγ〉
∣∣∣

• letting R(0) ≡ X, after m such steps, have additive decompo-
sition:

X =

m−1∑
k=0

〈R(k),dγk〉dγk + R(m)

IV–37

Matching Pursuit Algorithm: III

• also have an energy decomposition:

‖X‖2 =

m−1∑
k=0

‖〈R(k),dγk〉dγk‖2 + ‖R(m)‖2

=

m−1∑
k=0

|〈R(k),dγk〉|2 + ‖R(m)‖2

• note: as m increases, ‖R(m)‖2 must decrease (must reach zero
under certain conditions)

IV–38

Matching Pursuit Dictionaries: I

• key to matching pursuit is dictionary

• simplest dictionary: DWT dictionary

− D contains dγ ≡ Wj•, j = 0, . . . , N − 1

− γ = [j] associates Wj• with time/scale

− 〈X,dγ〉 = Wj is jth DWT coefficient

− 1st step picks Wj with largest magnitude:

X = W(0)W(0) + R(1) with R(1) =
∑
j �=(0)

WjWj•

− 2nd step picks out Wj with 2nd largest |Wj|
− for any orthonormal D, matching pursuit approximates X

using coefficients with largest magnitudes

IV–39

Matching Pursuit Dictionaries: II

• larger dictionary: wavelet packet table dictionary (more flexible
than best basis)

• even larger dictionary: above combined with basis vectors cor-
responding to a discrete Fourier transform (DFT)

• level J0 MODWT dictionary

− works for all N , shift invariant, redundant

− D contains vectors whose elements are either

∗ normalized rows of W̃j, j = 1, . . . , J0, or

∗ normalized rows of ṼJ0

IV–40

Example – Subtidal Sea Levels: I

X

80

60

40

20

0

−20

−40
1980 1984 1988 1991

years

• recall subtidal sea level series X for Crescent City, CA

IV–41

Example – Subtidal Sea Levels: II

λ10

τ9

τ9

τ9

τ8

λ10

τ9

τ8

τ9

τ10

0

1

2

3

4
k

5

6

7

8

9

1980 1984 1988 1991
years

• use J0 = 10 LA(8) MODWT dictionary (96,206 vectors in all)

• above shows first 10 vectors picked by matching pursuit (×±1)

IV–42

Example – Subtidal Sea Levels: III

τ6

τ9

τ5

τ8

τ5

τ6

τ7

τ6

τ9

τ6

10

11

12

13

14
k

15

16

17

18

19

1980 1984 1988 1991
years

• next 10 vectors picked by matching pursuit (×± 1)

IV–43

Example – Subtidal Sea Levels: IV

Xk = 0

80

60

40

20

0

−20

−40
1980 1984 1988 1991

years

• very first (k = 0) associated with overall increase in 1982–3

• first 10 are for τ8 ∆t = 64 to λ10 ∆t = 512 days

• 7 of first 20 are associated with τ9 ∆t = 128 days (needed to
account for seasonal variabilty)

• k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

IV–44

Example – Subtidal Sea Levels: V

m = 20

m = 50

m = 200

R(200)

X

1980 1984 1988 1991
years

• matching pursuit approximations of orders m = 20, 50 and 200,
along with residuals for m = 200

IV–45

Example – Subtidal Sea Levels: VI

m = 20

m = 50

m = 200

1980 1984 1988 1991
years

• matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary augmented to include basis vectors
corresponding to the DFT

• k = 0 choice same as before, but k = 1 choice is DFT vector
with period close to one year

• for 2 ≤ k < 200, only k = 65, 84 and 192 are DFT vectors
IV–46

Example – Subtidal Sea Levels: VII

m = 20

m = 50

m = 200

1980 1984 1988 1991
years

• matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary consisting of just the basis vectors
corresponding to the DFT

IV–47

Example – Subtidal Sea Levels: VIII

0 50 100 150 200
0.0

0.5

1.0

m

• normalized residual sum of squares ‖R(m)‖2/‖X‖2 versus num-
ber of terms m in matching pursuit approximation using the
MODWT dictionary (thick curve), the DFT-based dictionary
(dashed) and both dictionaries combined (thin)

• combined dictionary does best for small m, but MODWT dic-
tionary by itself becomes competitive as m increases

IV–48

