Wavelet Methods for Time Series Analysis

Part III: MODWT and Examples of DWT/MODWT Analysis

e MODWT stands for ‘maximal overlap discrete wavelet trans-
form” (pronounced ‘mod WT")

e transforms very similar to the MODW'T have been studied in
the literature under the following names:

— undecimated DWT (or nondecimated DW'T)
— stationary DW'T

— translation (or time) invariant DWT

— redundant DWT

e also related to notions of ‘wavelet frames’” and ‘cycle spinning’

e basic idea: use values removed from DW'T by downsampling
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Quick Comparison of the MODWT to the DWT

e unlike the DWT, MODWT is not orthonormal (in fact MODWT
is highly redundant)

e unlike the DWT, MODWT is defined naturally for all samples
sizes (i.e., N need not be a multiple of a power of two)

e similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT, but with certain additional desirable features;
e.g., unlike the DWT, MODWT-based MRA has details and
smooths that shift along with X (if X has detail D;, then
77X has detail ’Tmlsj)

e similar to the DWT, an analysis of variance (ANOVA) can be
based on MODW'T wavelet coefficients

e unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts 7" X
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DWT Wavelet & Scaling Filters and Coefficients

e recall that we obtain level j = 1 DWT wavelet and scaling
coefficients from X by filtering and downsampling:

X — H(%) ?Wl and X — G(%) ?Vl

e transfer functions H(-) and G(-) are associated with impulse
response sequences {h;} and {g;} via the usual relationships

{l} < H() and {g;} — G()
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Level j Equivalent Wavelet & Scaling Filters

e for any level 7, rather than using the pyramid algorithm, we
could get the DWT wavelet and scaling coefficients directly
from X by filtering and downsampling:

X—>E>WjandX—> (%) — Vi
e transfer functions H]() & Gj(~) depend just on H(-) & G(+)
— actually can say ‘just on H(-)" since G(-) depends on H(-)
— note that Hi(:) & G1(+) are the same as H(-) & G(+))

e impulse response sequences {h;,;} and {g;;} are associated
with transfer functions via the usual relationships

{hji} < H;(-) and {g;} «— G;(-),
and both filters have width L; = (2/ — 1)(L — 1) + 1
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Haar Equivalent Wavelet & Scaling Filters

D(4) Equivalent Wavelet & Scaling Filters

{hi} Tl L=2 {hi} ..Tx I =4
{hat} TTM Ly=14 {ho} el Ly =10
{ha.} TTTTM L;=38 {haa} 'TTT'-a;- Ly =22
hag} T L6 ) tth, L1
{gy 1 L= {o} - L=4
{g0} Ly=4 {921} Ly = 10
(gs} TN L (gs} e, L=
{gas} T L,=16 {gus} ottt e, L, =46
oL;= 97 is width of {hj} and {g;,} e L; dictated by general formula L; = (2] —1)(L—-1)+1,
but can argue that effective width is 2/ (same as Haar L)
s e
D(6) Equivalent Wavelet & Scaling Filters LA(8) Equivalent Wavelet & Scaling Filters
() = L= {} ol L=
{Ray} e i Ly =16 {haa} ] - Ly =22
{ha.} ..__“.-'FTT-.“.. L3 =36 {hs.} -h'ﬂTan Ly =50
{ha} 1, S Ly=176 {hi} i Ly = 106
{o} L=6 (g} -l L=s
{920 e Ly =16 {gog} -smetle Ly =22
{g5.} ottt Ls = 36 {951} 1T, Ly = 50
{gus} ettt T, Ly =176 {911} w0000y, L, = 106

e {hy} resembles discretized version of Mexican hat wavelet
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e {h;} resembles discretized version of Mexican hat wavelet,

again with an effective width of 27

I
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Squared Gain Functions for Equivalent Filters

e squared gain functions give us frequency domain properties:
H;(f) = [Hj(f)]? and Gj(f) = |G;(f)
e example: squared gain functions for LA(8) Jy = 4 partial DWT

16
OW ] ] ] ] ] I I J g4(>
16[
0 h I ! J H4(>
3
0 i ! ! J HS()
AT
0 L /1\\:\ ! ! J HQ()
oF /ﬁ
0 | ! // | | | H1(>

0 1 1 3 1 5 3 e 1

16 8 16 4 16 8 16 2
f

Definition of MODWT Wavelet & Scaling Filters

e define MODWT filters {B]}l} and {g;;} by renormalizing the
DWT filters (widths of MODWT & DWT filters are the same):

i /2 - /2
hjo=hjo/27? and g1 = g;0/2
e whereas DWT ﬁlters* have unit energy, MODWT filters satisfy

Zhjl_ Zgjl__

olet H ;(+) and G ]() be the corresponding transfer functions:

so that N B
{hj} — Hj(-) and {g;;} «— G;(*)
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Definition of MODWT Coefficients: 1

e level j MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h;,;} and {g;;}:

X — ﬁj(%) — \A7\/7j and X — CN;](%) — \N/j

e compare the above to its DW'T equivalent:
X — Hi(%) — W; and X — G;(£) — V;
i — i) —

e DWT and MODWT have different normalizations for filters,
and there is no downsampling by 2/ in the MODWT

e level Jyo MODWT consists of Jy + 1 vectors, namely,
Wl,Wg,...,W and VJO’
cach of which has length N
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Definition of MODWT Coeflicients: 11

e MODWT of level Jy has (Jy+ 1) N coefficients, whereas DWT
has N coefficients for any given Jj

e whereas DWT of level J requires N to be integer multiple of
270, MODWT of level J is well-defined for any sample size N

e when N is divisible by 270, we can write

Lj—1 Lj—1
Wit = Z hj, ZXQJ(HI) 1-1 mod N and W gt = Z hg 1X¢—1 mod N
1=0 1=0

and we have the relationship

o
Wi —2J/ Wj’Qj(tH) 1 and, likewise, Vi ;=2 Jo/2y7 VJ 2I0(t41)—1

(here Wj,t & ‘7J07t denote the tth elements of Wj &V Jo)
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Properties of the MODWT

e as was true with the DWT, we can use the MODW'T to obtain

— a scale-based additive decomposition (MRA) and
— a scale-based energy decomposition (ANOVA)

e in addition, the MODWT can be computed efficiently via a
pyramid algorithm
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MODWT Multiresolution Analysis: I

e starting from the definition

Lj-1

—~

[=0

N—-1

(=0

where {ZL;J} is {iszJ} periodized to length N

Wit = Z hj,lXt—l mod N, can write W, = Z h;',lXt—l mod N>

e can express the above in matrix notation as W; = W, X, where

VNVj_iS the N x N matrix given by

70
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(@]
hia
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MODWT Multiresolution Analysis: 11

e recalling the DWT relationship D; = WjTWj, define jth level
MODWT detail as D; = WI'W;
e similar development leads to definition for jth level MODWT
smooth as §; = VjTVj
e can show that level Jy MODWT-based MRA is given by
Jo

X = Z ﬁj T SVJO’
j=1
which is analogous to the DWT-based MRA
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MODWT Multiresolution Analysis: 111

o if we form DWT-based MRAs for X and its circular shifts

T"X, m=1,...,N — 1, we can obtain ﬁj by appropriately
averaging all N DWT-based details (‘cycle spinning’)
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MODWT Multiresolution Analysis: IV

e left-hand plots show D ., while right-hand plots show average
of 77D in MRA for 7"X, m =0,1,...,15

84 (AN ENNEE (AN EENEEENEE aVeraged T7 m S4

Dy ettt L ettt averaged 7Dy
Ds a1 ettt averaged 7Dy
Dy prrrettegettes [epetee e averaged 77Dy

Dl J_.,._I_i%.l_-l“%_L J_“%_._._I_Tf averaged Tinl/Dl

X ol TT T ﬂ r X
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MODWT Decomposition of Energy

o for any Jy > 1 & N > 1, can show that

Jo
2 W12 \/ 2
X7 =Y WS+ 1V g1,
7=1
leading to an analysis of the sample variance of X:
. 1 >
~2 W2 L I 2 3
UX_N;”WJH + IV Rll" =X
j:

which is analogous to the DW'T-based analysis of variance
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MODWT Pyramid Algorithm

e goal: compute Wj & \N/'j using \ij—l rather than X
e letting %,t = X, can show that, for all j > 1,
L—1 L—1

Wji - Z hlvj—l,t—Qj_ll mod N and Vjat - Z glvjj—l,t—Qj_ll mod N
1=0 =0

e inverse pyramid algorithm is given by

L—1 L—1
V]'—Lt - Z thj,t—i—Qj_ll mod N + Z glvj,t—&—Qj_ll mod N
[=0 [=0

e algorithm requires N logy(N') multiplications, which is the same
as needed by fast Fourier transform algorithm
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Example of Jy =4 LA(8) MODWT

e oxygen isotope records X from Antarctic ice core

7-745\74
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Relationship Between MODWT and DWT

e bottom plot shows W from DWT after circular shift 73 to
align coefficients properly in time

e top plot shows W4 from MODWT and subsamples that, upon
rescaling, yield Wy via Wy = 4W4,16(t+1)—1

3
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Example of J; =4 LA(8) MODWT MRA

e oxygen isotope records X from Antarctic ice core
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Example of Variance Decomposition

e decomposition of sample variance from MODW'T

= e e e
Bem a3 (=X = 3 LW Vi - X
=0 j=1
e LA(8)-based example for oxygen isotope records
— 0.5 year changes: %HWNQ =0.145 (= 4.5% of 63()
— 1.0 years changes: %HWQ”Q = 0.500 (= 15.6%)
— 2.0 years changes: %HVV;),HQ = 0.751 (= 23.4%)
— 4.0 years changes: %HWM!Q = 0.839 (= 26.2%)
— 8.0 years averages: %H\N/}LHQ — X7 = 0.969 (= 30.2%)
— sample variance: é)'%( = 3.204
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Summary of Key Points about the MODWT

e similar to the DWT, the MODWT offers

— a scale-based multiresolution analysis
— a scale-based analysis of the sample variance
— a pyramid algorithm for computing the transform efficiently

e unlike the DWT, the MODWT is

— defined for all sample sizes (no ‘power of 2’ restrictions)

— unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X (example coming later)

— highly redundant in that a level Jy transform consists of
(Jo + 1)N values rather than just N

e as we shall see, the MODWT can eliminate ‘alignment’ arti-
facts, but its redundancies are problematic for some uses
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Examples of DWT & MODWT Analysis: Overview

e look at DWT analysis of electrocardiogram (ECG) data

e discuss potential alignment problems with the DWT and how
they are alleviated with the MODW'T

e look at MODWT analysis of ECG data, subtidal sea level fluc-
tuations, Nile River minima and ocean shear measurements

e discuss practical details

— choice of wavelet filter and of level Jj

— handling boundary conditions

— handling sample sizes that are not multiples of a power of 2
— definition of DW'T not standardized
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Electrocardiogram Data: I

t (seconds)

e ECG measurements X taken during normal sinus rhythm of a
patient who occasionally experiences arhythmia (data courtesy
of Gust Bardy and Per Reinhall, University of Washington)

e NV = 2048 samples collected at rate of 180 samples/second; i.e.,
At = 1/180 second

e 11.38 seconds of data in all
e time of Xy taken to be ty = 0.31 merely for plotting purposes
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Electrocardiogram Data: 11

t (seconds)

e features include

— baseline drift (not directly related to heart)

— intermittent high-frequency fluctuations (again, not directly
related to heart)

— ‘PQRST” portion of normal heart rhythm

e provides useful illustration of wavelet analysis because there are
identifiable features on several scales
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Electrocardiogram Data: III

e partial DWT coefficients W of level Jy = 6 for ECG time series
using the Haar, D(4) and LA(8) wavelets (top to bottom)
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Electrocardiogram Data: IV

e clements W), of W are plotted versusn =0, ..., N —1 = 2047
e vertical dotted lines delineate 7 subvectors W1, ..., Wg & Vi
e sum of squares of 2048 coefficients W is equal to those of X

e gross pattern of coefficients similar for all three wavelets
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Electrocardiogram Data: V

F _‘\‘HMMHM\‘
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t (seconds)

e LA(8) DWT coefficients stacked by scale and aligned with time
e spacing between major tick marks is the same in both plots
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Electrocardiogram Data: VI

e R waves aligned with spikes in Wy and W3
e intermittent fluctuations appear mainly in W1 and Wy

e setting Jy = 6 results in Vg capturing baseline drift
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Electrocardiogram Data: VII

e to quantify how well various DWTs summarize X, can form
normalized partial energy sequences (NPESs)

egiven {U; :t =0,..., N — 1}, square and order such that
2 2 2 2
Uiy 2 Uiy 22 Uiv—y 2 Uiy

oU (20) is largest of all the Ut2 values while U (QN—l) is the smallest

e NPES for {U;} defined as
> m=0U (Qm)

Cn=N1,0
Zm=0 Ul

Il
I
=
\')—‘
|
—

Y
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Electrocardiogram Data: VIII

Electrocardiogram Data: IX

e plots show NPESs for *ﬁ S
e [T L e e s A A e [T
— original time series (dashed curve, plot (a)) *MWMWW Dy
[ (AUERPY RN R BN O I e /R BTSN |
— Haar DWT (solid curves, both plots) L J A ' - Dy
— D(4) DWT (dashed curve, plot (b)); LA(8) is virtually iden- *%WH‘*"**#——H- D,
tical I
. 9 9 & } [ T NSRRN WORENN NR NNSNORN WUNU SN SO | L D
— DFT (dotted curve, plot (a)) with |Uz|* rather than U; LA B A A A A ' !
s 1 1 1 1 L 1 L p J
0.5+
o= 1.0 ’ X
(a> :?;k 1 L 1 L 1 L 1 L 1 L J
Cn 0 2 4 6 8 10 12
t (seconds)
P R | | N B A M
1024 2048 0 256 512 e Haar DWT multiresolution analysis of ECG time series
e blocky nature of Haar basis vectors readily apparent
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Electrocardiogram Data: X Electrocardiogram Data: XI
[ Sg — So
VA/V\/\/VV\A/\/\/\J\/\/V\M/VNA/VVFM/VVvV\J\/\/\NVWV\JV\M
VWAWWWWMWNMM D4 MW‘JW%MWMWNMM D4
T o B R R S A
:,! .| t Dy »4%‘;4‘:*%%##%% ¥ # D,
S S S - D 3 R e S Dy
| | | | | L J L 1 L 1 L 1 L 1 L 1 L |
150 R 1.5 R
0.5 0.5
—0.5 X —0.51 X
-1.5 1 . 1 . 1 . 1 . 1 . ] —1.5 1 . 1 " 1 " | . | . J
0 2 1 6 8 10 12 0 2 4 6 8 10 12

t (seconds)

e D(4) DWT multiresolution analysis
e ‘shark’s fin” evident in Ds and Dg
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t (seconds)

e LA(8) DWT MRA (shape of filter less prominent here)
e note where features end up (will find MODWT does better)
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Effect of Circular Shifts on DWT: I

X T°X X T°X
T2V, L1 Lo S,
L J L J L J L J
7T3W, *“ ot —N———F——— Dy
1 1 1 | 1 |
773W3 mo ol — W\ ’D3
1 1 1 | 1 |
T2W, F - — D;
L J L J L J L J
T2W, | - S : D,
L J L J L J L J
N | LA A
L J L J L J L J
0 64 1280 64 128 0 64 1280 64 128

e bottom row: bump X and bump shifted to right by 5 units
e Jy =4 LA(8) DWTs (first 2 columns) and MRAs (last 2)
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Effect of Circular Shifts on DWT: 11

o Wy Wiy o Wae o Wiy
wAJ\ _J\ J\ JL N
| ] | ] | ] | ]
Nl A la- Lo
| ] | ] | ] | ]
0 64 128 0 64 128 0 64 128 0 64 128
t t t t

e level Jy = 4 basis vectors used in LA(8) DWT to produce
wavelet coefficients Wy ;, 7 =4,...,7 (black curves)

e ‘bump’ time series X (blue curves in top row of plots)
o shifted bump series 7°X (red curves, bottom row)

e inner product between plotted basis vector and time series
yields labeled wavelet coefficient

e alignment between basis vectors and time series explains why
DWTs for two series are quite different
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Effect of Circular Shifts on MODWT

X T7°X X T7°X
7745V4 Sy
| | | J | J
7*53W4 S\ S\ — D4
| J | | J | J
T’Q5W3 —J\~ —\~ N —WV—— Dy
I | I | I | I |
T_IIWQ — —W W W D2
| J | | |
774W1 Dy
| | | |
- i A A
I | I | I | I |
0 64 128 0 64 128 0 64 128 0 64 128

t t t t

e unlike the DW'T shifting a time series shifts the MODWT co-
efficients and components of MRA
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Electrocardiogram Data: XII

- —189v/
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e level Jy = 6 LA(8) MODWT, with Wj’s circularly shifted
e vertical lines delineate ‘boundary’ coefficients (explained later)
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Electrocardiogram Data: XIII

—221\AT
el e
L Il L Il L Il L Il L Il L J

|

L | L | L | L | L |
15[ R
0.5

15 I . I I . I . | . |

0 2 4 6 8 10 12
t (seconds)

e comparison of level 6 MODW'T and DW'T wavelet coefficients,
after shifting for time alignment

e boundary coefficients delineated by vertical red lines

e subsampling & rescaling \7\76 yields Wy (note ‘aliasing’” effect)
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Electrocardiogram Data: XIV

R Se
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e LA(8) MODWT multiresolution analysis of ECG data
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Electrocardiogram Data: XV

151 R
0.5+

—05F
—1.5 | L 1 L 1 L 1 L 1 L J

t (seconds)

e MODWT detgils seem more consistent across time than DW'T
details; e.g., Dg does not fade in and out as much as Dg

e ‘bumps’ in Dy are slightly asymmetric, whereas those in 56
aren’t
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Electrocardiogram Data: XVI

Ss
. ! . ! . ! . ! o
: ! . ! . ! . ! ; ; J
1.5 R
0.5 X
—0.5+
-15 | . | . ! . ! . ! . |
0 2 4 6 8 10 12

t (seconds)

e MODWT coefficients and MRA resemble each other, with lat-
ter being necessarily smoother due to second round of filtering

e in the above, §6 is somewhat smoother than \76 and is an
intuitively reasonable estimate of the baseline drift

111-44




Subtidal Sea Level Fluctuations: I

sof
60—
40
20 ‘ ‘ ‘ ‘ | : ‘ :

0 N ! ! ) ‘ / 1 X
—20[

—40( ; ; ; I ;
1980 1984

L |

1988 1991
years

e subtidal sea level fluctuations X for Crescent City, CA, col-
lected by National Ocean Service with permanent tidal gauge

e N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)

e one value every 12 hours, so At = 1/2 day

e ‘subtidal’ is what remains after diurnal & semidiurnal tides are
removed by low-pass filter (filter seriously distorts frequency
band corresponding to first physical scale 71 At = 1/2 day)
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Subtidal Sea Level Fluctuations: II

1980 1984 1988 1991
years

e level Jy = 7 LA(8) MODWT multiresolution analysis
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Subtidal Sea Level Fluctuations: II1

e LA(8) picked in part to help with time alignment of wavelet
coefficients, but MRAs for D(4) and C(6) are OK

e Haar MRA suffers from ‘leakage’
e with Jy =7, 57 represents averages over scale A7 At = 64 days

e this choice of Jj captures intra-annual variations in §7 (not of
interest to decompose these variations further)
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Subtidal Sea Level Fluctuations: IV

—40

years

e expanded view of 1985 and 1986 portion of MRA

e lull in 752, 753 and 754 in December 1985 (associated with
changes on scales of 1, 2 and 4 days)
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Subtidal Sea Level Fluctuations: V

e MRA suggests seasonally dependent variability at some scales

e because MODWT-based MRA does not preserve energy, prefer-
able to study variability via MODWT wavelet coefficients

e cumulative variance plots for Wj useful tool for studying time
dependent variance

e can create these plots for LA or coiflet-based Wj as follows

_pH)— N
e form 7 i |Wj, L.e., circularly shift W to align with X
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Subtidal Sea Level Fluctuations: VI

e form normalized cumulative sum of squares:

t

[

Ciy=— W , t=0,...,N —1;
7t Nuz:;] j,u+|V§H>| mod N

) _
note that C; y_y = |77 W ||2/N = |W|%/N
e examples for j = 2 (left-hand plot) and j = 7 (right-hand)

Cry

A R

T L L P S I T
1980 1984 1988 19911980 1984 1988 1991

| I R

years years
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Subtidal Sea Level Fluctuations: VII

e casier to see how variance is building up by subtracting uniform
rate of accumulation tC; y_1/(N — 1) from C} :

CiN-1
N1

e vields rotated cumulative variance plots

/A
ijt = ij - t

R S S
1984

- R J R i - R
1988 19911980 1984
years years

| T
1988 1991

1980

° C’ét and Cét associated with physical scales of 1 and 32 days

e helps build up picture of how variability changes within a year
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Subtidal Sea Level Fluctuations: VIII

75

501
250 _
OMW%W B for X

50 . | . | . | . | . | . ]
B

50~
25
722k D5 for TIZX

—50 L | L | L | L | L | L J
6]

50
25—
zg%m%%m D; for T°X

—50 L 1 L 1 L 1 L 1 L 1 L J
0 16 32 48 64 80 96
days (from 1 Jan 1986)

e comparison of alignment properties of DWT and MODWT de-
tails D5 and Ds, both associated with changes on a physical
scale of 75 At = 8 days (distance between tick marks)

e DWT details evidently suffer from alignment effects
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Nile River Minima: 1

9 | L L L L L |
600 700 800 900 1000 1100 1200 1300
year

e time series X of minimum yearly water level of the Nile River
e data from 622 to 1284, but actually extends up to 1921

e data after about 715 recorded at the Roda gauge near Cairo

e method(s) used to record data before 715 source of speculation

e oldest time series actually recorded by humans?!
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Nile River Minima: II

13-

11+

9 L L L L L ' J
600 700 800 900 1000 1100 1200 1300
year

e level Jy = 4 Haar MODWT MRA points out enhanced vari-
ability before 715 at scales 7 At = 1 year and ™ At = 2 year

e Haar wavelet adequate (minimizes # of boundary coefficients)
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Ocean Shear Measurements: I

L N\f’v 3
! ~
I - - D
= i .
j
| I 1 L A ) |
6.4
00 M W X
—6.4 R T P R B P £

300 450 600 750 900 1050
depth (meters)

e level Jy = 6 MODWT multiresolution analysis using LA(8)
wavelet of vertical shear measurements (in inverse seconds) ver-
sus depth (in meters; series collected & supplied by Mike Gregg,
Applied Physics Laboratory, University of Washington)
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Ocean Shear Measurements: I1

e At = 0.1 meters and N = 6875

e LA(8) protects against leakage and permits coefficients to be
aligned with depth

e Jy = 6 yields smooth §6 that is free of bursts (these are isolated
in the details D;)

e note small distortions at beginning/end of §6 evidently due to
assumption of circularity

e vertical blue lines delineate subseries of 4096 ‘burst free’ values
(to be reconsidered later)

e since MRA is dominated by §6; let’s focus on details alone
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Ocean Shear Measurements: 111

uN et s ||'U\'Ll WAt il ‘I‘]'L o MM A'AM'M D5
) . Mﬂ
.
-y

I
4

L | L L 1 L L 1 L L L | J
300 450 600 750 900 1050
depth (meters)

° 5j’s pick out bursts around 450 and 975 meters, but two bursts
have somewhat different characteristics

e possible physical interpretation for first burst: turbulence in 754
drives shorter scale turbulence at greater depths

e hints of increased variability in 755 and 56 prior to second burst
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Choice of Wavelet Filter: 1

e basic strategy: pick wavelet filter with smallest width L that
yields an acceptable analysis (smaller L means fewer boundary
coefficients)

e very much application dependent

— LA(8) good choice for MRA of ECG data and for time/depth
dependent analysis of variance (ANOVA) of subtidal sea lev-
cls and shear data

— D(4) or LA(8) good choice for MRA of subtidal sea levels,
but Haar isn’t (details ‘locked’ together, i.e., are not isolating
different aspects of the data)

— Haar good choice for MRA of Nile River minima
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Choice of Wavelet Filter: 11

e can often pick L via simple procedure of comparing different
MRAs or ANOVAs (this will sometimes rule out Haar if it
differs too much from D(4), D(6) or LA(8) analyses)

e for MRAs, might argue that we should pick {h;} that is a good
match to the ‘characteristic features” in X

— hard to quantify what this means, particularly for time series
with different features over different times and scales

— Haar and D(4) are often a poor match, while the LA filters
are usually better because of their symmetry properties

— can use NPESs to quantify match between {h;} and X

e use LA filters if time alignment of {W ;} with X is important
(LA filters with even L/2, ie., 8, 12, 16 or 20, yield better
alignment than those with odd L/2)
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Choice of Level Jy: 1

e again, very much application dependent, but often there is a
clear choice

— Jy = 6 picked for ECG data because it isolated the baseline
drift into Vg and Vy, and decomposing this drift further is
of no interest in studying heart rhythms

— Jy = 7 picked for subtidal sea levels because it trapped intra-
annual variations in V7 (not of interest to analyze these)

— Jy = 6 picked for shear data because \76 is free of bursts;
Le., V j for Jy < 6 would contain a portion of the bursts
— Jy = 4 picked for Nile River minima to demonstrate that
its time-dependent variance is due to variations on the two

smallest scales
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Choice of Level Jj: 11

e as Jj increases, there are more boundary coefficients to deal
with, which suggests not making Jy too big

e if application doesn’t naturally suggest what Jy should be, an
ad hoc (but reasonable) default is to pick Jy such that circu-
larity assumption influences < 50% of Wz, or Dz, (next topic
of discussion)

Handling Boundary Conditions: I

e DWT and MODWT treat time series X as if it were circular

e circularity says X _q is useful surrogate for X 1 (sometimes
this is OK, e.g., subtidal sea levels, but in general it is ques-
tionable)

e first step is to delineate which parts of W, and D; are influ-
enced (at least to some degree) by circular boundary conditions

e by considering

L;,—1
j
o — -
Wig=2PPW, 5000y and Wig= 3" hjuXot mod .
=0
can determine that circularity affects
: 1
Wi+, t:O,...,L;-—l with L;E [(L—Q) (1—2—])—‘
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e circularity also affects the following elements of D;: A all ‘ ‘ ‘ Il
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t:(),...,QJL;-—l andt:N—(Lj—Zj),...,N—l, I A e LT R T oY TW,
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where L; = (2/ —1)(L —1) +1 -] — ‘
S
e for MODWT, circularity affects — ‘
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~ - D
e circularity also affects the following elements of D;: WWWMWW J !

t:O,...,Lj—Q andt:N—Lj—i—l,...,N—l
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e examples of delineating LA(8) DWT boundary coefficients for
ECG data and of marking parts of MRA influenced by circu-
larity
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Handling Boundary Conditions: IV

e boundary regions increase as the filter width L increases

e for fixed L, boundary regions in DWT MRASs are smaller than
those for MODWT MRAs

e for fixed L, MRA boundary regions increase as Jj increases (an
exception is the Haar DWT)

e these considerations might influence our choice of L and DWT
versus MODWT
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Handling Boundary Conditions: V
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e comparison of DWT smooths Sg (top 3 plots) and MODWT
smooths Sg (bottom 3) for ECG data using, from top to bottom
within each group, the Haar, D(4) and LA(8) wavelets
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Handling Boundary Conditions: VI

e just delineating parts of W; and D; that are influenced by cir-
cular boundary conditions can be misleading (too pessimistic)

o cffective width \; = 27; = 27 of jth level equivalent filters can
be much smaller than actual width L; = (2 — 1)(L — 1) + 1

e arguably less pessimistic delineations would be to always mark
boundaries appropriate for the Haar wavelet (its actual width
is the effective width for other filters)

111-67

Handling Boundary Conditions: VII

{hl} ._I. Ly =8vs. 2
Ly=22vs. 4
{ hQ,] } iﬁ-"" 2
o L3 =50vs. 8
{h371 } -m'lrlr 'F_iw 3
Ls=106 vs. 16
{h47 ]} _— i_-FTTTT Tﬁ"‘*ﬂ#"‘ 4
{a:} 'm Ly =8wvs. 2
{g2.} "W . Ly =22vs. 4
{g?)l} .!'F'ﬂﬁu. . LS =50 vs. 8
| L, =106 vs. 16

{94 l } -I'F'FTTTTTTTTTT“TTTTWF!---.

e plots of LA(8) equivalent wavelet/scaling filters, with actual
width L; compared to effective width of 27
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Handling Boundary Conditions: VIII

e to lessen the impact of boundary conditions, we can use ‘tricks’
from Fourier analysis, which also treats X as if it were circular
— extend series with X (similar to zero padding)

— polynomial extrapolations
— use ‘reflection” boundary conditions by pasting a reflected
(time-reversed) version of X to end of X

—44.2

=53 8L P | L [ | S )
1800 1900 2000 2100 2200
year
— note that series so constructed of length 2N has same sample

mean and sample variance as original series X
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Handling Boundary Conditions: IX
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e comparison of effect of reflection (red/blue) and circular (black)
boundary conditions on LA(8) DWT-based MRA for oxygen
isotope data

I11-70

Handling Non-Power of Two Sample Sizes

e not a problem with the MODWT, which is defined naturally
for all sample sizes N

e partial DWT requires just N = M 270 rather than N = 27/
e can pad with sample mean X etc.
e can truncate down to multiple of 20

— truncate at beginning of series & do analysis

— truncate at end of series & do analysis

— combine two analyses together

e can use a specialized pyramid algorithm involving at most one
special term at each level
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Lack of Standard Definition for DWT: 1

e our definition of DWT matrix WW based upon
— convolutions rather than inner products
— odd indexed downsampling rather than even indexed
— using (—1)*h; 1 to define g; rather than (—=1)"=1hy_;

— ordering coefficients in resulting transform from small to
large scale rather than large to small

e choices other than the above are used frequently elsewhere,
resulting in DW'Ts that can differ from what we have presented
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Lack of Standard Definition for DWT: II

e two left-hand columns: D(4) DWT matrix W as defined here

e two right-hand columns: S-Plus Wavelets D(4) DWT ma-
trix (after reordering of its row vectors)

e only the scaling coefficient is guaranteed to be the same!!!
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