Wavelet Methods for Time Series Analysis

Part III: Basic Theory for Discrete Wavelet Transform (DWT)

- precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters
- will start with discussion/review of:
 - convolution/filtering of infinite sequences
 - filter cascades
 - Fourier theory for finite sequences
 - circular convolution/filtering of finite sequences
 - periodization of a filter

III–1

Basic Concepts of Filtering: II

• the inverse DFT allows us to recover $\{a_t\}$ from $A(\cdot)$:

$$a_t = \int_{-1/2}^{1/2} A(f) e^{i2\pi f t} \, df$$

- since $A(-f) = A^*(f)$ (the complex conjugate of A(f)) when $\{a_t\}$ is real-valued, we really just need to consider nonnegative Fourier frequencies f for studying $A(\cdot)$
- $\{a_t\}$ and $A(\cdot)$ form a Fourier transform pair, a fact that is denoted by $\{a_t\} \longleftrightarrow A(\cdot)$ or, less formally, by $a_t \longleftrightarrow A(f)$
- in general $A(\cdot)$ is complex-valued, so write $A(f) = |A(f)|e^{i\theta(f)}$
 - $\left| A(f) \right|$ defines gain function
 - $-\mathcal{A}(f) \equiv |A(f)|^2$ defines squared gain function
 - $\; \theta(f)$ called phase function (well-defined at f if |A(f)| > 0)

Basic Concepts of Filtering: I

• convolution & linear time invariant filtering are same concepts: $-\{b_t: t = ..., -1, 0, 1, ...\} = \{b_t\}$ is the input to the filter $- \{a_t\}$ represents the filter $- \{c_t\}$ is the output from the filter • flow diagram for filtering: $\{b_t\} \longrightarrow |\{a_t\}| \longrightarrow \{c_t\} \text{ or } \{b_t\} \longrightarrow [a_t] \longrightarrow \{c_t\}$ • $\{a_t\}$ is called the impulse response sequence for the filter • the discrete Fourier transform (DFT) of $\{a_t\}$ is given by $A(f) \equiv \sum_{t=0}^{\infty} a_t e^{-i2\pi f t}$ and is known as the transfer function for the filter III–2 **Basic Concepts of Filtering: III** • given $\{a_t\} \longleftrightarrow A(\cdot)$ and $\{b_t\} \longleftrightarrow B(\cdot)$, their convolution $c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}, \quad t = \dots, -1, 0, 1, \dots,$ has a DFT given by

$$C(f) \equiv \sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f)$$

- $\{c_t\}$ is output from filter with impulse response sequence $\{a_t\}$ and transfer function $A(\cdot)$ related by $\{a_t\} \longleftrightarrow A(\cdot)$
- since $A(\cdot)$ is equivalent to $\{a_t\}$, can express flow diagram as either $\{b_t\} \longrightarrow [\{a_t\}] \longrightarrow \{c_t\}$ or $\{b_t\} \longrightarrow \overline{A(\cdot)} \longrightarrow \{c_t\}$

Convolution/Filtering of Finite Sequences: I

• given $\{a_t\}$ & $\{b_t\}$ of length N with DFTs $\{A_k\}$ & $\{B_k\}$, their convolution is defined to be

$$c_t \equiv \sum_{u=0}^{N-1} a_u b_{t-u \mod N}, \quad t = 0, 1, \dots, N-1,$$

where $k \mod N \equiv k$ if $0 \le k \le N - 1$; if not, $k \mod N \equiv k + nN$, where n is unique integer yielding $0 \le k + nN \le N - 1$; thus $b_0 \mod N = b_0, b_{-1} \mod N = b_{N-1}, b_{-2} \mod N = b_{N-2}$ etc

• $\{c_t\}$ is output from circular filtering operation expressible as

$$\{b_t\} \longrightarrow \boxed{a_t} \longrightarrow \{c_t\} \text{ or } \{b_t\} \longrightarrow \boxed{A_k} \longrightarrow \{c_t\}$$

III–9

Convolution/Filtering of Finite Sequences: III

- suppose $\{a_t\}$ has width M with $a_t = 0$ for t < 0 and $t \ge M$
- given $\{b_t\}$ of length N, can reexpress

$$c_t = \sum_{u=0}^{M-1} a_u b_{t-u \mod N}, \quad t = 0, \dots, N-1,$$

as a circular convolution using a 'periodized' filter of length N:

$$c_t = \sum_{u=0}^{N-1} a_u^{\circ} b_{t-u \mod N}, \text{ where } a_u^{\circ} \equiv \sum_{n=-\infty}^{\infty} a_{u+nN}, \quad u = 0, \dots, N-1$$

• DFT of $\{a_t^{\circ}\}$ given by $A(\frac{k}{N}), k = 0, \dots, N-1$, where

$$A(f) \equiv \sum_{t=-\infty}^{\infty} a_t e^{-i2\pi ft} = \sum_{t=0}^{M-1} a_t e^{-i2\pi ft}$$

III-11

Convolution/Filtering of Finite Sequences: II

• sequence $\{c_t\}$ is called a circular (cyclic) convolution:

• DFT $\{C_k\}$ of $\{c_t\}$ again has a simple form, namely,

$$C_k = \sum_{t=0}^{N-1} c_t e^{-i2\pi f_k t} = A_k B_k;$$

i.e.,
$$\{c_t\} \longleftrightarrow \{A_k B_k\}$$

Basic Theory for DWT

III-10

- can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
- 'brute force' method uses $O(N^2)$ multiplications
- faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- can study algorithm using linear filters & matrix manipulations
- will look at both approaches since they are complementary

The Wavelet Filter: I The Wavelet Filter: II • $\{h_l\}$ called a wavelet filter if it has these 3 properties • precise definition of DWT begins with notion of wavelet filter 1. summation to zero: • let $\{h_l : l = 0, \dots, L-1\}$ be a real-valued filter $\sum_{l=0}^{L-1} h_l = 0$ -L called filter width - both h_0 and h_{L-1} must be nonzero 2. unit energy: -L must be even $(2, 4, 6, 8, \ldots)$ for technical reasons L-1 $\sum_{l=0}^{n} h_l^2 = 1$ - will assume $h_l \equiv 0$ for l < 0 and l > L3. orthogonality to even shifts: for all nonzero integers n, have $\sum_{l=0}^{n-1} h_l h_{l+2n} = 0$ • 2 and 3 together are called the orthonormality property III–13 III–14 The Wavelet Filter: III Haar Wavelet Filter • simplest wavelet filter is Haar (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$ • summation to zero and unit energy relatively easy to achieve (analogous to conditions imposed on wavelet functions $\psi(\cdot)$) • note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required • orthogonality to even shifts is key property • orthogonal to even shifts • orthogonality hardest to satisfy, and is reason L must be even orthogonality to even shifts also readily apparent - consider filter $\{h_0, h_1, h_2\}$ of width L = 3 h_l h_{l-2} - width 3 requires $h_0 \neq 0$ and $h_2 \neq 0$ $h_l h_{l-2}$ sum = 0 - orthogonality to a shift of 2 requires $h_0h_2 = 0$ - impossible!

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L = 4:

$$h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \ h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \ h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \ h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies
- $-\ L=4$ width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required
- orthogonal to even shifts orthogonality to even shifts apparent except for ± 2 case:

D(4) Wavelet Filter: III

III-17

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \boxed{\{a,b\}} \longrightarrow \boxed{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

 \bullet D(4) wavelet filter based on equivalent filter for above:

$$[X_t\} \longrightarrow [\{h_0, h_1, h_2, h_3\}] \longrightarrow \{Y_t\}$$

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \lfloor \{1, -1\} \rfloor \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter $X_t^{(1)}$ is difference between two '1 point averages'
- consider filter cascade with two 1st difference filters:

$$\{X_t\} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• equivalent filter defines 2nd difference filter:

$$\{X_t\} \longrightarrow \boxed{\{1, -2, 1\}} \longrightarrow \{X_t^{(2)}\}$$

III–18

D(4) Wavelet Filter: IV

- using conditions
- 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$
- 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$
- 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$

can solve for feasible values of a and b

- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (3 other solutions, but these yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
 - 'change' now measured by 2nd difference (1st for Haar)
 - average is now 2 point weighted average (1 point for Haar)
 - can argue that effective scale of weighted average is one

Another Wavelet Filter	First Level Wavelet Coefficients: I	
• LA(8) wavelet filter ('LA' stands for 'least asymmetric') h_l h_{l-2} h_lh_{l-2} m_l h_lh_{l-2} m_l h_lh_{l-4} h_lh_{l-4} h_lh_{l-4} h_lh_{l-6} $h_lh_$	 given wavelet filter {h_l} of width L & time series of length N = 2^J, goal is to define matrix W for computing W = WX periodize {h_l} to length N to form h₀^o, h₁^o,, h_{N-1}^o circularly filter X using {h_l^o} to yield output $\sum_{l=0}^{N-1} h_l^o X_{t-l \mod N}, t = 0,, N-1$ starting with t = 1, take every other value of output to define W_{1,t} ≡ $\sum_{l=0}^{N-1} h_l^o X_{2t+1-l \mod N}, t = 0,, \frac{N}{2} - 1;$ {W_{1,t}} formed by downsampling filter output by a factor of 2 	
III-21	III-22	
First Level Wavelet Coefficients: II	First Level Wavelet Coefficients: III	
• example of formation of $\{W_{1,t}\}$ $h_l^{\circ} \xrightarrow{1}_{4} \xrightarrow{1}_{4}$	 {W_{1,t}} are unit scale wavelet coefficients j in W_{j,t} indicates a particular group of wavelet coefficients j = 1, 2,, J (upper limit tied to sample size N = 2^J) will refer to index j as the level thus W_{1,t} is associated with level j = 1 W_{1,t} also associated with scale 1 level j is associated with scale 2^{j-1} (more on this later) {W_{1,t}} forms first N/2 elements of W = WX 	
	 Inst N/2 elements of W form subvector W₁ W_{1,t} is tth element of W₁ also have W₁ = W₁X, with W₁ being first N/2 rows of W 	

Upper Half of DWT Matrix: I

• setting t = 0 in definition for $W_{1,t}$ yields

$$W_{1,0} = \sum_{l=0}^{N-1} h_l^{\circ} X_{1-l \mod N}$$

= $h_0^{\circ} X_1 + h_1^{\circ} X_0 + h_2^{\circ} X_{N-1} + \dots + h_{N-2}^{\circ} X_3 + h_{N-1}^{\circ} X_2$
= $h_1^{\circ} X_0 + h_0^{\circ} X_1 + h_{N-1}^{\circ} X_2 + h_{N-2}^{\circ} X_3 + \dots + h_2^{\circ} X_{N-1}$

- recall $W_{1,0} = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$, where $\mathcal{W}_{0\bullet}^T$ is first row of \mathcal{W} & of \mathcal{W}_1
- comparison with above says that

$$\mathcal{W}_{0\bullet}^{T} = \left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}\right]$$

III-25

Example: Upper Half of Haar DWT Matrix

• consider Haar wavelet filter
$$(L = 2)$$
: $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$

• when N = 16, upper half of \mathcal{W} (i.e., \mathcal{W}_1) looks like

• rows obviously orthogonal to each other

Upper Half of DWT Matrix: II

similar examination of
$$W_{1,1}, \ldots, W_{1,\frac{N}{2}}$$
 shows following pattern
- circularly shift $W_{0\bullet}$ by 2 to get 2nd row of W :
 $W_{1\bullet}^{T} = [h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{5}^{\circ}, h_{4}^{\circ}]$
- form $W_{j\bullet}$ by circularly shifting $W_{j-1\bullet}$ by 2, ending with
 $W_{\frac{N}{2}-1\bullet}^{T} = [h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}]$
o if $L \leq N$ (usually the case), then
 $h_{l}^{\circ} \equiv \begin{cases} h_{l}, \quad 0 \leq l \leq L-1 \\ 0, \quad \text{otherwise} \end{cases}$
Example: Upper Half of D(4) DWT Matrix
when $L = 4 \& N = 16, W_{1}$ (i.e., upper half of W) looks like

Upper Half of DWT Matrix: III

- if $L \leq N$, orthonormality of rows of \mathcal{W}_1 follows readily from orthonormality of $\{h_l\}$
- as example of L > N case (comes into play at higher levels), consider N = 4 and L = 6:

$$h_0^{\circ} = h_0 + h_4; \ h_1^{\circ} = h_1 + h_5; \ h_2^{\circ} = h_2; \ h_3^{\circ} = h_3$$

• \mathcal{W}_1 is:

- $\begin{bmatrix} h_1^{\circ} & h_0^{\circ} & h_3^{\circ} & h_2^{\circ} \\ h_3^{\circ} & h_2^{\circ} & h_1^{\circ} & h_0^{\circ} \end{bmatrix} = \begin{bmatrix} h_1 + h_5 & h_0 + h_4 & h_3 & h_2 \\ h_3 & h_2 & h_1 + h_5 & h_0 + h_4 \end{bmatrix}$
- inner product of two rows is

 $h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4 + h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4$ = 2(h_0h_2 + h_1h_3 + h_2h_4 + h_3h_5) = 0

because $\{h_l\}$ is orthogonal to $\{h_{l+2}\}$ (an even shift)

III-29

The Scaling Filter

- scaling filter defined by $g_l \equiv (-1)^{l+1} h_{L-1-l}$
- $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:

2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

• scaling & wavelet filters both satisfy orthonormality property

Upper Half of DWT Matrix: IV

can argue that, for all
$$L$$
 and even N ,
 $W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}$, or, equivalently, $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$
forms *half* an orthonormal transform; i.e.,
 $\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$

• Q: how can we construct the other half of \mathcal{W} ?

III–30

First Level Scaling Coefficients: I

- only orthonormality property of $\{h_l\}$ needed to prove that \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- \bullet going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- periodize $\{g_l\}$ to length N to form $g_0^\circ, g_1^\circ, \dots, g_{N-1}^\circ$
- \bullet circularly filter ${\bf X}$ using $\{g_l^\circ\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

III-31

Reconstructing X from \mathbf{W}_1 and \mathbf{V}_1

 \bullet in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal • since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields $\mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T \ \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$
- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail

•
$$S_1 \equiv V_1^T \mathbf{V}_1$$
 is the first level 'smooth'

• $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

Construction of First Level Detail: I

• consider
$$\mathcal{D}_{1} = \mathcal{W}_{1}^{T} \mathbf{W}_{1}$$
 for $L = 4 \& N > L$:

$$\mathcal{D}_{1} = \begin{bmatrix}
h_{1} \ h_{3} \ 0 \ \cdots \ 0 \ 0 \\
h_{0} \ h_{2} \ 0 \ \cdots \ 0 \ 0 \\
0 \ h_{1} \ h_{3} \ \cdots \ 0 \ 0 \\
0 \ h_{0} \ h_{2} \ \cdots \ 0 \ 0 \\
\vdots \ \vdots \ \vdots \ \cdots \ \vdots \ \vdots \\
0 \ 0 \ 0 \ \cdots \ h_{1} \ h_{3} \\
0 \ 0 \ 0 \ \cdots \ h_{1} \ h_{3} \\
0 \ 0 \ 0 \ \cdots \ h_{0} \ h_{2} \\
h_{3} \ 0 \ 0 \ \cdots \ 0 \ h_{0} \\
h_{2} \ \times 1$$
note: \mathcal{W}_{1}^{T} is $N \times \frac{N}{2} \& \mathbf{W}_{1}$ is $\frac{N}{2} \times 1$

• \mathcal{D}_{1} not result of filtering $W_{1,t}$'s with $\{h_{0}, h_{1}, h_{2}, h_{3}\}$

First Level Variance Decomposition: I

- \bullet recall that 'energy' in ${\bf X}$ is its squared norm $\|{\bf X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2$
- can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix}$$
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$

 \bullet leads to a decomposition of the sample variance for ${\bf X}:$

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \|\mathbf{X}\|^2 - \overline{X}^2$$
$$= \frac{1}{N} \|\mathbf{W}_1\|^2 + \frac{1}{N} \|\mathbf{V}_1\|^2 - \overline{X}^2$$

Summary of First Level of Basic Algorithm

III-49

- transforms $\{X_t : t = 0, \dots, N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
 - $\mathbf{W}_{1},$ a vector consisting of first N/2 elements of \mathbf{W}
 - changes on scale 1 and nominal frequencies $\frac{1}{4} \le |f| \le \frac{1}{2}$
 - first level detail \mathcal{D}_1
 - $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
 - $-\mathbf{V}_1$, a vector of length N/2
 - averages on scale 2 and nominal frequencies $0 \leq |f| \leq \frac{1}{4}$
 - first level smooth S_1
 - $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

First Level Variance Decomposition: II

breaks up σ²_X into two pieces:
1. ¹/_N || W₁ ||², attributable to changes in averages over scale 1
2. ¹/_N || V₁ ||² - X², attributable to averages over scale 2
Haar-based example for oxygen isotope records

first piece:
¹/_N || W₁ ||² ≐ 0.295
second piece: ¹/_N || V₁ ||² - X² ≐ 2.909
sample variance:
σ²/_X ≐ 3.204
changes on scale of Δt ≐ 0.5 years account for 9% of σ²/_X (standardized scale of 1 corresponds to physical scale of Δt)

III–50

Level One Analysis and Synthesis of X

 \bullet can express analysis/synthesis of ${\bf X}$ as a flow diagram

$$\mathbf{X} \xrightarrow{\begin{array}{c} G(\frac{k}{N}) \\ \downarrow 2 \end{array}} \mathbf{V}_{1} \xrightarrow{\uparrow 2} \overline{G^{*}(\frac{k}{N})} \longrightarrow \mathcal{S}_{1} \\ \mathbf{X} \xrightarrow{} + \longrightarrow \mathbf{X} \\ \xrightarrow{} \\ H(\frac{k}{N}) \xrightarrow{} \mathbf{W}_{1} \xrightarrow{\uparrow 2} \overline{H^{*}(\frac{k}{N})} \longrightarrow \mathcal{D}_{1} \end{array}$$

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over
 - physical scale of Δt (sampling interval between observations) - standardized scale of 1
- \bullet first level of basic algorithm transforms ${\bf X}$ of length N into
 - -N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
 - N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- \bullet in essence basic algorithm takes length N series ${\bf X}$ related to scale 1 averages and produces
 - length N/2 series \mathbf{W}_1 associated with the same scale
 - length $N\!/2$ series \mathbf{V}_1 related to averages on double the scale

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_1 in the same manner as \mathbf{X} ?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
 - length N/4 series \mathbf{W}_2 associated with the same scale (2)
 - length N/4 series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat \mathbf{V}_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
 - length N/8 series \mathbf{W}_3 associated with the same scale (4)
 - length N/8 series \mathbf{V}_3 related to averages on twice the scale
- by definition, \mathbf{W}_3 contains the level 3 wavelet coefficients
 - III–54

Scales Associated with DWT Coefficients

- *j*th level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale $2^{j-1},$ i.e., $\mathbf{W}_{j},$ the wavelet coefficients
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., \mathbf{V}_j , the scaling coefficients
- let $\tau_j \equiv 2^{j-1}$ be standardized scale associated with \mathbf{W}_j
 - for j = 1, ..., J, takes on values 1, 2, 4, ..., N/4, N/2
 - physical (actual) scale given by $\tau_j \Delta t$
- let $\lambda_j \equiv 2^j$ be standardized scale associated with \mathbf{V}_j
 - takes on values $2,4,8,\ldots,N/2,N$
- physical scale given by $\lambda_j \Delta t$

III–53

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of W (recall that W = WX is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_j given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- \bullet overall scheme is known as the 'pyramid' algorithm

Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

$$\|\mathbf{X}\|^{2} = \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{W}_{3}\|^{2} + \|\mathbf{V}_{3}\|^{2}$$

indicates that, for $1 \leq k \leq J$, we can write

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{\kappa} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_k\|^2$$

and, in particular,

$$\|\mathbf{X}\|^{2} = \sum_{j=1}^{J} \|\mathbf{W}_{j}\|^{2} + \|\mathbf{V}_{J}\|^{2}$$

• above are energy decompositions for levels k and J (second of two basic decompositions derivable from DWT)

III-61

Example of MRA from $J_0 = 4$ Partial Haar DWT

• oxygen isotope records **X** from Antarctic ice core

Partial DWT

- stop at $J_0 < J$ repetitions a level J_0 'partial' DWT
- only requires N to be integer multiple of 2^{J_0}
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X})

• analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

III-62

Assigning Times to Wavelet Coefficients

- LA class of wavelet and scaling filters designed to exhibit 'near symmetry' about some point in the filter
- makes it easier to align $W_{j,t}$ and $V_{J_0,t}$ with values in **X**
- some gory details: if X_t is associated with actual time $t_0 + t \Delta t$, LA wavelet coefficient $W_{j,t}$ should be plotted at time

$$t_0 + (2^j(t+1) - 1 - |\nu_j^{(H)}| \mod N) \Delta t$$

e.g., $|\nu_j^{(H)}| = [7(2^j - 1) + 1]/2$ for LA(8) wavelet. For N = 16 $\frac{\text{coefficient } |W_{1,0}| |W_{1,1}| |W_{1,2}| |W_{1,3}| |W_{1,4}| |W_{1,5}| |W_{1,6}| |W_{1,7}|}{\text{associated time } 13 | 15 | 1 | 3 | 5 | 7 | 9 | 11}$

• order in which elements of \mathbf{W}_1 should be displayed is thus $W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}$

Matrices for Circularly Shifting Vectors

- define \mathcal{T} and \mathcal{T}^{-1} to be $N \times N$ matrices that circularly shift $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ either right or left one unit: $\mathcal{T}\mathbf{X} = [X_{N-1}, X_0, X_1, \dots, X_{N-3}, X_{N-2}]^T$ $\mathcal{T}^{-1}\mathbf{X} = [X_1, X_2, X_3, \dots, X_{N-2}, X_{N-1}, X_0]^T$
- for N = 4, here are what these matrices look like:

T = 1	$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	& $T^{-1} =$	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
	$0 \ 0 \ 1 \ 0$		$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

• define $\mathcal{T}^{-2} = \mathcal{T}^{-1}\mathcal{T}^{-1}$, $\mathcal{T}^{-3} = \mathcal{T}^{-1}\mathcal{T}^{-1}\mathcal{T}^{-1}$ and so forth

III-65

Example of $J_0 = 4$ Partial LA(8) DWT

• oxygen isotope records **X** from Antarctic ice core

Circularly Shifting a Vector and Time Alignment

• can express reordering elements of

 $\mathbf{W}_{1} = [W_{1,0}, W_{1,1}, W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}]^{T}$

as they occur in time using

$$\mathbf{T}^{-2}\mathbf{W}_1 = [W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}]^T$$

- can use to time-align wavelet coefficients
- note that the details and smooths do not need to be timealigned as the associated filters do not cause a time shift

III-66

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^T \mathcal{W} = I_N$
- construction of \mathcal{W} starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 - 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
- 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
- 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients \mathbf{V}_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
 - wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients \mathbf{V}_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j-1 are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

III-69

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series **X** whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

III-70

Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm) of **X** on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to an analysis of the sample variance of \mathbf{X} :

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_{J_0}||^2 - \overline{X}^2$$