
Wavelet Methods for Time Series Analysis

Part II: Basic Theory for Discrete Wavelet Transform (DWT)

• precise definition of DWT requires a few basic concepts from
Fourier analysis and theory of linear filters

• will start with discussion/review of:

− convolution/filtering of infinite sequences

− filter cascades

− Fourier theory for finite sequences

− circular convolution/filtering of finite sequences

− periodization of a filter
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Basic Concepts of Filtering: I

• convolution & linear time invariant filtering are same concepts:

− {bt} is input to filter

− {at} represents the filter

− {ct} is output from filter

• flow diagram for filtering:

{bt} −→ {at} −→ {ct} or {bt} −→ at −→ {ct}
• since {at} equivalent to A(·), can also express flow diagram as

{bt} −→ A(·) −→ {ct}
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Basic Concepts of Filtering: II

• {at} called impulse response sequence for filter

• A(·) called transfer function for filter:

A(f ) ≡
∞∑

t=−∞
ate

−i2πft.

• in general A(·) is complex-valued, so write A(f ) = |A(f )|eiθ(f )

− |A(f )| defines gain function

−A(f ) ≡ |A(f )|2 defines squared gain function

− θ(f ) called phase function (well-defined at f if |A(f )| > 0)
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Example of a High-Pass Filter

• consider bt = 3
16

(
4
5

)|t|
+ 1

20

(
−4

5

)|t|

• now let at =

⎧⎪⎨
⎪⎩

1
2, t = 0

−1
4, t = −1 or 1

0, otherwise

  
 

  
 

     
 

.................
     

 
     

 

  
 

........
......... .................

{bt} {at} {ct}

B(·) A(·) C(·)
−8 −4 0 4 8 −8 −4 0 4 8 −8 −4 0 4 8

t t t

0

2

1

0
0.0 0.5 0.0 0.50.0 0.5

f f f

II–4



Cascade of Filters: I

• idea: output from one filter becomes input to another

• flow diagram for cascade with 2 filters (can have more!):

{bt} −→ A1(·) 1.−→ A2(·) 2.−→{ct}
if {bt} ←→ B(·) and {ct} ←→ C(·), then

1. output from A1(·) has DFT A1(f )B(f )

2. output from A2(·) has DFT A2(f )A1(f )B(f )
so C(f ) = A2(f )A1(f )B(f )

• let A(f ) ≡ A2(f )A1(f )

• can reexpress overall effect of filter cascade as

{bt} −→ A(·) −→ {ct}
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Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t} (reverse

one filter, multiply by other; shift and repeat)

• example: a1,t =

⎧⎪⎨
⎪⎩
−1

2, t = −1
1
2, t = 0

0, otherwise

& a2,t =

⎧⎪⎨
⎪⎩

1
2, t = 0

−1
2, t = 1

0, otherwise

a1,−3 a1,−2 a1,−1 a1,0 a1,1 a1,2

a2,1 a2,0 a2,−1 a2,−2 a2,−3 a2,−4

· · · · · · a−2 =
∑∞

u=−∞ a1,ua2,−2−u
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Cascade of Filters: II
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Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t} (reverse

one filter, multiply by other; shift and repeat)

• example: a1,t =

⎧⎪⎨
⎪⎩
−1

2, t = −1
1
2, t = 0

0, otherwise

& a2,t =

⎧⎪⎨
⎪⎩

1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 0 −1
2

1
2 0 0

· · · · · · a0 = 1
2

II–6

Cascade of Filters: II

• A(·) is transfer function for equivalent filter for cascade

• let {at} ←→ A(·), {a1,t} ←→ A1(·) and {a2,t} ←→ A2(·)
• to form {at}, just need to convolve {a1,t} and {a2,t} (reverse

one filter, multiply by other; shift and repeat)

• example: a1,t =

⎧⎪⎨
⎪⎩
−1

2, t = −1
1
2, t = 0

0, otherwise

& a2,t =

⎧⎪⎨
⎪⎩

1
2, t = 0

−1
2, t = 1

0, otherwise

0 0 −1
2

1
2 0 0

0 0 0 −1
2

1
2 0

· · · · · · a1 = −1
4

II–6

Cascade of Filters: II
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Summary of Fourier/Filtering Theory: I

• {at : t = . . . ,−1, 0, 1, . . .} = {at} has DFT

A(f ) ≡
∞∑

t=−∞
ate

−i2πft

• inverse DFT says that

at =

∫ 1/2

−1/2
A(f )ei2πft df

• relationship between {at} and A(·) denoted by

{at} ←→ A(·) or, less formally, by at ←→ A(f )
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Summary of Fourier/Filtering Theory: II

• given {at} ←→ A(·) and {bt} ←→ B(·), their convolution

ct ≡
∞∑

u=−∞
aubt−u, t = . . . ,−1, 0, 1, . . . ,

has a DFT given by

C(f ) ≡
∞∑

t=−∞
cte

−i2πft = A(f )B(f )

• {ct} is output from filter with impulse response sequence {at}
and transfer function A(·) related by {at} ←→ A(·)

• can express filtering operation in a flow diagram as either

{bt} −→ {at} −→ {ct} or {bt} −→ A(·) −→ {ct}
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Summary of Fourier/Filtering Theory: III

• {at : t = 0, 1, . . . , N − 1} = {at} has DFT

Ak ≡
N−1∑
t=0

ate
−i2πfkt, with fk ≡ k

N
& k = 0, 1, . . . , N − 1

• inverse DFT says that

at =
1

N

N−1∑
k=0

Ake
i2πfkt, t = 0, 1, . . . , N − 1

• relationship between {at} and A(·) denoted by

{at} ←→ {Ak} or, less formally, by at ←→ Ak
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Summary of Fourier/Filtering Theory: IV

• given {at} & {bt} of length N with DFTs {Ak} & {Bk},
their circular convolution

ct ≡
N−1∑
u=0

aubt−u mod N, t = 0, 1, . . . , N − 1,

has a DFT given by

Ck =

N−1∑
t=0

cte
−i2πfkt = AkBk

• {ct} is output from circular filtering operation expressible as

{bt} −→ at −→ {ct} or {bt} −→ Ak −→ {ct}
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Summary of Fourier/Filtering Theory: V

• suppose {at} has width M with at = 0 for t < 0 and t ≥ M

• given {bt} of length N , can express

ct =

M−1∑
u=0

aubt−u mod N, t = 0, . . . , N − 1,

as

ct =

N−1∑
u=0

a◦ubt−u mod N, where a◦u ≡
∞∑

n=−∞
au+nN

• DFT of {a◦t} given by A( k
N ), k = 0, . . . , N − 1, where

A(f ) ≡
∞∑

t=−∞
ate

−i2πft =

M−1∑
t=0

ate
−i2πft
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Basic Theory for Discrete Wavelet Transform
(DWT)

• can formulate DWT via elegant ‘pyramid’ algorithm

• defines W for non-Haar wavelets (consistent with Haar)

• computes W = WX using O(N) multiplications

− ‘brute force’ method uses O(N2) multiplications

− faster than celebrated algorithm for fast Fourier transform!
(this uses O(N · log2(N)) multiplications)

• can study algorithm using linear filters & matrix manipulations

• will look at both approaches since they are complementary
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The Wavelet Filter: I

• precise definition of DWT begins with notion of wavelet filter

• let {hl : l = 0, . . . , L − 1} be a real-valued filter

− L called filter width

− both h0 and hL−1 must be nonzero

− L must be even (2, 4, 6, 8, . . .) for technical reasons

− will assume hl ≡ 0 for l < 0 and l ≥ L
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The Wavelet Filter: II

• {hl} called a wavelet filter if it has these 3 properties

1. summation to zero:
L−1∑
l=0

hl = 0

2. unit energy:
L−1∑
l=0

h2
l = 1

3. orthogonality to even shifts: for all nonzero integers n, have
L−1∑
l=0

hlhl+2n = 0

• 2 and 3 together are called the orthonormality property
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The Wavelet Filter: III

• summation to zero and unit energy relatively easy to achieve
(analogous to conditions imposed on wavelet functions ψ(·))

• orthogonality to even shifts is key property

• orthogonality hardest to satisfy, and is reason L must be even

− consider filter {h0, h1, h2} of width L = 3

− width 3 requires h0 �= 0 and h2 �= 0

− orthogonality to a shift of 2 requires h0h2 = 0 – impossible!
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Haar Wavelet Filter

• simplest wavelet filter is Haar (L = 2): h0 = 1√
2

& h1 = − 1√
2

• note that h0 + h1 = 0 and h2
0 + h2

1 = 1, as required

• orthogonal to even shifts
orthogonality to even shifts also readily apparent

.
.
..............

..
.
.
............

................hl

hl−2

hlhl−2 sum = 0
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D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L = 4:

h0 =
1−√

3
4
√

2
, h1 =

−3+
√

3
4
√

2
, h2 =

3+
√

3
4
√

2
, h3 =

−1−√
3

4
√

2

− ‘D’ stands for Daubechies

− L = 4 width member of her ‘extremal phase’ wavelets

• computations show
∑

l hl = 0 &
∑

l h
2
l = 1, as required

• orthogonal to even shifts orthogonality to even shifts apparent
except for ±2 case:

..
.
.............

....
.
...........

...
.............hl

hl−2

hlhl−2 sum = 0
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D(4) Wavelet Filter: II

• Q: what is rationale for D(4) filter?

• consider X
(1)
t ≡ Xt − Xt−1 = a0Xt + a1Xt−1,

where {a0 = 1, a1 = −1} defines 1st difference filter:

{Xt} −→ {1,−1} −→ {X(1)
t }

− Haar wavelet filter is normalized 1st difference filter

− X
(1)
t is difference between two ‘1 point averages’

• consider filter cascade with two 1st difference filters:

{Xt} −→ {1,−1} −→ {1,−1} −→ {X(2)
t }

• equivalent filter defines 2nd difference filter:

{Xt} −→ {1,−2, 1} −→ {X(2)
t }
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D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass
filter considered earlier:

at =

⎧⎪⎨
⎪⎩

1
2, t = 0

−1
4, t = −1 or 1

0, otherwise

• consider ‘2 point weighted average’ followed by 2nd difference:

{Xt} −→ {a, b} −→ {1,−2, 1} −→ {Yt}
• D(4) wavelet filter based on equivalent filter for above:

{Xt} −→ {h0, h1, h2, h3} −→ {Yt}
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D(4) Wavelet Filter: IV

• using conditions

1. summation to zero: h0 + h1 + h2 + h3 = 0

2. unit energy: h2
0 + h2

1 + h2
2 + h2

3 = 1

3. orthogonality to even shifts: h0h2 + h1h3 = 0

can solve for feasible values of a and b

• one solution is a =
1+

√
3

4
√

2
.
= 0.48 and b =

−1+
√

3
4
√

2
.
= 0.13

(3 other solutions, but these yield essentially the same filter)

• interpret D(4) filtered output as changes in weighted averages

− ‘change’ now measured by 2nd difference (1st for Haar)

− average is now 2 point weighted average (1 point for Haar)

− can argue that effective scale of weighted average is one
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Another Wavelet Filter

• LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

....
.
...........

......
.
.........

.....
...........

........
.
.......

................

..........
.
.....

................

hl

hl−2

hl−4

hl−6

hlhl−2 sum = 0

hlhl−4 sum = 0

hlhl−6 sum = 0
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First Level Wavelet Coefficients: I

• given wavelet filter {hl} of width L & time series of length
N = 2J , goal is to define matrix W for computing W = WX

• periodize {hl} to length N to form h◦0, h◦1, . . . , h◦N−1

• circularly filter X using {h◦l } to yield output

N−1∑
l=0

h◦l Xt−l mod N, t = 0, . . . , N − 1

• starting with t = 1, take every other value of output to define

W1,t ≡
N−1∑
l=0

h◦l X2t+1−l mod N, t = 0, . . . , N
2 − 1;

{W1,t} formed by downsampling filter output by a factor of 2
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First Level Wavelet Coefficients: II

• {W1,t} are unit scale wavelet coefficients

− j in Wj,t indicates a particular group of wavelet coefficients

− j = 1, 2, . . . , J (upper limit tied to sample size N = 2J)

− will refer to index j as the level

− thus W1,t is associated with level j = 1

− W1,t also associated with scale 1

− level j is associated with scale 2j−1 (more on this later)

• {W1,t} forms first N/2 elements of W = WX

• first N/2 elements of W form subvector W1

• W1,t is tth element of W1

• also have W1 = W1X, with W1 being first N/2 rows of W
II–23



Upper Half of DWT Matrix: I

• setting t = 0 in definition for W1,t yields

W1,0 =

N−1∑
l=0

h◦l X1−l mod N

= h◦0X1 + h◦1X0 + h◦2XN−1 + · · · + h◦N−2X3 + h◦N−1X2

= h◦1X0 + h◦0X1 + h◦N−1X2 + h◦N−2X3 + · · · + h◦2XN−1

• recall W1,0 = 〈W0•,X〉, where WT
0• is first row of W & of W1

• comparison with above says that

WT
0• =

[
h◦1, h◦0, h◦N−1, h

◦
N−2, . . . , h

◦
5, h

◦
4, h

◦
3, h

◦
2

]
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Upper Half of DWT Matrix: II

• similar examination of W1,1, . . .W
1,N2

shows following pattern

− circularly shift W0• by 2 to get 2nd row of W :

WT
1• =

[
h◦3, h◦2, h◦1, h◦0, h◦N−1, h

◦
N−2, . . . , h

◦
5, h

◦
4

]
− form Wj• by circularly shifting Wj−1• by 2, ending with

WT
N
2 −1• =

[
h◦N−1, h

◦
N−2, . . . , h

◦
5, h

◦
4, h

◦
3, h

◦
2, h

◦
1, h

◦
0

]
• if L ≤ N (usually the case), then

h◦l ≡
{

hl, 0 ≤ l ≤ L − 1

0, otherwise
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Example: Upper Half of Haar DWT Matrix

• consider Haar wavelet filter (L = 2): h0 = 1√
2

& h1 = − 1√
2

• when N = 16, upper half of W (i.e., W1) looks like⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• rows obviously orthogonal to each other
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Example: Upper Half of D(4) DWT Matrix

• when L = 4 & N = 16, W1 (i.e., upper half of W) looks like⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h0 0 0 0 0 0 0 0 0 0 0 0 0 h3 h2
h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 h3 h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• rows orthogonal because h0h2 + h1h3 = 0

• note: 〈W0•,X〉 yields W0 = h1X0 + h0X0 + h3X14 + h2X15

• unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)
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Upper Half of DWT Matrix: III

• if L ≤ N , orthonormality of rows of W1 follows readily from
orthonormality of {hl}

• as example of L > N case (comes into play at higher levels),
consider N = 4 and L = 6:

h◦0 = h0 + h4; h◦1 = h1 + h5; h◦2 = h2; h◦3 = h3

• W1 is:[
h◦1 h◦0 h◦3 h◦2
h◦3 h◦2 h◦1 h◦0

]
=

[
h1 + h5 h0 + h4 h3 h2

h3 h2 h1 + h5 h0 + h4

]
• inner product of two rows is

h1h3 + h3h5 + h0h2 + h2h4 + h1h3 + h3h5 + h0h2 + h2h4

= 2(h0h2 + h1h3 + h2h4 + h3h5) = 0

because {hl} is orthogonal to {hl+2} (an even shift)
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Upper Half of DWT Matrix: IV

• can argue that, for all L and even N ,

W1,t =

L−1∑
l=0

hlX2t+1−l mod N, or, equivalently, W1 = W1X

forms half an orthonormal transform; i.e.,

W1WT
1 = IN

2

• Q: how can we construct the other half of W?

II–29

The Scaling Filter

• create gl ≡ (−1)l+1hL−1−l. {gl} is ‘quadrature mirror’ filter
corresponding to {hl}

• properties 2 and 3 of {hl} are shared by {gl}:
2. unit energy:

L−1∑
l=0

g2
l = 1

3. orthogonality to even shifts: for all nonzero integers n, have

L−1∑
l=0

glgl+2n = 0

• scaling & wavelet filters both satisfy orthonormality property
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First Level Scaling Coefficients: I

• only orthonormality property of {hl} needed to prove that W1
is half of an orthonormal transform (never used

∑
l hl = 0)

• going back and replacing hl with gl everywhere yields another
half of an orthonormal transform

• periodize {gl} to length N to form g◦0 , g◦1 , . . . , g◦N−1

• circularly filter X using {g◦l } and downsample to define

V1,t ≡
N−1∑
l=0

g◦l X2t+1−l mod N, t = 0, . . . , N
2 − 1
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First Level Scaling Coefficients: II

• define V1 in a manner analogous to W1 so that V1 = V1X

• when L = 4 and N = 16, V1 looks like⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 g3 g2
g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g3 g2 g1 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• V1 obeys same orthonormality property as W1:

similar to W1WT
1 = IN

2
, have V1VT

1 = IN
2
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Orthonormality of V1 and W1: I

• Q: how does V1 help us?

• can show scaling filter obeys important fourth property

4. orthogonality to {hl} and its even shifts: for all n have

L−1∑
l=0

glhl+2n = 0

• implies any row in V1 orthogonal to any row in W1

• implies W1 & V1 are jointly orthonormal:

W1VT
1 = V1WT

1 = 0N
2

in addition to V1VT
1 = W1WT

1 = IN
2
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Orthonormality of V1 & W1: II

• implies that

P1 ≡
[W1
V1

]
is an N × N orthonormal matrix since

P1PT
1 =

[W1
V1

] [
WT

1 ,VT
1

]

=

[W1WT
1 W1VT

1
V1WT

1 V1VT
1

]
=

[
IN

2
0N

2
0N

2
IN

2

]
= IN

• if N = 2 (not of much interest!), in fact P1 = W
• if N > 2, P1 is intermediate step on way to W
− V1 spans same subspace as lower half of W
−P1 can be of interest by itself (just needs N even)
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Three Comments

• if N even, then P1 is well-defined (don’t need N = 2J)

• rather than defining gl = (−1)l+1hL−1−l, could use alternative

definition gl = (−1)l−1h1−l

− structure of V1 would then not parallel that of W1

− useful for wavelet filters with infinite widths

• scaling and wavelet filters are often called ‘father’ and ‘mother’
wavelet filters, but Strichartz (1994) notes that this terminology

‘. . . shows a scandalous misunderstanding of human repro-
duction; in fact, the generation of wavelets more closely
resembles the reproductive life style of amoebas.’
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Interpretation of Scaling Coefficients: I

• consider Haar scaling filter (L = 2): g0 = g1 = 1√
2

• when N = 16, matrix V1 looks like⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 g0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g1 g0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 g1 g0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g1 g0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g1 g0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g1 g0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 g1 g0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 g1 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• since V1 = V1X, each V1,t is proportional to a 2 point average:

V1,0 = g1X0 + g0X1 = 1√
2
X0 + 1√

2
X1 ∝ X1(2) and so forth
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Interpretation of Scaling Coefficients: II

• reconsider shapes of {gl} seen so far:

..

....

...
.
..

.....
.
..

Haar

D(4)

D(6)

LA(8)

• for L > 2, can regard V1,t as proportional to weighted average

• can argue that effective width of {gl} is 2 in each case; thus
scale associated with V1,t is 2, whereas scale is 1 for W1,t
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Frequency Domain Properties of {hl} and {gl}: I

• since W1 and V1 contain (downsampled) output from filters,
let’s consider frequency domain properties of {hl} & {gl}

• define transfer and squared gain functions for wavelet filter:

H(f ) ≡
L−1∑
l=0

hle
−i2πfl and H(f ) ≡ |H(f )|2

• define similar functions for scaling filter:

G(f ) ≡
L−1∑
l=0

gle
−i2πfl and G(f ) ≡ |G(f )|2

• effect of {hl} & {gl} on X can be deduced from H(·) & G(·)
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(4) filters

      

 

 

 

 

 

 

 

      

 

Haar
H(·) G(·)

D(4)
H(·) G(·)
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(6) filters

Haar
H(·) G(·)

D(6)
H(·) G(·)

2

1

0
2

1

0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(8) filters

Haar
H(·) G(·)

D(8)
H(·) G(·)

2
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(10) filters

Haar
H(·) G(·)

D(10)
H(·) G(·)

2
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(12) filters

Haar
H(·) G(·)

D(12)
H(·) G(·)

2
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(14) filters

Haar
H(·) G(·)

D(14)
H(·) G(·)
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(16) filters

Haar
H(·) G(·)

D(16)
H(·) G(·)
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f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(18) filters

Haar
H(·) G(·)

D(18)
H(·) G(·)
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• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Frequency Domain Properties of {hl} and {gl}: II

• example: H(·) and G(·) for Haar & D(20) filters

Haar
H(·) G(·)

D(20)
H(·) G(·)

2

1

0
2
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

f f

• {hl} is high-pass filter with nominal pass-band [1/4, 1/2]

• {gl} is low-pass filter with nominal pass-band [0, 1/4]

• same true for all Daubechies wavelet and scaling filters

• orthonormality condition equivalent to H(f ) + G(f ) = 2
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Example of Decomposing X into W1 and V1

• oxygen isotope records X from Antarctic ice core
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Example of Decomposing X into W1 and V1

• oxygen isotope record series X has N = 352 observations

• spacing between observations is ∆t
.
= 0.5 years

• used Haar DWT, obtaining 176 scaling and wavelet coefficients

• scaling coefficients V1 related to averages on scale of 2∆t

• wavelet coefficients W1 related to changes on scale of ∆t

• coefficients V1,t and W1,t plotted against mid-point of years
associated with X2t and X2t+1

• note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

• data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar
Environmental Centre, Tromsø, Norway
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Reconstructing X from W1 and V1

• in matrix notation, form wavelet & scaling coefficients via[
W1
V1

]
=

[W1X
V1X

]
=

[W1
V1

]
X = P1X

• recall that PT
1 P1 = IN because P1 is orthonormal

• since PT
1 P1X = X, premultiplying both sides by PT

1 yields

PT
1

[
W1
V1

]
=

[WT
1 VT

1

] [
W1
V1

]
= WT

1 W1 + VT
1 V1 = X

• D1 ≡ WT
1 W1 is the first level detail

• S1 ≡ VT
1 V1 is the first level ‘smooth’

• X = D1 + S1 in this notation
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Construction of First Level Detail: I

• consider D1 = WT
1 W1 for L = 4 & N > L:

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h3 0 · · · 0 0
h0 h2 0 · · · 0 0
0 h1 h3 · · · 0 0
0 h0 h2 · · · 0 0
... ... ... · · · ... ...
0 0 0 · · · h1 h3
0 0 0 · · · h0 h2
h3 0 0 · · · 0 h1
h2 0 0 · · · 0 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W1,0
W1,1
W1,2

...
W1,N/2−2

W1,N/2−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

note: WT
1 is N × N

2 & W1 is N
2 × 1

• D1 not result of filtering W1,t’s with {h0, h1, h2, h3}
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Construction of First Level Detail: II

• augment W1 to N × N and W1 to N × 1:

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 h1 h2 h3 0 0 · · · 0 0 0
0 h0 h1 h2 h3 0 · · · 0 0 0
0 0 h0 h1 h2 h3 · · · 0 0 0
0 0 0 h0 h1 h2 · · · 0 0 0
... ... ... ... ... ... · · · ... ... ...
0 0 0 0 0 0 · · · h1 h2 h3
h3 0 0 0 0 0 · · · h0 h1 h2
h2 h3 0 0 0 0 · · · 0 h0 h1
h1 h2 h3 0 0 0 · · · 0 0 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
W1,0

0
W1,1

0
W1,2

...
W1,N/2−2

0
W1,N/2−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• can now regard the above as equivalent to use of a filter
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Construction of First Level Detail: III

• formally, define upsampled (by 2) version of W1,t’s:

W
↑
1,t ≡

{
0, t = 0, 2, . . . , N − 2;

W1,(t−1)/2 = W(t−1)/2, t = 1, 3, . . . , N − 1

• example of upsampling:

........ ................W1,t ↑ 2 W ↑
1,t

• note: ‘↑ 2’ denotes ‘upsample by 2’ (put 0’s before values)
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Construction of First Level Detail: IV

• can now write

D1,t =

N−1∑
l=0

h◦l W
↑
1,t+l mod N, t = 0, 1, . . . , N − 1

• doesn’t look like exactly like filtering, which would look like
N−1∑
l=0

h◦l W
↑
1,t−l mod N ; i.e., direction of W

↑
1,t not reversed

• form that D1,t takes is what engineers call ‘cross-correlation’

• if {hl} ←→ H(·), cross-correlating {hl} & {W ↑
1,t} is equivalent

to filtering {W ↑
1,t} using filter with transfer function H∗(·)

• D1 formed by circularly filtering {W ↑
1,t} with filter {H∗( k

N )}
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Example of Synthesizing X from D1 and S1

• Haar-based decomposition for oxygen isotope records X
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First Level Variance Decomposition: I

• recall that ‘energy’ in X is its squared norm ‖X‖2

• because P1 is orthonormal, have PT
1 P1 = IN and hence

‖P1X‖2 = (P1X)TP1X = XTPT
1 P1X = XTX = ‖X‖2

• can conclude that ‖X‖2 = ‖W1‖2 + ‖V1‖2 because

P1X =

[
W1
V1

]
and hence ‖P1X‖2 = ‖W1‖2 + ‖V1‖2

• leads to a decomposition of the sample variance for X:

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt − X

)2
=

1

N
‖X‖2 − X

2

=
1

N
‖W1‖2 +

1

N
‖V1‖2 − X

2
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First Level Variance Decomposition: II

• breaks up σ̂2
X into two pieces:

1. 1
N‖W1‖2, attributable to changes in averages over scale 1

2. 1
N‖V1‖2 − X

2
, attributable to averages over scale 2

• Haar-based example for oxygen isotope records

− first piece: 1
N‖W1‖2 .

= 0.295

− second piece: 1
N‖V1‖2 − X

2 .
= 2.909

− sample variance: σ̂2
X

.
= 3.204

− changes on scale of ∆t
.
= 0.5 years account for 9% of σ̂2

X
(standardized scale of 1 corresponds to physical scale of ∆t)
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Summary of First Level of Basic Algorithm

• transforms {Xt : t = 0, . . . , N − 1} into 2 types of coefficients

• N/2 wavelet coefficients {W1,t} associated with:

− W1, a vector consisting of first N/2 elements of W

− changes on scale 1 and nominal frequencies 1
4 ≤ |f | ≤ 1

2
− first level detail D1

−W1, an N
2 × N matrix consisting of first N

2 rows of W
• N/2 scaling coefficients {V1,t} associated with:

− V1, a vector of length N/2

− averages on scale 2 and nominal frequencies 0 ≤ |f | ≤ 1
4

− first level smooth S1

− V1, an N
2 × N matrix spanning same subspace as last N/2

rows of W
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Level One Analysis and Synthesis of X

• can express analysis/synthesis of X as a flow diagram

G( k
N ) −→

↓2
V1

↑2−→ G∗( k
N ) −→ S1

↗ ↘
X + −→ X

↘ ↗
H( k

N ) −→
↓2

W1
↑2−→ H∗( k

N ) −→ D1
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Constructing Remaining DWT Coefficients: I

• have regarded time series Xt as ‘one point’ averages Xt(1) over

− physical scale of ∆t (sampling interval between observations)

− standardized scale of 1

• first level of basic algorithm transforms X of length N into

− N/2 wavelet coefficients W1 ∝ changes on a scale of 1

− N/2 scaling coefficients V1 ∝ averages of Xt on a scale of 2

• in essence basic algorithm takes length N series X related to
scale 1 averages and produces

− length N/2 series W1 associated with the same scale

− length N/2 series V1 related to averages on double the scale
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Constructing Remaining DWT Coefficients: II

• Q: what if we now treat V1 in the same manner as X?

• basic algorithm will transform length N/2 series V1 into

− length N/4 series W2 associated with the same scale (2)

− length N/4 series V2 related to averages on twice the scale

• by definition, W2 contains the level 2 wavelet coefficients

• Q: what if we treat V2 in the same way?

• basic algorithm will transform length N/4 series V2 into

− length N/8 series W3 associated with the same scale (4)

− length N/8 series V3 related to averages on twice the scale

• by definition, W3 contains the level 3 wavelet coefficients
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Constructing Remaining DWT Coefficients: III

• continuing in this manner defines remaining subvectors of W
(recall that W = WX is the vector of DWT coefficients)

• at each level j, outputs Wj and Vj from the basic algorithm
are each half the length of the input Vj−1

• length of Vj given by N/2j

• since N = 2J , length of VJ is 1, at which point we must stop

• J applications of the basic algorithm defines the remaining
subvectors W2, . . ., WJ , VJ of DWT coefficient vector W

• overall scheme is known as the ‘pyramid’ algorithm
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Scales Associated with DWT Coefficients

• jth level of algorithm transforms scale 2j−1 averages into

– differences of averages on scale 2j−1, i.e., Wj, the wavelet
coefficients

– averages on scale 2 × 2j−1 = 2j, i.e., Vj, the scaling coeffi-
cients

• let τj ≡ 2j−1 be standardized scale associated with Wj

− for j = 1, . . . , J , takes on values 1, 2, 4, . . . , N/4, N/2

− physical (actual) scale given by τj ∆t

• let λj ≡ 2j be standardized scale associated with Vj

− takes on values 2, 4, 8, . . . , N/2, N

− physical scale given by λj ∆t
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Examples of W and its Partitioning: I

• N = 16 case for Haar DWT matrix W
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• above agrees with qualitative description given previously
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Examples of W and its Partitioning: II

• N = 16 case for D(4) DWT matrix W
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• note: elements of last row equal to 1/
√

N = 1/4, as claimed
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Multiresolution Analysis

• Dj ≡ WT
j Wj is the jth level detail

• Sj ≡ VT
j Vj is the jth level ‘smooth’

• we get multiresolution analyses (MRAs) for levels k and J : for
1 ≤ k ≤ J ,

X =

k∑
j=1

Dj + Sk and, in particular, X =

J∑
j=1

Dj + SJ

i.e., additive decomposition (first of two basic decompositions
derivable from DWT)
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Matrix Description of Energy Decomposition: I

• just as we can recover the energy in X from W1 & V1 using

‖X‖2 = ‖W1‖2 + ‖V1‖2,

so can we recover the energy in Vj−1 from Wj & Vj using

‖Vj−1‖2 = ‖Wj‖2 + ‖Vj‖2

(recall the correspondence V0 = X)

• we can thus write

‖X‖2 = ‖W1‖2 + ‖V1‖2

= ‖W1‖2 + ‖W2‖2 + ‖V2‖2

= ‖W1‖2 + ‖W2‖2 + ‖W3‖2 + ‖V3‖2
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Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

‖X‖2 = ‖W1‖2 + ‖W2‖2 + ‖W3‖2 + ‖V3‖2

indicates that, for 1 ≤ k ≤ J , we can write

‖X‖2 =

k∑
j=1

‖Wj‖2 + ‖Vk‖2

and, in particular,

‖X‖2 =

J∑
j=1

‖Wj‖2 + ‖VJ‖2

• above are energy decompositions for levels k and J ;
(second of two basic decompositions derivable from DWT)
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Partial DWT

• stop at J0 < J repetitions — a level J0 ‘partial’ DWT

• only requires N to be integer multiple of 2J0

• choice of J0 is application dependent

• multiresolution analysis for partial DWT:

X =

J0∑
j=1

Dj + SJ0

SJ0
represents averages on scale λJ0

= 2J0 (includes X)

• analysis of variance for partial DWT:

σ̂2
X =

1

N

J0∑
j=1

‖Wj‖2 +
1

N
‖VJ0

‖2 − X
2
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Example of J0 = 4 Partial Haar DWT

• oxygen isotope records X from Antarctic ice core
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Example of MRA from J0 = 4 Partial Haar DWT

• oxygen isotope records X from Antarctic ice core
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Assigning Times to Wavelet Coefficients

• LA class of wavelet and scaling filters designed to exhibit ‘near
symmetry’ about some point in the filter

• makes it easier to align Wj,t and VJ0,t with values in X

• some gory details: if Xt is associated with actual time t0+t ∆t,
LA wavelet coefficient Wj,t should be plotted at time

t0 + (2j(t + 1) − 1 − |ν(H)
j | mod N) ∆t

e.g., |ν(H)
j | = [7(2j − 1)+1]/2 for LA(8) wavelet. For N = 16

coefficient W1,0 W1,1 W1,2 W1,3 W1,4 W1,5 W1,6 W1,7

associated time 13 15 1 3 5 7 9 11

• order in which elements of W1 should be displayed is thus

W1,2, W1,3, W1,4, W1,5, W1,6, W1,7, W1,0, W1,1
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Matrices for Circularly Shifting Vectors

• define T and T −1 to be N × N matrices that circularly shift
X = [X0, X1, . . . , XN−1]

T either right or left one unit:

T X = [XN−1, X0, X1, . . . , XN−3, XN−2]
T

T −1X = [X1, X2, X3, . . . , XN−2, XN−1, X0]
T

• for N = 4, here are what these matrices look like:

T =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ & T −1 =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦

• define T −2 = T −1T −1, T −3 = T −1T −1T −1 and so forth
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Circularly Shifting a Vector and Time Alignment

• can express reordering elements of

W1 = [W1,0, W1,1, W1,2, W1,3, W1,4, W1,5, W1,6, W1,7]
T

as they occur in time using

T −2W1 = [W1,2, W1,3, W1,4, W1,5, W1,6, W1,7, W1,0, W1,1]
T

• can use to time-align wavelet coefficients

• note that the details and smooths do not need to be time-
aligned as the associated filters do not cause a time shift
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Example of J0 = 4 Partial LA(8) DWT

• oxygen isotope records X from Antarctic ice core

 

 

     

 

T −2V4

T −3W4

T −3W3

T −2W2

T −2W1

X
−44.2

−53.8
1800 1850 1900 1950 2000

year
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Summary of Key Points about the DWT: I

• the DWT W is orthonormal, i.e., satisfies WTW = IN

• construction of W starts with a wavelet filter {hl} of even
length L that by definition

1. sums to zero; i.e.,
∑

l hl = 0;

2. has unit energy; i.e.,
∑

l h
2
l = 1; and

3. is orthogonal to its even shifts; i.e.,
∑

l hlhl+2n = 0

• 2 and 3 together called orthonormality property

• wavelet filter defines a scaling filter via gl = (−1)l+1hL−1−l

• scaling filter satisfies the orthonormality property, but sums to√
2 and is also orthogonal to {hl}; i.e.,

∑
l glhl+2n = 0

• while {hl} is a high-pass filter, {gl} is a low-pass filter
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Summary of Key Points about the DWT: II

• {hl} and {gl} work in tandem to split time series X into

− wavelet coefficients W1 (related to changes in averages on a
unit scale) and

− scaling coefficients V1 (related to averages on a scale of 2)

• {hl} and {gl} are then applied to V1, yielding

− wavelet coefficients W2 (related to changes in averages on a
scale of 2) and

− scaling coefficients V2 (related to averages on a scale of 4)

• continuing beyond these first 2 levels, scaling coefficients Vj−1
at level j are transformed into wavelet and scaling coefficients
Wj and Vj of scales τj = 2j−1 and λj = 2j
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Summary of Key Points about the DWT: III

• after J0 repetitions, this ‘pyramid’ algorithm transforms time
series X whose length N is an integer multiple of 2J0 into DWT
coefficients W1, W2, . . ., WJ0

and VJ0
(sizes of vectors are

N
2 , N

4 , . . ., N
2J0

and N
2J0

, for a total of N coefficients in all)

• DWT coefficients lead to two basic decompositions

• first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as

X =

J0∑
j=1

Dj + SJ0
,

where Dj is a time series reflecting variations in X on scale τj,
while SJ0

is a series reflecting its λJ0
averages
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Summary of Key Points about the DWT: IV

• second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

‖X‖2 =

J0∑
j=1

‖Wj‖2 + ‖VJ0
‖2,

leading to an analysis of the sample variance of X:

σ̂2
X =

1

N

N−1∑
t=0

(
Xt − X

)2

=
1

N

J0∑
j=1

‖Wj‖2 +
1

N
‖VJ0

‖2 − X
2
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