Wavelet Methods for Time Series Analysis

Part II: Basic Theory for Discrete Wavelet Transform (DWT)

e precise definition of DW'T requires a few basic concepts from
Fourier analysis and theory of linear filters

e will start with discussion/review of:
— convolution /filtering of infinite sequences
— filter cascades
— Fourier theory for finite sequences
— circular convolution /filtering of finite sequences
— periodization of a filter

Basic Concepts of Filtering: I

e convolution & linear time invariant filtering are same concepts:
— {b:} is input to filter
— {a} represents the filter
— {¢t} is output from filter

o flow diagram for filtering:
{bi} — Har}| — {er} or {b} — 10— {e}
e since {a;y} equivalent to A(-), can also express flow diagram as

{bi} — A() — {c1}
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Basic Concepts of Filtering: 11

e {a;} called impulse response sequence for filter

e A(-) called transfer function for filter:
m .
Alf) = Z age 27 ft
t=—00

e in general A(+) is complex-valued, so write A(f) = |A( f)|ei9(f )

— |A(f)| defines gain function
— A(f) = |A(f)|? defines squared gain function
— 6(f) called phase function (well-defined at f if |[A(f)| > 0)
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Example of a High-Pass Filter

- 2] 1t|
e consider by = % (%) + 2_10 <_%)

1
bR t=20
e now let a; = —%, t=—1or1l
0, otherwise
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Cascade of Filters: 1

e idea: output from one filter becomes input to another

e flow diagram for cascade with 2 filters (can have more!):

{bt} — \A1(')\L\A2('>\L{Ct}
if {0t} «— B(-) and {¢t} «— C(-), then
1. output from A;(-) has DFT A{(f)B(f)

2. output from As(+) has DFT Aso(f)A1(f)B(f)
so C(f) = Aa(f)AL(f)B(f)

o let A(f) = As(f)AL(f)

e can reexpress overall effect of filter cascade as
{bt} — — {ct}
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Cascade of Filters: II

e A(-) is transfer function for equivalent filter for cascade
o lt {ar} —— A(), {a1,¢} < A1) and {ag;} < Aa(")

e to form {at}, just need to convolve {aj ¢} and {as} (reverse
one filter, multiply by other; shift and repeat)

—5, t=-—1 5 t=0
e example: aj; = %, t=20 &agy = —%, t=1
0, otherwise 0, otherwise

a1,-3 A1,—2 A1,—-10A10 Q11 G12

o0
: : : : : o = Zu:—oo A1 ya2 —2—y
21 A20 A2 -1 QG2 202302 —4
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(-), {a1+} < A1(-) and {ag s} «— As()

e to form {az}, just need to convolve {aj s} and {as} (reverse
one filter, multiply by other; shift and repeat)

5 t=—1 5t=0
e example: aj 4 = %, t=0 &agy = —%, t=1
0, otherwise 0, otherwise
o o0 -1 1 0 o0
. . . a9 =0
-5 3 0 0 0 0
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {ar} «— A(-), {a1} < A1(-) and {ag s} «— As(-)

e to form {a;}, just need to convolve {a 4} and {as} (reverse
one filter, multiply by other; shift and repeat)

—3 t=-1 5 t=0
e example: ayy = %, t=0 &agy = —%, t=1
0, otherwise 0, otherwise
0o 0o -2 1 0 o0
‘ : -1 = —i
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
o let {at} «— A(-), {a1 4} «— Ai(-) and {ag;} «— As(-)

e to form {at}, just need to convolve {aj ¢} and {as+} (reverse
one filter, multiply by other; shift and repeat)

1 1
—§7 t — —]. ?7 t — O
e example: ay; = %, t=20 &agy = —%, t=1
0, otherwise 0, otherwise
0 0 =3 5 0 0
1 1 1 1 1 — 1
T T T T aO - 5
o o0 -1 1 0 o0

11-6

Cascade of Filters: II

e A(-) is transfer function for equivalent filter for cascade
o lt {ar} —— A(), {a1,¢} < A1) and {ag;} < Aa(")

e to form {at}, just need to convolve {aj ¢} and {as} (reverse
one filter, multiply by other; shift and repeat)

1 1
_§7 t - —1 §7 t — O
e example: aj; = %, t=20 &agy = —%, t=1
0, otherwise 0, otherwise
0 0 =3 & 0 0
1 1 1 1 1 1 j— 1
T T ay = 1
o 0o o -1 1 0
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Cascade of Filters: 11

e A(-) is transfer function for equivalent filter for cascade
olet {at} «— A(-), {a1+} < A1(-) and {ag s} «— As()

e to form {az}, just need to convolve {aj s} and {as} (reverse
one filter, multiply by other; shift and repeat)

1 1
—77 t — —1 g, t — 0
e example: aj 4 = %, t=0 &agy = —%, t=1
0, otherwise 0, otherwise
o o0 -1 1 0 o0
: : : = as =10
0 0 0 0 —3 3
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Summary of Fourier/Filtering Theory: 1
o{a;:t=...,—1,0,1,...} = {at} has DFT
m .
A(f) = Z aze12m Tt
t=—00

e inverse DFT says that

1/2 :

o= [ At
—1/2

e relationship between {a;} and A(-) denoted by

{a;} «— A(-) or, less formally, by a; «—— A(f)

17




Summary of Fourier/Filtering Theory: II

e given {a;} «— A(-) and {b;} «— B(-), their convolution

oo

o = Z awbi—y, t=...,—1,0,1,...,

U=—00

has a DFT given by

e {¢;} is output from filter with impulse response sequence {ay}
and transfer function A(-) related by {a;} «—— A()

e can express filtering operation in a flow diagram as either
{be} — — {ct}h or {b} — A()] — {et}
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Summary of Fourier/Filtering Theory: III

o{a;:t=0,1,...,N —1} = {a;} has DFT
N-1 I:
AL = —2Tfit i = — = —
— cwith fy =5 & k=01,... . N-1
t=0
e inverse DFT says that

N—-1
1 .

at:NE A it =01, N—1
k=0

e relationship between {a;} and A(-) denoted by
{at} «— {A}} or, less formally, by a; «— A;,
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Summary of Fourier/Filtering Theory: IV

o given {a;} & {b;} of length N with DFTs {A;} & {B}.},
their circular convolution

N-1
Ct = Z aubt—umodN7 t:O,l,...,N—l,
u=0
has a DFT given by

N—-1
Cr. = Z Cteil%-fkt = A.B;.
t=0

e {¢;} is output from circular filtering operation expressible as

{bs} — [at] — {ci} or {b} — Al — {er}
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Summary of Fourier/Filtering Theory: V

e suppose {a;} has width M with a; =0 fort <0andt > M
e given {b;} of length N, can express

M-1
= Z aubt—ymod No t=0,..., N =1,
u=0
as
N-1 00
o o __
Ct = Z bty mod N, Where a; = Z Qy+nN
u=0 n=—00

e DFT of {aj} given by A(%), k=0,...,N — 1, where

00 ' M-1 '
A(f) — Z atefZQWft: Z at672277ft
t=0

t=—00
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Basic Theory for Discrete Wavelet Transform
(DWT)

e can formulate DW'T via elegant ‘pyramid’ algorithm
e defines W for non-Haar wavelets (consistent with Haar)
e computes W = WX using O(N) multiplications

— ‘brute force’ method uses O(N?) multiplications

— faster than celebrated algorithm for fast Fourier transform!
(this uses O(N - logy(N)) multiplications)

e can study algorithm using linear filters & matrix manipulations

e will look at both approaches since they are complementary
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The Wavelet Filter: 1

e precise definition of DW'T begins with notion of wavelet filter
elet {h;:1=0,...,L — 1} be a real-valued filter

— L called filter width

— both hg and hy,_; must be nonzero

— L must be even (2,4,6,8,...) for technical reasons
— will assume hy =0forl <0Oand ! > L
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The Wavelet Filter: 11

e {h;} called a wavelet filter if it has these 3 properties

1. summation to zero:

2. unit energy:

3. orthogonality to even shifts: for all nonzero integers n, have

L—1
> hihigon =0
=0
e 2 and 3 together are called the orthonormality property
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The Wavelet Filter: 111

e summation to zero and unit energy relatively easy to achieve
(analogous to conditions imposed on wavelet functions (-))

e orthogonality to even shifts is key property
e orthogonality hardest to satisfy, and is reason L must be even

— consider filter {hg, hi, ho} of width L =3
— width 3 requires hg # 0 and hy # 0
— orthogonality to a shift of 2 requires hgho = 0 — impossible!

1I-15




Haar Wavelet Filter

e simplest wavelet filter is Haar (L = 2): hg = % & hy =

e note that Ao+ h1 = 0 and h% + h% =1, as required

e orthogonal to even shifts
orthogonality to even shifts also readily apparent

h[h172 A EEEEEEEEEEEEE sum = O

hi—s
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1

V2

D(4) Wavelet Filter: I

e next simplest wavelet filter is D(4), for which L = 4:

_1—4/3 =343 _3+4/3 _—1—4/3
ho =77 m=—p- he="75 hs=—7

— ‘D’ stands for Daubechies
— L = 4 width member of her ‘extremal phase” wavelets

e computations show » ; hy =0 & ), h12 =1, as required

e orthogonal to even shifts orthogonality to even shifts apparent
except for £2 case:

I e
hihi_9 *'ll“m sum = 0
D P—
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D(4) Wavelet Filter: II

e (): what is rationale for D(4) filter?

e consider Xt(l) =Xy — Xi_1=ap Xt + a1 X1,
where {ag = 1,a; = —1} defines 1st difference filter:

(X1} — — x

— Haar wavelet filter is normalized 1st difference filter
— t(l) is difference between two ‘1 point averages’
e consider filter cascade with two 1st difference filters:

X} — [{L -1 — {1, 1] — (%)

e equivalent filter defines 2nd difference filter:

(X1} — — {x?
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D(4) Wavelet Filter: III

e renormalizing and shifting 2nd difference filter yields high-pass
filter considered earlier:

1 _
5, t=0

ar = —%, t=—1or1l
0, otherwise

e consider ‘2 point weighted average’ followed by 2nd difference:

Xt} — a0} — {1, -2, 1} — {¥}}

e D(4) wavelet filter based on equivalent filter for above:

{X:} — {ho, h, ho, hg} — {3}
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D(4) Wavelet Filter: IV

e using conditions
1. summation to zero: hg+ hi + ho+ hg =0
2. unit energy: h(Q] + h% + h% +h3=1
3. orthogonality to even shifts: hgho + hihs =0
can solve for feasible values of a and b

o one solution is @ — % ~ 048 and b — ‘}Qg 3 - 0.13

(3 other solutions, but these yield essentially the same filter)

e interpret D(4) filtered output as changes in weighted averages

— ‘change’ now measured by 2nd difference (1st for Haar)
— average is now 2 point weighted average (1 point for Haar)
— can argue that effective scale of weighted average is one
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Another Wavelet Filter

e LA(8) wavelet filter (‘LA’ stands for ‘least asymmetric’)

hihi_o mlLTm sum = 0

hlhl*‘l wnsalya annnnnnn sum = 0

hlhl—G —soeoosgaesasee e sum = 0

e
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First Level Wavelet Coefficients: 1

e given wavelet filter {h;} of width L & time series of length
N =27 goal is to define matrix W for computing W = WX

e periodize {h;} to length N to form hg, h7, ... Ay
e circularly filter X using {;'} to yield output
N—-1
Z h?thl mod N» t=0,...,N—1
(=0
e starting with ¢ = 1, take every other value of output to define
N—-1
_ N )
Wi = Z h?XQH—l—l mod Ny t=0,...,9 =1
(=0

{W71 ¢} formed by downsampling filter output by a factor of 2
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First Level Wavelet Coefficients: 11

o {Wy 4} are unit scale wavelet coefficients
— 7 in W;; indicates a particular group of wavelet coefficients
—j=1,2,...,J (upper limit tied to sample size N = 27)
— will refer to index 7 as the level
— thus W 4 is associated with level j =1
— W ¢ also associated with scale 1
— level j is associated with scale 2771 (more on this later)
o {WW +} forms first N/2 elements of W = WX
o first V/2 elements of W form subvector W
o Wy 4 is tth element of Wy
e also have W1 = W X, with Wy being first N/2 rows of W

11-23




Upper Half of DWT Matrix: 1

e setting ¢ = 0 in definition for W 4 yields
N—-1
Wl,O = Z hfxl—l mod N
(=0
= ho X1+ Xo+hoXn_1+ -+ hy_oX3+hy_1 X2
= X0+ hgX1 +hy_ 1 Xo+hy_oXs+ -+ hyXy_4
o recall W1 o = (Woe, X), where Wg: is first row of W & of W

e comparison with above says that

Wi = [h5. B8, Wy hy o - - - hS. S b, bS]
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Upper Half of DWT Matrix: II

e similar examination of W7y 1, ... Wl, N shows following pattern
— circularly shift Wye by 2 to get 2nd row of W:
Wie = [15, 15,0, h, hiy_y hy s, h5, h]
— form W, by circularly shifting W;_14 by 2, ending with
Wg_l. = [Px_1- b9, b3, h h3, b3, b, b
o if L < N (usually the case), then

1o — h;, 0<I<L-1
L 0, otherwise
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Example: Upper Half of Haar DWT Matrix

e consider Haar wavelet filter (L = 2): hy = \/2 & hy = ~7
e when N = 16, upper half of W (i.e., W) looks like

hihg 00 0000000000000
0 0hithgO000O0O0OO0O0O0O0D0D0
000 0h hOOOOOO0O0O000
000000 O0hHhOOOOOOOO
000 0000O0O0hAhOTODODOOO
000000O0O0O0O0Ahh OOODO
0000000O0O0O0O0O0hhOO
(0000000000000 0 h h

e rows obviously orthogonal to each other
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Example: Upper Half of D(4) DWT Matrix

ewhen L =4 & N =16, Wy (i.e., upper half of W) looks like
(hihg O 0 0 0 0 0 0 0 0 h
hs ho hy hg 0 0 0 0 0 0 0

0 hs hg hy hg 0 0 0 0 0

0 0 0 hghphy hg 0 0 0 0 0
0 0 0 hghyhyhyg O 0 0
0 0 0 0 0 hghyhy hg O
00 0 0 0 0 0 hgho hy hy
0000000000 0 0 hghyhyhy

e rows orthogonal because hoho + hihs =0
e note: (Wpe, X) vields Wy = h1 Xg + hoXo + haX14 + ho X135

e unlike other coefficients from above, this ‘boundary’ coefficient
depends on circular treatment of X (a curse, not a feature!)

w
=
)

0 0
0 0
0 0

0
0
0
0
0
0

O O O OO
o O O
o O O
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Upper Half of DWT Matrix: II1

e if L < N, orthonormality of rows of W follows readily from
orthonormality of {h;}

e as example of L > N case (comes into play at higher levels),
consider N =4 and L = 6:

h8:h0—|—h4; hi):hl—l-hf); h;ZhQ; hgzhg

o W), is:
[hcf h8 h,g hg] B [hl +hy ho+ hy hs ho
hg h; hf h8 - hs ho hi+ hs ho+ hy

e inner product of two rows is
hihs + hshs + hoho + hohy + hihs + hshs + hoho + hohy
= 2(hgho + hihs + haohg + hshs) =0

because {h;} is orthogonal to {h; o} (an even shift)
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Upper Half of DWT Matrix: IV

e can argue that, for all L and even N,

L—1

Wit =Y hXopi1-f mod N» OF, equivalently, Wi =W X
(=0

forms half an orthonormal transform; i.e.,

wiwl = Iy

e (): how can we construct the other half of WW?

11-29

The Scaling Filter

o create g; = (=1 ;. {g;} is ‘quadrature mirror’ filter
corresponding to {h;}

e properties 2 and 3 of {h;} are shared by {g;}:

2. unit energy:
L

\
_

2
g = 1
l:
3. orthogonality to even shifts: for all nonzero integers n, have

L-1
Z 9191+2n =0
1=0

o

e scaling & wavelet filters both satisfy orthonormality property

11-30

First Level Scaling Coefficients: 1

e only orthonormality property of {h;} needed to prove that W
is half of an orthonormal transform (never used ) ; hy = 0)

e going back and replacing h; with g; everywhere yields another
half of an orthonormal transform

e periodize {g;} to length N to form g, g7,...,9%_;
e circularly filter X using {g;'} and downsample to define
N-1

_ N
Vl,tzzgloXQt—i-l—lmodNa t=0,...,57—-1
1=0
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First Level Scaling Coefficients: II

e define ) in a manner analogous to Wy so that V; = V1 X

e when L =4 and N = 16, V looks like
_glg()OOOOOOOO

93929190 0 00 0 0 0
0 0 939291900

0
0
0
0 0 0 g39 0
0

0
0
0
0
0

coocooco
coococofl

O OO O oo

1 90
392 91 9o 0

coocooo ol

o O O O
o O O
o O O
o O O
o O O
o O O

e )| obeys same orthonormality property as Wi:
similar to W1W1T = Iy, have V1V1T =1y
2 2
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0000000O0O0O0O0O0g3929 90

Orthonormality of V; and Wy: 1

e (Q: how does V; help us?
e can show scaling filter obeys important fourth property

4. orthogonality to {h;} and its even shifts: for all n have

L1
> gihiion =0
1=0

e implies any row in V; orthogonal to any row in Wy
e implies W) & V) are jointly orthonormal:
wivi = viw! = 0y in addition to V\V{ = wiw{ = Iy
2 2
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Orthonormality of V; & W;: 11

e implies that

_ W
is an N x N orthonormal matrix since
PPl = | L] W]

 fwow!l wp!
Lyl ovpyf

e if N =2 (not of much interest!), in fact P; = W
o if N > 2 'P; is intermediate step on way to W

Iy Oy

— 2 2 —

On Iy In
2 2

— V) spans same subspace as lower half of W
— Py can be of interest by itself (just needs N even)

11-34

Three Comments

e if N even, then Py is well-defined (don’t need N = 27)

e rather than defining ¢; = (—1)""1h; _;_;, could use alternative
definition g; = (—1)'"1hy_
— structure of V| would then not parallel that of W

— useful for wavelet filters with infinite widths

e scaling and wavelet filters are often called ‘father” and ‘mother’
wavelet filters, but Strichartz (1994) notes that this terminology

*... shows a scandalous misunderstanding of human repro-
duction; in fact, the generation of wavelets more closely
resembles the reproductive life style of amoebas.’
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Interpretation of Scaling Coefficients: I

e consider Haar scaling filter (L = 2): gy = g1 = %
e when N = 16, matrix V; looks like

(91900 0000000000000
00ggg000000000GOOQO
0000g g0000000GO0OQO
000000g g0O0000GO0O0QO
00000000gg000000
0000000000g gOO0O00
00000000000 DO0Gg g0 O
(0000000000000 0 g go

e since V1 = V1 X, each V) 1 is proportional to a 2 point average:
Vio=g1Xo+ goX1 = ﬁXo + ﬁXl o X1(2) and so forth
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Interpretation of Scaling Coefficients: 11

e reconsider shapes of {g;} seen so far:

Haar

o for L > 2, can regard Vj 4 as proportional to weighted average

e can argue that effective width of {g;} is 2 in each case; thus
scale associated with V7 4 is 2, whereas scale is 1 for Wy 4
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Frequency Domain Properties of {i;} and {g;}: 1

e since W1 and V7 contain (downsampled) output from filters,
let’s consider frequency domain properties of {h;} & {g;}

e define transfer and squared gain functions for wavelet filter:
L—1

H(f) =Y he ™ and H(f) = [H(f)]?

[=0

e define similar functions for scaling filter:

L—1
G(f) =D ge ™ and G(f) = |G(f)?

=0
o effect of {h;} & {g;} on X can be deduced from H(-) & G(+)
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Frequency Domain Properties of {i;} and {g;}: II

e example: H(-) and G(+) for Haar & D(4) filters

L H() [ G()
Haar 1 : - f

0; [ | ] I | [ J

| HV ' o
D(4) 1 3 - 3

0» [ I J I I L J

0001 02 03 04 050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2)]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]
e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) =2
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Frequency Domain Properties of {i;} and {g;}: II

e example: H(-) and G(+) for Haar & D(6) filters

[N

1
g
—
N
Q
—~
~—

T
T

Haar

D(6) 1
()» I L I | I L J
0001 02 03 04 050001 02 03 0405
f f
e {h;} is high-pass filter with nominal pass-band [1/4,1/2]

e {g;} is low-pass filter with nominal pass-band [0, 1/4]

T

e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) = 2
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Frequency Domain Properties of {i;} and {g;}: 1I

e example: H(-) and G(+) for Haar & D(8) filters

N]

1
Ry
—~
-
Q
—
~—

Haar

D(s) 1f z

| | 1 | 1 | 1 J
0001 02 03 04 050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2)]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) = 2
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Frequency Domain Properties of {h;} and {¢;}: 1I

e example: H(-) and G(-) for Haar & D(10) filters

2L H() i g()
Haar 1F f - f

0; [ I J I I L J

[ H() s g()
D(10) 1 3 -

O» ! f | | ] I | | 1 1 ]

0001 02 03 04 050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]
e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) =2
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Frequency Domain Properties of {i;} and {g;}: II

e example: H(-) and G(-) for Haar & D(12) filters

L H() G()
Haar 1 f =

0 | | | ] | I I J

[ H() s g()
D(12) 11 / -

0» ! f | | ] I | | | 1 ]

0001 02 03 04 050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2)]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]
e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) =2
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Frequency Domain Properties of {i;} and {g;}: II

e example: H(-) and G(-) for Haar & D(14) filters

[N

1
g
—
N
Q
—~
~—

Haar

D(14) 1F 3 i

| (| 1 | 1 |-
0001 02 03 04050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) = 2
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Frequency Domain Properties of {i;} and {g;}: 1I

e example: H(-) and G(+) for Haar & D(16) filters
- H()

N]

1
Q
—
N

Haar

1
OV [ ] J» ] [ J
2

fH(.) ﬁ W G(-)
D(16) 1j / j \
0 1 I J I ! J

| |-
0001 02 03 04 050001 02 03 0405
f f

e {h;} is high-pass filter with nominal pass-band [1/4,1/2)]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]

e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) = 2
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Frequency Domain Properties of {h;} and {¢;}: 1I

e example: H(-) and G(-) for Haar & D(18) filters

2L H() [ g()

Haar 1F f - f
0; [ I J I L J
[ H() g()

D(18) 1r -

O» ! o | ] | [ 1 ]
0.0 0.1 0.2 03 04 050001 02 03 04 0.5

! !

e {h;} is high-pass filter with nominal pass-band [1/4,1/2]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]
e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) =2
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Frequency Domain Properties of {i;} and {g;}: II

e example: H(-) and G(+) for Haar & D(20) filters

L H() G()
Haar 1 =
0; | | | ] | I I J
[ H() g()
D(20) 1 -
0» ! L | ] I | [ 1 ]
0.0 0.1 0.2 0.3 04 050001 02 03 0405
f !

e {h;} is high-pass filter with nominal pass-band [1/4,1/2)]
e {g;} is low-pass filter with nominal pass-band [0, 1/4]
e same true for all Daubechies wavelet and scaling filters

e orthonormality condition equivalent to H(f) + G(f) =2
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Example of Decomposing X into W; and V;

e oxygen isotope records X from Antarctic ice core

—62

—69 - Vv,

] B P U B
3.5 ‘
)= ““‘\\““ww\“““n H‘m‘\m“m”“‘\ ‘\ iy \‘\‘ ol ‘U “H‘ “ ‘W \‘HH‘\‘ ” I “‘ o ““\ ‘Vl
=35l vy .
—42

—r WWWWWWM X

=56l oy
1800 1850 1900 1950 2000
year

M J
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Example of Decomposing X into W; and V;

e oxygen isotope record series X has N = 352 observations

e spacing between observations is At = 0.5 years

e used Haar DWT, obtaining 176 scaling and wavelet coefficients
e scaling coefficients V7 related to averages on scale of 2At

e wavelet coefficients W related to changes on scale of At

e coefficients V7 ; and Wy 4 plotted against mid-point of years
associated with Xo; and Xop41

e note: variability in wavelet coefficients increasing with time
(thought to be due to diffusion)

e data courtesy of Lars Karlof, Norwegian Polar Institute, Polar
Environmental Centre, Tromse, Norway
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Reconstructing X from W; and V;

e in matrix notation, form wavelet & scaling coefficients via

Wi (WX | W N
lVllllellW]XPIX

e recall that 731T P1 = Iy because P is orthonormal

e since PlT P1X = X, premultiplying both sides by PlT yields

T |W W T T
Py [VH = Wl VT [Vﬂ =W W, +V[ V=X

oD = WlT W is the first level detail

°S5 = VlT V1 is the first level ‘smooth’
e X = Dy + & in this notation
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Construction of First Level Detail: 1

e consider Dy = WlTW1 for L=4& N > L:

(hi hs 0 -~ 0 0]

hgo hg O --- 0 0 | T Wi 7

0 hy hg--- 0 O W171

0 hg hg --- 0 0 WI,Q
Di= | + &+ o v b

0 0 0 hy hs

0 0 0 - hy hy xLN/H

hs 0 0 --- 0 hy| L~ LN/2-1]

[ hg 00 -+ 0 Dy |

note: WlTisNx%&Wlis%xl
® Dy not result of filtering Wy 4's with {hg, by, ho, h3}
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Construction of First Level Detail: 11

e augment Wy to N x N and Wy to N x 1:

a o]
ho h1y ho hg O 0 --- 0 0 O W
0 hghihyhy O - 0 0 0 o
0 0 hghy hyphg--- 0 0 0 Wi
0 0 0 hghyhy--- 0 0 0 0’
Dy = R S S S S S S Wi o
00 0 0 0 0 -+ hy ho hs :’
hy 0 0 0 0 O --+ hg hy he W '
ho hs 0 0 0 0 - 0 hg hy 1’]8/2_2
| 1 ho h3 00 0 - 0 0 hy| W, N/t

e can now regard the above as equivalent to use of a filter
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Construction of First Level Detail: 111

o formally, define upsampled (by 2) version of W7 ;’s:

U t=0,2,... N—2
1’t o Wl,(t—l)/Q = W(t—l)/Q’ t = 1,3, ce N —1

e example of upsampling:

Wy, el 12 teenlallt WIT,t

e note: ‘7T 2’ denotes ‘upsample by 2’ (put 0’s before values)
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Construction of First Level Detail: TV

e can now write
N—-1

_ < ral _
DLt_ Z thl,t-i—l mod N’ t=01,....N =1
(=0
e doesn’t look like exactly like filtering, which would look like

N—-1
Z hleT’ i1 mod No 1-€ direction of WIT’ ; not reversed
=0

e form that D1 ; takes is what engineers call ‘cross-correlation’
o if {h;} «— H(-), cross-correlating {h;} & {I/VlT 4} is equivalent
to filtering {VVlT .+ using filter with transfer function H*(-)

e Dy formed by circularly filtering {I/VlT o+ with filter {H *(%)}
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Example of Synthesizing X from D; and §;

e Haar-based decomposition for oxygen isotope records X
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First Level Variance Decomposition: I

e recall that ‘energy’ in X is its squared norm || X||?

e because Pj is orthonormal, have 771T P1 = Iy and hence
IPIX|? = (PX)TPX = XTPIPIX = XTX = X

e can conclude that ||X||> = ||[W||> + || V1]|> because

A%
Pix =[] and hence [P = (W2 + V3 2
e lcads to a decomposition of the sample variance for X:
1 N—-1 5 1 5
A2 B 2 3
=— X —X) =—=|X||F-X
ox N pr ( t ) NH ”

1 2 1 2 <2
= WP+ VP =X
NH 1l +NH 1l
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First Level Variance Decomposition: II

e breaks up [7%( into two pieces:
L. %”Wl |2, attributable to changes in averages over scale 1

2. %HV1H2 — 72, attributable to averages over scale 2

e Haar-based example for oxygen isotope records

— first piece: %HWNQ = 0.295
— second piece: %HVlHQ — X7 = 2.909
— sample variance: 63( = 3.204

— changes on scale of At = 0.5 years account for 9% of &g(
(standardized scale of 1 corresponds to physical scale of At)
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Summary of First Level of Basic Algorithm

e transforms { Xy : ¢t =0,..., N — 1} into 2 types of coefficients
o N/2 wavelet coefficients {W7 ;} associated with:

— W, a vector consisting of first N/2 elements of W

— changes on scale 1 and nominal frequencies % <|fl < %

— first level detail Dy

— Wi, an % x N matrix consisting of first % rows of W
e /2 scaling coefficients {V] ;} associated with:

— V3, a vector of length N/2

— averages on scale 2 and nominal frequencies 0 < |f| < %

— first level smooth &

-V, an % x N matrix spanning same subspace as last N/2
rows of W
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Level One Analysis and Synthesis of X

e can express analysis/synthesis of X as a flow diagram

2
o) — i Lot — s

12
/! N
X + — X
N\ /!
12 %
nly) — w2l — Py
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Constructing Remaining DWT Coefficients: I

e have regarded time series X¢ as ‘one point’ averages X ¢(1) over

— physical scale of At (sampling interval between observations)

— standardized scale of 1
e first level of basic algorithm transforms X of length N into

— N/2 wavelet coefficients W1 o< changes on a scale of 1
— N/2 scaling coefficients V| o averages of Xy on a scale of 2

e in essence basic algorithm takes length NV series X related to
scale 1 averages and produces

— length N/2 series W associated with the same scale
— length N/2 series V7 related to averages on double the scale
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Constructing Remaining DWT Coefficients: 11

e Q: what if we now treat Vy in the same manner as X7
e basic algorithm will transform length N/2 series V1 into

— length N/4 series Wy associated with the same scale (2)

— length N/4 series V5 related to averages on twice the scale
e by definition, Wy contains the level 2 wavelet coefficients
e (): what if we treat Vo in the same way?
e basic algorithm will transform length N/4 series Vo into

— length N/8 series W3 associated with the same scale (4)
— length N/8 series V3 related to averages on twice the scale

e by definition, W35 contains the level 3 wavelet coefficients
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Constructing Remaining DWT Coefficients: 111

e continuing in this manner defines remaining subvectors of W

(recall that W = WX is the vector of DWT coefficients)

e at cach level j, outputs W and V; from the basic algorithm
are each half the length of the input V;_

e length of V; given by N/ 2]
e since N = 2'], length of V ;is 1, at which point we must stop

e J applications of the basic algorithm defines the remaining
subvectors Wy, ..., W 7, V j of DWT coefficient vector W

e overall scheme is known as the ‘pyramid’ algorithm
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Scales Associated with DWT Coefficients

e jth level of algorithm transforms scale 277! averages into

— differences of averages on scale 27 _17 Le., W, the wavelet
coefficients

— averages on scale 2 X 20=1 =9 e, V, the scaling coeffi-
cients

o let 7 = 20~ 1 be standardized scale associated with W;
—forj=1,...,J, takes on values 1,2,4,..., N/4, N/2
— physical (actual) scale given by 7; At

olet \j = 2J be standardized scale associated with V;

— takes on values 2,4,8, ..., N/2, N
— physical scale given by A; At
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Examples of VW and its Partitioning: I

e N = 16 case for Haar DWT matrix W

0 ‘T St
1 b 9 LL]
] i
et 10 = W,
3 ‘T 11 oLl
Wi 4 7 12 [
5 ‘T 13 L L] Wj
6 mllw jE S TTTTTITE Wy
7 ‘$ 16 SNNNNENNNNEREREN V4
I I I I I I I
0 5 10 15 0 5 10 15
t t

e above agrees with qualitative description given previously
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Examples of V¥V and its Partitioning: 11

e N = 16 case for D(4) DWT matrix W

TTUUUPUES H NV X
o Iy
IR BSSSSSSORIOGE ) R MO
N | || EErPPrI. [
Wi I ] S —
mm";in“-r JI] ESILLE T R—— W3
MT'L,,W 14 Hyewwnentttose,, W,1
R S

YL LI I ILLL V4

1 O U e W NN = O

I I I I I I I
0 5 10 15 0 5 10 15
t t

e note: elements of last row equal to 1/4/N = 1/4, as claimed
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Multiresolution Analysis

e Dj = W/ W is the jth level detail
S5 = VJTVJ- is the jth level ‘smooth’

e we get multiresolution analyses (MRAs) for levels k& and J: for
1<k<J,
k J
X = ZD]- + &, and, in particular, X = ZD]- +S5;
J=1 J=1
i.e., additive decomposition (first of two basic decompositions
derivable from DWT)
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Matrix Description of Energy Decomposition: I

e just as we can recover the energy in X from Wy & Vi using
2 2 2
X7 = W I” + [Vl
so can we recover the energy in V;_1 from W, & V; using
2 2 2
IV —1ll” = W17 + V]
(recall the correspondence Vi = X))

e we can thus write

I1X[|% = [W1?+ [ V]
= HW1H§+ |\W2Hz+ HV2”22 )
= [[W1||" + [[Wa* + [[W3]|“ + || V3]
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Matrix Description of Energy Decomposition: II

e generalizing from the bottom line
2 2 2 2 2
X7 = [W]” + [[Wa” + [[W3]|” + | V]|
indicates that, for 1 < k < J, we can write
k
2 2 2
X7 = W1+ [V

j=1

and, in particular,
J
2 2 2
IXIP =D W17+ 1Vl
J=1

e above are energy decompositions for levels k and J;
(second of two basic decompositions derivable from DWT)
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Partial DWT

e stop at Jy < J repetitions — a level Jy ‘partial’ DWT
e only requires N to be integer multiple of 270
e choice of Jj is application dependent

e multiresolution analysis for partial DWT:
Jo

XZZD]‘-FSJO
j=1

S J, represents averages on scale A = 270 (includes X)

e analysis of variance for partial DWT:
Jo

N 1 2 1 2 <2
% = % DIWS P+ IV 2 =X
7=1
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Example of Jj =4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core
; W\Mv v

W,

T Wy
fh ey W

o | I TR Y IR JW”W
L

!
e bpetalpty et gttty ety
S S E T S SO S |

—44.2{
=538L . % VY PR DA A Yo
1800 1850 1900 1950 2000
year
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Example of MRA from Jj; = 4 Partial Haar DWT

e oxygen isotope records X from Antarctic ice core
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Assigning Times to Wavelet Coefficients

e LA class of wavelet and scaling filters designed to exhibit ‘near
symmetry’ about some point in the filter

e makes it easier to align W ; and V;; ; with values in X

e some gory details: if Xy is associated with actual time o+t At,
LA wavelet coefficient W 4 should be plotted at time

m+«%@+&)—1—¢4HHmmLNﬂM
e.g., |V§-H)| = [7(29 — 1) 4 1]/2 for LA(8) wavelet. For N = 16

coefficient ‘ WI,O | W171 ‘ WLQ ‘ W173 | W174 ‘ W175 ‘ WL@ | Wl‘j ‘
associatcdtimc‘ 13 | 15 ‘ 1 ‘ 3 | 5 ‘ 7 ‘ 9 | 11 ‘

e order in which elements of W7 should be displayed is thus
Wi, Wi 3, Wia, Wis, Wi, Wiz, Wi, Wia
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Matrices for Circularly Shifting Vectors

e define 7 and 771 to be N x N matrices that circularly shift
X = [Xg, X1, ... ,XN_l]T either right or left one unit:

TX = [Xn_1, X0, X1, Xn_3, Xy_o]"
T'X = [X), X, X3, .., Xn_o0, Xn_1, X0]"

e for N = 4, here are what these matrices look like:

0001 0100
{1000 o010
T=1o1o00] T = o001
0010 1000

o define 72 =771 773 = 717171 and so forth
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Circularly Shifting a Vector and Time Alignment

e can express reordering elements of
T
Wi = [Wy g, Wi 1, Wi, Wi 3, Wi 4, Wi 5, W16, W1 7]
as they occur in time using

T>Wy = (W19, Wi 3, Wi g, Wi 5, W16, Wiz, Wy, Wy )T

e can use to time-align wavelet coefficients

e note that the details and smooths do not need to be time-
aligned as the associated filters do not cause a time shift
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Example of Jy =4 Partial LA(8) DWT

e oxygen isotope records X from Antarctic ice core
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Summary of Key Points about the DWT: I

e the DWT W is orthonormal, i.e., satisfies WIW = Iy

e construction of W starts with a wavelet filter {h;} of even
length L that by definition

1. sums to zero; i.e., Y by = 0;
2. has unit energy; ie., >, hl2 = 1; and
3. is orthogonal to its even shifts; i.e., > ; hjhyi9, =0

e 2 and 3 together called orthonormality property
e wavelet filter defines a scaling filter via g; = (—1)l+1hL_1_l

e scaling filter satisfies the orthonormality property, but sums to
v/2 and is also orthogonal to {h;}; i.e., Yy gihy19, =0

e while {h;} is a high-pass filter, {g;} is a low-pass filter
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Summary of Key Points about the DWT: II

e {h;} and {g;} work in tandem to split time series X into

— wavelet coefficients W (related to changes in averages on a
unit scale) and

— scaling coefficients V7 (related to averages on a scale of 2)
e {h;} and {g;} are then applied to V7, yielding

— wavelet coefficients Wy (related to changes in averages on a
scale of 2) and
— scaling coefficients Vo (related to averages on a scale of 4)
e continuing beyond these first 2 levels, scaling coefficients V;_;

at level j are transformed into wavelet and scaling coefficients
W and V; of scales 7; = 2J=1 and =2
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Summary of Key Points about the DWT: II1

e after Jy repetitions, this ‘pyramid’ algorithm transforms time
series X whose length N is an integer multiple of 270 into DWT

coefficients W1, Wy, ..., Wy and V j, (sizes of vectors are
%, %, . % and %, for a total of N coefficients in all)
270 270

e DWT coefficients lead to two basic decompositions
e first decomposition is additive and is known as a multiresolution
analysis (MRA), in which X is reexpressed as
Jo
X = Z Dj+ Sy,
J=1
where Dj is a time series reflecting variations in X on scale 7,
while S, is a series reflecting its A j, averages
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Summary of Key Points about the DWT: IV

e second decomposition reexpresses the energy (squared norm)
of X on a scale by scale basis, i.e.,

Jo

2 2 2
X7 =D WP+ [Vl
=1

leading to an analysis of the sample variance of X:
1 N—-1 5
~2 _ - ¥
X = > (X —X)
t=0
1 Jo , 1 .
= NZ W7+ NHVJO“ - X
j=1

2
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