Wavelet Methods for Time Series Analysis

Part II: Basic Theory for Discrete Wavelet Transform (DWT)

- precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters
- will start with discussion/review of:
 - convolution/filtering of infinite sequences
 - filter cascades
 - Fourier theory for finite sequences
 - circular convolution/filtering of finite sequences
 - periodization of a filter

II-1

Basic Concepts of Filtering: II

- $\{a_t\}$ called impulse response sequence for filter
- $A(\cdot)$ called transfer function for filter:

$$A(f) \equiv \sum_{t=-\infty}^{\infty} a_t e^{-i2\pi ft}.$$

- in general $A(\cdot)$ is complex-valued, so write $A(f) = |A(f)|e^{i\theta(f)}$
 - -|A(f)| defines gain function
 - $-\mathcal{A}(f) \equiv |A(f)|^2$ defines squared gain function
 - $-\theta(f)$ called phase function (well-defined at f if |A(f)| > 0)

Basic Concepts of Filtering: I

- convolution & linear time invariant filtering are same concepts:
 - $-\{b_t\}$ is input to filter
 - $-\{a_t\}$ represents the filter
 - $-\{c_t\}$ is output from filter
- flow diagram for filtering:

$$\{b_t\} \longrightarrow \overline{\{a_t\}} \longrightarrow \{c_t\} \text{ or } \{b_t\} \longrightarrow \overline{a_t} \longrightarrow \{c_t\}$$

• since $\{a_t\}$ equivalent to $A(\cdot)$, can also express flow diagram as

$$\{b_t\} \longrightarrow \overline{A(\cdot)} \longrightarrow \{c_t\}$$

II-2

Example of a High-Pass Filter

• consider
$$b_t = \frac{3}{16} \left(\frac{4}{5}\right)^{|t|} + \frac{1}{20} \left(-\frac{4}{5}\right)^{|t|}$$

• now let
$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

Cascade of Filters: I

- idea: output from one filter becomes input to another
- flow diagram for cascade with 2 filters (can have more!):

$$\{b_t\} \longrightarrow A_1(\cdot) \xrightarrow{1.} A_2(\cdot) \xrightarrow{2.} \{c_t\}$$

if $\{b_t\} \longleftrightarrow B(\cdot)$ and $\{c_t\} \longleftrightarrow C(\cdot)$, then

- 1. output from $A_1(\cdot)$ has DFT $A_1(f)B(f)$
- 2. output from $A_2(\cdot)$ has DFT $A_2(f)A_1(f)B(f)$ so $C(f) = A_2(f)A_1(f)B(f)$
- let $A(f) \equiv A_2(f)A_1(f)$
- can reexpress overall effect of filter cascade as

$$\{b_t\} \longrightarrow A(\cdot) \longrightarrow \{c_t\}$$

II-5

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot) \text{ and } \{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases} \& a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$

$$0 \quad 0 \quad -\frac{1}{2} \quad \frac{1}{2} \quad 0 \quad 0$$

$$\cdots \quad \frac{1}{2} \quad \frac{1}{2} \quad 0 \quad 0 \quad 0 \quad 0$$

$$a_{-2} = 0$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot) \text{ and } \{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases} \& a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$

$$a_{1,-3} \ a_{1,-2} \ a_{1,-1} \ a_{1,0} \ a_{1,1} \ a_{1,2} \\ \cdots \frac{1}{a_{2,1}} \ a_{2,0} \ a_{2,-1} \ a_{2,2} \ a_{2,-3} \ a_{2,-4}$$

$$a_{-2} = \sum_{u=-\infty}^{\infty} a_{1,u} a_{2,-2-u}$$

II-6

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot) \text{ and } \{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)

• example:
$$a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases} \& a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$$

Cascade of Filters: II

• $A(\cdot)$ is transfer function for equivalent filter for cascade

- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot)$ and $\{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)

• example:
$$a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases}$$
 & $a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$

$$0 \quad 0 \quad -\frac{1}{2} \quad \frac{1}{2} \quad 0 \quad 0$$

$$0 \quad 0 \quad -\frac{1}{2} \quad \frac{1}{2} \quad 0 \quad 0$$

$$a_0 = \frac{1}{2}$$

II–6

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot) \text{ and } \{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)

• example:
$$a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases} \& a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\{a_t\} \longleftrightarrow A(\cdot), \{a_{1,t}\} \longleftrightarrow A_1(\cdot) \text{ and } \{a_{2,t}\} \longleftrightarrow A_2(\cdot)$
- to form $\{a_t\}$, just need to convolve $\{a_{1,t}\}$ and $\{a_{2,t}\}$ (reverse one filter, multiply by other; shift and repeat)

• example:
$$a_{1,t} = \begin{cases} -\frac{1}{2}, & t = -1\\ \frac{1}{2}, & t = 0\\ 0, & \text{otherwise} \end{cases} \& a_{2,t} = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{2}, & t = 1\\ 0, & \text{otherwise} \end{cases}$$

II_6

Summary of Fourier/Filtering Theory: I

• $\{a_t : t = \dots, -1, 0, 1, \dots\} = \{a_t\}$ has DFT

$$A(f) \equiv \sum_{t=-\infty}^{\infty} a_t e^{-i2\pi ft}$$

• inverse DFT says that

$$a_t = \int_{-1/2}^{1/2} A(f)e^{i2\pi ft} df$$

• relationship between $\{a_t\}$ and $A(\cdot)$ denoted by

$$\{a_t\} \longleftrightarrow A(\cdot)$$
 or, less formally, by $a_t \longleftrightarrow A(f)$

Summary of Fourier/Filtering Theory: II

• given $\{a_t\} \longleftrightarrow A(\cdot)$ and $\{b_t\} \longleftrightarrow B(\cdot)$, their convolution

$$c_t \equiv \sum_{u=-\infty}^{\infty} a_u b_{t-u}, \quad t = \dots, -1, 0, 1, \dots,$$

has a DFT given by

$$C(f) \equiv \sum_{t=-\infty}^{\infty} c_t e^{-i2\pi ft} = A(f)B(f)$$

- $\{c_t\}$ is output from filter with impulse response sequence $\{a_t\}$ and transfer function $A(\cdot)$ related by $\{a_t\} \longleftrightarrow A(\cdot)$
- can express filtering operation in a flow diagram as either

$$\{b_t\} \longrightarrow \overline{\{a_t\}} \longrightarrow \{c_t\} \text{ or } \{b_t\} \longrightarrow \overline{A(\cdot)} \longrightarrow \{c_t\}$$

II–8

Summary of Fourier/Filtering Theory: III

• $\{a_t : t = 0, 1, \dots, N - 1\} = \{a_t\}$ has DFT

$$A_k \equiv \sum_{t=0}^{N-1} a_t e^{-i2\pi f_k t}$$
, with $f_k \equiv \frac{k}{N} \& k = 0, 1, \dots, N-1$

• inverse DFT says that

$$a_t = \frac{1}{N} \sum_{k=0}^{N-1} A_k e^{i2\pi f_k t}, \quad t = 0, 1, \dots, N-1$$

• relationship between $\{a_t\}$ and $A(\cdot)$ denoted by $\{a_t\} \longleftrightarrow \{A_k\}$ or, less formally, by $a_t \longleftrightarrow A_k$

II-9

Summary of Fourier/Filtering Theory: IV

• given $\{a_t\}$ & $\{b_t\}$ of length N with DFTs $\{A_k\}$ & $\{B_k\}$, their circular convolution

$$c_t \equiv \sum_{u=0}^{N-1} a_u b_{t-u \bmod N}, \quad t = 0, 1, \dots, N-1,$$

has a DFT given by

$$C_k = \sum_{t=0}^{N-1} c_t e^{-i2\pi f_k t} = A_k B_k$$

ullet $\{c_t\}$ is output from circular filtering operation expressible as

$$\{b_t\} \longrightarrow \boxed{a_t} \longrightarrow \{c_t\} \text{ or } \{b_t\} \longrightarrow \boxed{A_k} \longrightarrow \{c_t\}$$

Summary of Fourier/Filtering Theory: V

- suppose $\{a_t\}$ has width M with $a_t = 0$ for t < 0 and $t \ge M$
- given $\{b_t\}$ of length N, can express

$$c_t = \sum_{u=0}^{M-1} a_u b_{t-u \bmod N}, \quad t = 0, \dots, N-1,$$

as

$$c_t = \sum_{u=0}^{N-1} a_u^{\circ} b_{t-u \bmod N}$$
, where $a_u^{\circ} \equiv \sum_{n=-\infty}^{\infty} a_{u+nN}$

• DFT of $\{a_t^{\circ}\}$ given by $A(\frac{k}{N}), k = 0, \dots, N-1$, where

$$A(f) \equiv \sum_{t=-\infty}^{\infty} a_t e^{-i2\pi f t} = \sum_{t=0}^{M-1} a_t e^{-i2\pi f t}$$

Basic Theory for Discrete Wavelet Transform (DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines W for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - 'brute force' method uses $O(N^2)$ multiplications
 - faster than celebrated algorithm for fast Fourier transform! (this uses $O(N \cdot \log_2(N))$ multiplications)
- \bullet can study algorithm using linear filters & matrix manipulations
- will look at both approaches since they are complementary

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\{h_l: l=0,\ldots,L-1\}$ be a real-valued filter
 - L called filter width
 - both h_0 and h_{L-1} must be nonzero
 - -L must be even $(2,4,6,8,\ldots)$ for technical reasons
 - will assume $h_l \equiv 0$ for l < 0 and $l \ge L$

II-12

The Wavelet Filter: II

- $\{h_l\}$ called a wavelet filter if it has these 3 properties
 - 1. summation to zero:

$$\sum_{l=0}^{L-1} h_l = 0$$

2. unit energy:

$$\sum_{l=0}^{L-1} h_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = 0$$

• 2 and 3 together are called the orthonormality property

II-14

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve (analogous to conditions imposed on wavelet functions $\psi(\cdot)$)
- orthogonality to even shifts is key property
- \bullet orthogonality hardest to satisfy, and is reason L must be even
 - consider filter $\{h_0, h_1, h_2\}$ of width L=3
 - width 3 requires $h_0 \neq 0$ and $h_2 \neq 0$
 - orthogonality to a shift of 2 requires $h_0h_2 = 0$ impossible!

Haar Wavelet Filter

- simplest wavelet filter is Haar (L=2): $h_0=\frac{1}{\sqrt{2}}$ & $h_1=-\frac{1}{\sqrt{2}}$
- note that $h_0 + h_1 = 0$ and $h_0^2 + h_1^2 = 1$, as required
- orthogonal to even shifts orthogonality to even shifts also readily apparent

II-16

D(4) Wavelet Filter: II

- Q: what is rationale for D(4) filter?
- consider $X_t^{(1)} \equiv X_t X_{t-1} = a_0 X_t + a_1 X_{t-1}$, where $\{a_0 = 1, a_1 = -1\}$ defines 1st difference filter:

$$\{X_t\} \longrightarrow \boxed{\{1,-1\}} \longrightarrow \{X_t^{(1)}\}$$

- Haar wavelet filter is normalized 1st difference filter
- $-X_t^{(1)}$ is difference between two '1 point averages'
- consider filter cascade with two 1st difference filters:

$$\{X_t\} \longrightarrow \overline{\{1,-1\}} \longrightarrow \overline{\{1,-1\}} \longrightarrow \{X_t^{(2)}\}$$

• equivalent filter defines 2nd difference filter:

$$\{X_t\} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{X_t^{(2)}\}$$

II-18

D(4) Wavelet Filter: I

• next simplest wavelet filter is D(4), for which L=4:

$$h_0 = \frac{1-\sqrt{3}}{4\sqrt{2}}, \quad h_1 = \frac{-3+\sqrt{3}}{4\sqrt{2}}, \quad h_2 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \quad h_3 = \frac{-1-\sqrt{3}}{4\sqrt{2}}$$

- 'D' stands for Daubechies
- -L=4 width member of her 'extremal phase' wavelets
- computations show $\sum_{l} h_{l} = 0 \& \sum_{l} h_{l}^{2} = 1$, as required
- orthogonal to even shifts orthogonality to even shifts apparent except for ± 2 case:

D(4) Wavelet Filter: III

• renormalizing and shifting 2nd difference filter yields high-pass filter considered earlier:

$$a_t = \begin{cases} \frac{1}{2}, & t = 0\\ -\frac{1}{4}, & t = -1 \text{ or } 1\\ 0, & \text{otherwise} \end{cases}$$

• consider '2 point weighted average' followed by 2nd difference:

$$\{X_t\} \longrightarrow \overline{\{a,b\}} \longrightarrow \overline{\{1,-2,1\}} \longrightarrow \{Y_t\}$$

• D(4) wavelet filter based on equivalent filter for above:

$$\{X_t\} \longrightarrow \overline{\{h_0, h_1, h_2, h_3\}} \longrightarrow \{Y_t\}$$

D(4) Wavelet Filter: IV

- using conditions
 - 1. summation to zero: $h_0 + h_1 + h_2 + h_3 = 0$
 - 2. unit energy: $h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$
- 3. orthogonality to even shifts: $h_0h_2 + h_1h_3 = 0$

can solve for feasible values of a and b

- one solution is $a = \frac{1+\sqrt{3}}{4\sqrt{2}} \doteq 0.48$ and $b = \frac{-1+\sqrt{3}}{4\sqrt{2}} \doteq 0.13$ (3 other solutions, but these yield essentially the same filter)
- interpret D(4) filtered output as changes in weighted averages
 - 'change' now measured by 2nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

II-20

First Level Wavelet Coefficients: I

- given wavelet filter $\{h_l\}$ of width L & time series of length $N = 2^J$, goal is to define matrix \mathcal{W} for computing $\mathbf{W} = \mathcal{W}\mathbf{X}$
- periodize $\{h_l\}$ to length N to form $h_0^{\circ}, h_1^{\circ}, \dots, h_{N-1}^{\circ}$
- circularly filter **X** using $\{h_I^{\circ}\}$ to yield output

$$\sum_{l=0}^{N-1} h_l^{\circ} X_{t-l \mod N}, \quad t = 0, \dots, N-1$$

• starting with t = 1, take every other value of output to define

$$W_{1,t} \equiv \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1;$$

 $\{W_{1,t}\}$ formed by downsampling filter output by a factor of 2

Another Wavelet Filter

• LA(8) wavelet filter ('LA' stands for 'least asymmetric')

II-21

First Level Wavelet Coefficients: II

- $\{W_{1,t}\}$ are unit scale wavelet coefficients
 - -j in $W_{i,t}$ indicates a particular group of wavelet coefficients
 - $-j=1,2,\ldots,J$ (upper limit tied to sample size $N=2^J$)
- will refer to index j as the level
- thus $W_{1,t}$ is associated with level j=1
- $-W_{1,t}$ also associated with scale 1
- level j is associated with scale 2^{j-1} (more on this later)
- $\{W_{1,t}\}$ forms first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$
- first N/2 elements of ${\bf W}$ form subvector ${\bf W}_1$
- $W_{1,t}$ is tth element of \mathbf{W}_1
- also have $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$, with \mathcal{W}_1 being first N/2 rows of \mathcal{W}

Upper Half of DWT Matrix: I

• setting t = 0 in definition for $W_{1,t}$ yields

$$W_{1,0} = \sum_{l=0}^{N-1} h_l^{\circ} X_{1-l \mod N}$$

$$= h_0^{\circ} X_1 + h_1^{\circ} X_0 + h_2^{\circ} X_{N-1} + \dots + h_{N-2}^{\circ} X_3 + h_{N-1}^{\circ} X_2$$

$$= h_1^{\circ} X_0 + h_0^{\circ} X_1 + h_{N-1}^{\circ} X_2 + h_{N-2}^{\circ} X_3 + \dots + h_2^{\circ} X_{N-1}$$

- recall $W_{1,0} = \langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$, where $\mathcal{W}_{0\bullet}^T$ is first row of \mathcal{W} & of \mathcal{W}_1
- comparison with above says that

$$\mathcal{W}_{0\bullet}^{T} = \left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}\right]$$

II-24

Example: Upper Half of Haar DWT Matrix

- consider Haar wavelet filter (L=2): $h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}}$
- when N=16, upper half of \mathcal{W} (i.e., \mathcal{W}_1) looks like

• rows obviously orthogonal to each other

Upper Half of DWT Matrix: II

- \bullet similar examination of $W_{1,1}, \ldots W_{1,\frac{N}{2}}$ shows following pattern
 - circularly shift $\mathcal{W}_{0\bullet}$ by 2 to get 2nd row of \mathcal{W} :

$$\mathcal{W}_{1\bullet}^{T} = \left[h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}\right]$$

– form $\mathcal{W}_{j\bullet}$ by circularly shifting $\mathcal{W}_{j-1\bullet}$ by 2, ending with

$$\mathcal{W}_{\frac{N}{2}-1\bullet}^{T} = \left[h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}\right]$$

• if L < N (usually the case), then

$$h_l^{\circ} \equiv \begin{cases} h_l, & 0 \le l \le L - 1\\ 0, & \text{otherwise} \end{cases}$$

II-25

Example: Upper Half of D(4) DWT Matrix

• when L=4 & N=16, \mathcal{W}_1 (i.e., upper half of \mathcal{W}) looks like

- rows orthogonal because $h_0h_2 + h_1h_3 = 0$
- note: $\langle \mathcal{W}_{0\bullet}, \mathbf{X} \rangle$ yields $W_0 = h_1 X_0 + h_0 X_0 + h_3 X_{14} + h_2 X_{15}$
- unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of **X** (a curse, not a feature!)

Upper Half of DWT Matrix: III

- if $L \leq N$, orthonormality of rows of W_1 follows readily from orthonormality of $\{h_l\}$
- as example of L > N case (comes into play at higher levels), consider N = 4 and L = 6:

$$h_0^{\circ} = h_0 + h_4$$
; $h_1^{\circ} = h_1 + h_5$; $h_2^{\circ} = h_2$; $h_3^{\circ} = h_3$

• \mathcal{W}_1 is:

$$\begin{bmatrix} h_1^{\circ} & h_0^{\circ} & h_3^{\circ} & h_2^{\circ} \\ h_3^{\circ} & h_2^{\circ} & h_1^{\circ} & h_0^{\circ} \end{bmatrix} = \begin{bmatrix} h_1 + h_5 & h_0 + h_4 & h_3 & h_2 \\ h_3 & h_2 & h_1 + h_5 & h_0 + h_4 \end{bmatrix}$$

• inner product of two rows is

$$h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4 + h_1h_3 + h_3h_5 + h_0h_2 + h_2h_4$$

= $2(h_0h_2 + h_1h_3 + h_2h_4 + h_3h_5) = 0$

because $\{h_l\}$ is orthogonal to $\{h_{l+2}\}$ (an even shift)

II-28

The Scaling Filter

- create $g_l \equiv (-1)^{l+1} h_{L-1-l}$. $\{g_l\}$ is 'quadrature mirror' filter corresponding to $\{h_l\}$
- properties 2 and 3 of $\{h_l\}$ are shared by $\{g_l\}$:
 - 2. unit energy:

$$\sum_{l=0}^{L-1} g_l^2 = 1$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$\sum_{l=0}^{L-1} g_l g_{l+2n} = 0$$

• scaling & wavelet filters both satisfy orthonormality property

Upper Half of DWT Matrix: IV

 \bullet can argue that, for all L and even N,

$$W_{1,t} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}$$
, or, equivalently, $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$

forms *half* an orthonormal transform; i.e.,

$$\mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$$

ullet Q: how can we construct the other half of \mathcal{W} ?

II-29

First Level Scaling Coefficients: I

- only orthonormality property of $\{h_l\}$ needed to prove that \mathcal{W}_1 is half of an orthonormal transform (never used $\sum_l h_l = 0$)
- \bullet going back and replacing h_l with g_l everywhere yields another half of an orthonormal transform
- periodize $\{g_l\}$ to length N to form $g_0^{\circ}, g_1^{\circ}, \dots, g_{N-1}^{\circ}$
- \bullet circularly filter ${\bf X}$ using $\{g_l^{\circ}\}$ and downsample to define

$$V_{1,t} \equiv \sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \mod N}, \quad t = 0, \dots, \frac{N}{2} - 1$$

First Level Scaling Coefficients: II

- define V_1 in a manner analogous to W_1 so that $V_1 = V_1 X$
- when L=4 and N=16, \mathcal{V}_1 looks like

• \mathcal{V}_1 obeys same orthonormality property as \mathcal{W}_1 : similar to $\mathcal{W}_1\mathcal{W}_1^T=I_{\frac{N}{2}}$, have $\mathcal{V}_1\mathcal{V}_1^T=I_{\frac{N}{2}}$

II-32

Orthonormality of V_1 & W_1 : II

• implies that

$$\mathcal{P}_1 \equiv \left[egin{array}{c} \mathcal{W}_1 \ \mathcal{V}_1 \end{array}
ight]$$

is an $N \times N$ orthonormal matrix since

$$\mathcal{P}_{1}\mathcal{P}_{1}^{T} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{V}_{1} \end{bmatrix} \begin{bmatrix} \mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \mathcal{W}_{1}\mathcal{W}_{1}^{T} & \mathcal{W}_{1}\mathcal{V}_{1}^{T} \\ \mathcal{V}_{1}\mathcal{W}_{1}^{T} & \mathcal{V}_{1}\mathcal{V}_{1}^{T} \end{bmatrix} = \begin{bmatrix} I_{\frac{N}{2}} & 0_{\frac{N}{2}} \\ 0_{\frac{N}{2}} & I_{\frac{N}{2}} \end{bmatrix} = I_{N}$$

- if N=2 (not of much interest!), in fact $\mathcal{P}_1=\mathcal{W}$
- if N > 2, \mathcal{P}_1 is intermediate step on way to \mathcal{W}
 - $-\mathcal{V}_1$ spans same subspace as lower half of \mathcal{W}
 - $-\mathcal{P}_1$ can be of interest by itself (just needs N even)

Orthonormality of V_1 and W_1 : I

- Q: how does \mathcal{V}_1 help us?
- can show scaling filter obeys important fourth property
 - 4. orthogonality to $\{h_l\}$ and its even shifts: for all n have

$$\sum_{l=0}^{L-1} g_l h_{l+2n} = 0$$

- implies any row in \mathcal{V}_1 orthogonal to any row in \mathcal{W}_1
- implies $W_1 \& V_1$ are jointly orthonormal:

$$\mathcal{W}_1 \mathcal{V}_1^T = \mathcal{V}_1 \mathcal{W}_1^T = 0_{\frac{N}{2}}$$
 in addition to $\mathcal{V}_1 \mathcal{V}_1^T = \mathcal{W}_1 \mathcal{W}_1^T = I_{\frac{N}{2}}$

II-33

Three Comments

- if N even, then \mathcal{P}_1 is well-defined (don't need $N=2^J$)
- rather than defining $g_l = (-1)^{l+1} h_{L-1-l}$, could use alternative definition $g_l = (-1)^{l-1} h_{1-l}$
 - structure of \mathcal{V}_1 would then not parallel that of \mathcal{W}_1
- useful for wavelet filters with infinite widths
- scaling and wavelet filters are often called 'father' and 'mother' wavelet filters, but Strichartz (1994) notes that this terminology

'... shows a scandalous misunderstanding of human reproduction; in fact, the generation of wavelets more closely resembles the reproductive life style of amoebas.'

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter (L=2): $g_0=g_1=\frac{1}{\sqrt{2}}$
- when N = 16, matrix \mathcal{V}_1 looks like

• since $V_1 = \mathcal{V}_1 \mathbf{X}$, each $V_{1,t}$ is proportional to a 2 point average: $V_{1,0} = g_1 X_0 + g_0 X_1 = \frac{1}{\sqrt{2}} X_0 + \frac{1}{\sqrt{2}} X_1 \propto \overline{X}_1(2)$ and so forth

II-36

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: I

- since \mathbf{W}_1 and \mathbf{V}_1 contain (downsampled) output from filters, let's consider frequency domain properties of $\{h_l\}$ & $\{g_l\}$
- define transfer and squared gain functions for wavelet filter:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi f l}$$
 and $\mathcal{H}(f) \equiv |H(f)|^2$

• define similar functions for scaling filter:

$$G(f) \equiv \sum_{l=0}^{L-1} g_l e^{-i2\pi f l}$$
 and $\mathcal{G}(f) \equiv |G(f)|^2$

• effect of $\{h_l\}$ & $\{g_l\}$ on **X** can be deduced from $\mathcal{H}(\cdot)$ & $\mathcal{G}(\cdot)$

Interpretation of Scaling Coefficients: II

• reconsider shapes of $\{g_l\}$ seen so far:

Haar II D(4) D(6) LA(8) LA(8)

- for L > 2, can regard $V_{1,t}$ as proportional to weighted average
- can argue that effective width of $\{g_l\}$ is 2 in each case; thus scale associated with $V_{1,t}$ is 2, whereas scale is 1 for $W_{1,t}$

II-37

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(4) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- $\{g_l\}$ is low-pass filter with nominal pass-band [0, 1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II-38

II–3

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(6) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- \bullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II - 39

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

ullet example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(8) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- \bullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II-39

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(10) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- $\{g_l\}$ is low-pass filter with nominal pass-band [0, 1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(12) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- $\{g_l\}$ is low-pass filter with nominal pass-band [0, 1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II-39

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(14) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- \bullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II - 39

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(16) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- \bullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II-39

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(18) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- ullet $\{g_l\}$ is low-pass filter with nominal pass-band [0,1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

Frequency Domain Properties of $\{h_l\}$ and $\{g_l\}$: II

• example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar & D(20) filters

- $\{h_l\}$ is high-pass filter with nominal pass-band [1/4, 1/2]
- $\{g_l\}$ is low-pass filter with nominal pass-band [0, 1/4]
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f) + \mathcal{G}(f) = 2$

II-39

Example of Decomposing X into W_1 and V_1

• oxygen isotope records X from Antarctic ice core

Example of Decomposing X into W_1 and V_1

- oxygen isotope record series X has N=352 observations
- spacing between observations is $\Delta t \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients V_1 related to averages on scale of $2\Delta t$
- wavelet coefficients \mathbf{W}_1 related to changes on scale of Δt
- coefficients $V_{1,t}$ and $W_{1,t}$ plotted against mid-point of years associated with X_{2t} and X_{2t+1}
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway

II-41

Reconstructing X from W_1 and V_1

II-40

• in matrix notation, form wavelet & scaling coefficients via

$$\begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \mathbf{X} \\ \mathcal{V}_1 \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1 \\ \mathcal{V}_1 \end{bmatrix} \mathbf{X} = \mathcal{P}_1 \mathbf{X}$$

- ullet recall that $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ because \mathcal{P}_1 is orthonormal
- since $\mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}$, premultiplying both sides by \mathcal{P}_1^T yields

$$\mathcal{P}_1^T egin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = egin{bmatrix} \mathbf{W}_1^T & \mathcal{V}_1^T \end{bmatrix} egin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T \mathbf{V}_1 = \mathbf{X}$$

- $\mathcal{D}_1 \equiv \mathcal{W}_1^T \mathbf{W}_1$ is the first level detail
- $S_1 \equiv V_1^T \mathbf{V}_1$ is the first level 'smooth'
- $\mathbf{X} = \mathcal{D}_1 + \mathcal{S}_1$ in this notation

Construction of First Level Detail: I

• consider $\mathcal{D}_1 = \mathcal{W}_1^T \mathbf{W}_1$ for L = 4 & N > L:

$$\mathcal{D}_1 = \begin{bmatrix} h_1 & h_3 & 0 & \cdots & 0 & 0 \\ h_0 & h_2 & 0 & \cdots & 0 & 0 \\ 0 & h_1 & h_3 & \cdots & 0 & 0 \\ 0 & h_0 & h_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_1 & h_3 \\ 0 & 0 & 0 & \cdots & h_0 & h_2 \\ h_3 & 0 & 0 & \cdots & 0 & h_1 \\ h_2 & 0 & 0 & \cdots & 0 & h_0 \end{bmatrix} \begin{bmatrix} W_{1,0} \\ W_{1,1} \\ W_{1,2} \\ \vdots \\ W_{1,N/2-2} \\ W_{1,N/2-1} \end{bmatrix}$$

note: \mathcal{W}_1^T is $N \times \frac{N}{2} \& \mathbf{W}_1$ is $\frac{N}{2} \times 1$

• \mathcal{D}_1 not result of filtering $W_{1,t}$'s with $\{h_0, h_1, h_2, h_3\}$

Construction of First Level Detail: II

• augment W_1 to $N \times N$ and W_1 to $N \times 1$:

• can now regard the above as equivalent to use of a filter

II-44

Construction of First Level Detail: IV

• can now write

$$\mathcal{D}_{1,t} = \sum_{l=0}^{N-1} h_l^{\circ} W_{1,t+l \mod N}^{\uparrow}, \quad t = 0, 1, \dots, N-1$$

- doesn't look like exactly like filtering, which would look like $\sum_{l=0}^{N-1} h_l^{\circ} W_{1,t-l \mod N}^{\uparrow}; \text{ i.e., direction of } W_{1,t}^{\uparrow} \text{ not reversed}$
- form that $\mathcal{D}_{1,t}$ takes is what engineers call 'cross-correlation'
- if $\{h_l\} \longleftrightarrow H(\cdot)$, cross-correlating $\{h_l\} \& \{W_{1,t}^{\uparrow}\}$ is equivalent to filtering $\{W_{1,t}^{\uparrow}\}$ using filter with transfer function $H^*(\cdot)$
- \mathcal{D}_1 formed by circularly filtering $\{W_{1,t}^{\uparrow}\}$ with filter $\{H^*(\frac{k}{N})\}$

Construction of First Level Detail: III

• formally, define *upsampled* (by 2) version of $W_{1,t}$'s:

$$W_{1,t}^{\uparrow} \equiv \begin{cases} 0, & t = 0, 2, \dots, N-2; \\ W_{1,(t-1)/2} = W_{(t-1)/2}, & t = 1, 3, \dots, N-1 \end{cases}$$

• example of upsampling:

$$W_{1,t}$$
 $\uparrow 2$

• note: '\dagger 2' denotes 'upsample by 2' (put 0's before values)

II-45

Example of Synthesizing X from \mathcal{D}_1 and \mathcal{S}_1

• Haar-based decomposition for oxygen isotope records X

First Level Variance Decomposition: I

- recall that 'energy' in **X** is its squared norm $\|\mathbf{X}\|^2$
- because \mathcal{P}_1 is orthonormal, have $\mathcal{P}_1^T \mathcal{P}_1 = I_N$ and hence

$$\|\mathcal{P}_1 \mathbf{X}\|^2 = (\mathcal{P}_1 \mathbf{X})^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathcal{P}_1^T \mathcal{P}_1 \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2$$

• can conclude that $\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$ because

$$\mathcal{P}_1 \mathbf{X} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix}$$
 and hence $\|\mathcal{P}_1 \mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2$

ullet leads to a decomposition of the sample variance for ${\bf X}$:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{W}_1||^2 + \frac{1}{N} ||\mathbf{V}_1||^2 - \overline{X}^2$$

II-48

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_X^2$ into two pieces:
 - 1. $\frac{1}{N} \|\mathbf{W}_1\|^2$, attributable to changes in averages over scale 1
 - 2. $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2$, attributable to averages over scale 2
- Haar-based example for oxygen isotope records
 - first piece: $\frac{1}{N} \|\mathbf{W}_1\|^2 \doteq 0.295$
 - second piece: $\frac{1}{N} \|\mathbf{V}_1\|^2 \overline{X}^2 \doteq 2.909$
 - sample variance: $\hat{\sigma}_X^2 \doteq 3.204$
 - changes on scale of $\Delta t \doteq 0.5$ years account for 9% of $\hat{\sigma}_X^2$ (standardized scale of 1 corresponds to physical scale of Δt)

II-49

Summary of First Level of Basic Algorithm

- transforms $\{X_t: t=0,\ldots,N-1\}$ into 2 types of coefficients
- N/2 wavelet coefficients $\{W_{1,t}\}$ associated with:
 - $-\mathbf{W}_1$, a vector consisting of first N/2 elements of \mathbf{W}
 - changes on scale 1 and nominal frequencies $\frac{1}{4} \leq |f| \leq \frac{1}{2}$
 - first level detail \mathcal{D}_1
 - $-\mathcal{W}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- N/2 scaling coefficients $\{V_{1,t}\}$ associated with:
 - \mathbf{V}_1 , a vector of length N/2
 - averages on scale 2 and nominal frequencies $0 \le |f| \le \frac{1}{4}$
 - first level smooth S_1
 - $-\mathcal{V}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last N/2 rows of \mathcal{W}

Level One Analysis and Synthesis of X

 \bullet can express analysis/synthesis of X as a flow diagram

Constructing Remaining DWT Coefficients: I

- have regarded time series X_t as 'one point' averages $\overline{X}_t(1)$ over
 - physical scale of Δt (sampling interval between observations)
 - standardized scale of 1
- \bullet first level of basic algorithm transforms **X** of length N into
 - -N/2 wavelet coefficients $\mathbf{W}_1 \propto$ changes on a scale of 1
 - -N/2 scaling coefficients $\mathbf{V}_1 \propto$ averages of X_t on a scale of 2
- ullet in essence basic algorithm takes length N series ${f X}$ related to scale 1 averages and produces
 - length N/2 series \mathbf{W}_1 associated with the same scale
 - length N/2 series \mathbf{V}_1 related to averages on double the scale

II-52

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W} = \mathcal{W}\mathbf{X}$ is the vector of DWT coefficients)
- ullet at each level j, outputs \mathbf{W}_j and \mathbf{V}_j from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of V_i given by $N/2^j$
- since $N = 2^J$, length of \mathbf{V}_J is 1, at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_2, \ldots, \mathbf{W}_J, \mathbf{V}_J$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat V_1 in the same manner as X?
- basic algorithm will transform length N/2 series \mathbf{V}_1 into
 - length N/4 series \mathbf{W}_2 associated with the same scale (2)
 - length N/4 series \mathbf{V}_2 related to averages on twice the scale
- by definition, \mathbf{W}_2 contains the level 2 wavelet coefficients
- Q: what if we treat V_2 in the same way?
- basic algorithm will transform length N/4 series \mathbf{V}_2 into
 - length N/8 series \mathbf{W}_3 associated with the same scale (4)
 - length N/8 series V_3 related to averages on twice the scale
- by definition, W_3 contains the level 3 wavelet coefficients

II-53

Scales Associated with DWT Coefficients

- jth level of algorithm transforms scale 2^{j-1} averages into
 - differences of averages on scale 2^{j-1} , i.e., \mathbf{W}_j , the wavelet coefficients
 - averages on scale $2 \times 2^{j-1} = 2^j$, i.e., \mathbf{V}_j , the scaling coefficients
- let $\tau_j \equiv 2^{j-1}$ be standardized scale associated with \mathbf{W}_j
 - for j = 1, ..., J, takes on values 1, 2, 4, ..., N/4, N/2
 - physical (actual) scale given by $\tau_i \Delta t$
- let $\lambda_i \equiv 2^j$ be standardized scale associated with \mathbf{V}_i
 - takes on values $2, 4, 8, \ldots, N/2, N$
 - physical scale given by $\lambda_i \Delta t$

Examples of W and its Partitioning: I

• N = 16 case for Haar DWT matrix W

• above agrees with qualitative description given previously

II-56

Multiresolution Analysis

- $\mathcal{D}_j \equiv \mathcal{W}_j^T \mathbf{W}_j$ is the jth level detail
- $S_j \equiv V_j^T \mathbf{V}_j$ is the jth level 'smooth'
- we get multiresolution analyses (MRAs) for levels k and J: for $1 \le k \le J$,

$$\mathbf{X} = \sum_{j=1}^{k} \mathcal{D}_j + \mathcal{S}_k$$
 and, in particular, $\mathbf{X} = \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_J$

i.e., additive decomposition (first of two basic decompositions derivable from DWT)

Examples of W and its Partitioning: II

• N = 16 case for D(4) DWT matrix W

• note: elements of last row equal to $1/\sqrt{N} = 1/4$, as claimed

II-57

Matrix Description of Energy Decomposition: I

• just as we can recover the energy in \mathbf{X} from \mathbf{W}_1 & \mathbf{V}_1 using

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2,$$

so can we recover the energy in \mathbf{V}_{j-1} from \mathbf{W}_j & \mathbf{V}_j using

$$\|\mathbf{V}_{i-1}\|^2 = \|\mathbf{W}_i\|^2 + \|\mathbf{V}_i\|^2$$

(recall the correspondence $V_0 = X$)

• we can thus write

$$\|\mathbf{X}\|^{2} = \|\mathbf{W}_{1}\|^{2} + \|\mathbf{V}_{1}\|^{2}$$

$$= \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{V}_{2}\|^{2}$$

$$= \|\mathbf{W}_{1}\|^{2} + \|\mathbf{W}_{2}\|^{2} + \|\mathbf{W}_{3}\|^{2} + \|\mathbf{V}_{3}\|^{2}$$

Matrix Description of Energy Decomposition: II

• generalizing from the bottom line

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{W}_2\|^2 + \|\mathbf{W}_3\|^2 + \|\mathbf{V}_3\|^2$$

indicates that, for $1 \le k \le J$, we can write

$$\|\mathbf{X}\|^2 = \sum_{j=1}^k \|\mathbf{W}_j\|^2 + \|\mathbf{V}_k\|^2$$

and, in particular,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_J\|^2$$

• above are energy decompositions for levels k and J; (second of two basic decompositions derivable from DWT)

II-60

Partial DWT

- stop at $J_0 < J$ repetitions a level J_0 'partial' DWT
- ullet only requires N to be integer multiple of 2^{J_0}
- choice of J_0 is application dependent
- multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 \mathcal{S}_{J_0} represents averages on scale $\lambda_{J_0}=2^{J_0}$ (includes \overline{X})

• analysis of variance for partial DWT:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \frac{1}{N} \|\mathbf{V}_{J_0}\|^2 - \overline{X}^2$$

II-61

Example of $J_0 = 4$ Partial Haar DWT

• oxygen isotope records X from Antarctic ice core

Example of MRA from $J_0 = 4$ Partial Haar DWT

• oxygen isotope records X from Antarctic ice core

Assigning Times to Wavelet Coefficients

- LA class of wavelet and scaling filters designed to exhibit 'near symmetry' about some point in the filter
- makes it easier to align $W_{j,t}$ and $V_{J_0,t}$ with values in **X**
- some gory details: if X_t is associated with actual time $t_0 + t \Delta t$, LA wavelet coefficient $W_{i,t}$ should be plotted at time

$$\begin{split} t_0 + (2^j(t+1) - 1 - |\nu_j^{(H)}| \bmod N) \, \Delta t \\ \text{e.g., } |\nu_j^{(H)}| &= [7(2^j - 1) + 1]/2 \text{ for LA(8) wavelet. For } N = 16 \\ &\frac{\text{coefficient } |W_{1,0}| \, W_{1,1} \, |W_{1,2}| \, W_{1,3} \, |W_{1,4}| \, W_{1,5} \, |W_{1,6}| \, W_{1,7}}{\text{associated time} \, |13 | 15 | 1 | 3 | 5 | 7 | 9 | 11} \end{split}$$

• order in which elements of \mathbf{W}_1 should be displayed is thus $W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}$

II - 63

Matrices for Circularly Shifting Vectors

• define \mathcal{T} and \mathcal{T}^{-1} to be $N \times N$ matrices that circularly shift $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ either right or left one unit:

$$T\mathbf{X} = [X_{N-1}, X_0, X_1, \dots, X_{N-3}, X_{N-2}]^T$$

 $T^{-1}\mathbf{X} = [X_1, X_2, X_3, \dots, X_{N-2}, X_{N-1}, X_0]^T$

• for N=4, here are what these matrices look like:

$$\mathcal{T} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \& \quad \mathcal{T}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

• define $\mathcal{T}^{-2} = \mathcal{T}^{-1}\mathcal{T}^{-1}$, $\mathcal{T}^{-3} = \mathcal{T}^{-1}\mathcal{T}^{-1}\mathcal{T}^{-1}$ and so forth

II-64

Circularly Shifting a Vector and Time Alignment

• can express reordering elements of

$$\mathbf{W}_1 = [W_{1,0}, W_{1,1}, W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}]^T$$
 as they occur in time using

$$\mathcal{T}^{-2}\mathbf{W}_1 = [W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}]^T$$

- can use to time-align wavelet coefficients
- note that the details and smooths do not need to be timealigned as the associated filters do not cause a time shift

II-65

Example of $J_0 = 4$ Partial LA(8) DWT

• oxygen isotope records X from Antarctic ice core

Summary of Key Points about the DWT: I

- the DWT W is orthonormal, i.e., satisfies $W^TW = I_N$
- construction of W starts with a wavelet filter $\{h_l\}$ of even length L that by definition
 - 1. sums to zero; i.e., $\sum_{l} h_{l} = 0$;
 - 2. has unit energy; i.e., $\sum_{l} h_{l}^{2} = 1$; and
 - 3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2n} = 0$
- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_l = (-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{2}$ and is also orthogonal to $\{h_l\}$; i.e., $\sum_l g_l h_{l+2n} = 0$
- while $\{h_l\}$ is a high-pass filter, $\{g_l\}$ is a low-pass filter

II-67

Summary of Key Points about the DWT: III

- after J_0 repetitions, this 'pyramid' algorithm transforms time series \mathbf{X} whose length N is an integer multiple of 2^{J_0} into DWT coefficients $\mathbf{W}_1, \mathbf{W}_2, \ldots, \mathbf{W}_{J_0}$ and \mathbf{V}_{J_0} (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J_0}}$ and $\frac{N}{2^{J_0}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- \bullet first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0},$$

where \mathcal{D}_j is a time series reflecting variations in **X** on scale τ_j , while \mathcal{S}_{J_0} is a series reflecting its λ_{J_0} averages

Summary of Key Points about the DWT: II

- $\{h_l\}$ and $\{g_l\}$ work in tandem to split time series **X** into
 - wavelet coefficients \mathbf{W}_1 (related to changes in averages on a unit scale) and
 - scaling coefficients V_1 (related to averages on a scale of 2)
- $\{h_l\}$ and $\{g_l\}$ are then applied to \mathbf{V}_1 , yielding
 - wavelet coefficients \mathbf{W}_2 (related to changes in averages on a scale of 2) and
 - scaling coefficients V_2 (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j are transformed into wavelet and scaling coefficients \mathbf{W}_j and \mathbf{V}_j of scales $\tau_j = 2^{j-1}$ and $\lambda_j = 2^j$

II-68

Summary of Key Points about the DWT: IV

ullet second decomposition reexpresses the energy (squared norm) of ${\bf X}$ on a scale by scale basis, i.e.,

$$\|\mathbf{X}\|^2 = \sum_{j=1}^{J_0} \|\mathbf{W}_j\|^2 + \|\mathbf{V}_{J_0}\|^2,$$

leading to an analysis of the sample variance of X:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2$$

$$= \frac{1}{N} \sum_{j=1}^{J_0} ||\mathbf{W}_j||^2 + \frac{1}{N} ||\mathbf{V}_{J_0}||^2 - \overline{X}^2$$