Wavelet Methods for Time Series Analysis

Part II: Basic Theory for Discrete Wavelet Transform (DWT)

- precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters
- will start with discussion/review of:
- convolution/filtering of infinite sequences
- filter cascades
- Fourier theory for finite sequences
- circular convolution/filtering of finite sequences
- periodization of a filter

Basic Concepts of Filtering: I

- convolution \& linear time invariant filtering are same concepts:
$-\left\{b_{t}\right\}$ is input to filter
$-\left\{a_{t}\right\}$ represents the filter
$-\left\{c_{t}\right\}$ is output from filter
- flow diagram for filtering:

$$
\left\{b_{t}\right\} \longrightarrow\left\{a_{t}\right\} \longrightarrow\left\{c_{t}\right\} \text { or }\left\{b_{t}\right\} \longrightarrow a_{t} \longrightarrow\left\{c_{t}\right\}
$$

- since $\left\{a_{t}\right\}$ equivalent to $A(\cdot)$, can also express flow diagram as

$$
\left\{b_{t}\right\} \longrightarrow A(\cdot) \longrightarrow\left\{c_{t}\right\}
$$

Basic Concepts of Filtering: II

- $\left\{a_{t}\right\}$ called impulse response sequence for filter
- $A(\cdot)$ called transfer function for filter:

$$
A(f) \equiv \sum_{t=-\infty}^{\infty} a_{t} e^{-i 2 \pi f t}
$$

- in general $A(\cdot)$ is complex-valued, so write $A(f)=|A(f)| e^{i \theta(f)}$
- $|A(f)|$ defines gain function
$-\mathcal{A}(f) \equiv|A(f)|^{2}$ defines squared gain function
$-\theta(f)$ called phase function (well-defined at f if $|A(f)|>0$)

Example of a High-Pass Filter

- consider $b_{t}=\frac{3}{16}\left(\frac{4}{5}\right)^{|t|}+\frac{1}{20}\left(-\frac{4}{5}\right)^{|t|}$
- now let $a_{t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{4}, & t=-1 \text { or } 1 \\ 0, & \text { otherwise }\end{cases}$

II-4

Cascade of Filters: I

- idea: output from one filter becomes input to another
- flow diagram for cascade with 2 filters (can have more!):

$$
\left\{b_{t}\right\} \longrightarrow A_{1}(\cdot) \xrightarrow{1 .} A_{2}(\cdot) \xrightarrow{2 .}\left\{c_{t}\right\}
$$

if $\left\{b_{t}\right\} \longleftrightarrow B(\cdot)$ and $\left\{c_{t}\right\} \longleftrightarrow C(\cdot)$, then

1. output from $A_{1}(\cdot)$ has DFT $A_{1}(f) B(f)$
2. output from $A_{2}(\cdot)$ has DFT $A_{2}(f) A_{1}(f) B(f)$

$$
\text { so } C(f)=A_{2}(f) A_{1}(f) B(f)
$$

- let $A(f) \equiv A_{2}(f) A_{1}(f)$
- can reexpress overall effect of filter cascade as

$$
\left\{b_{t}\right\} \longrightarrow A(\cdot) \longrightarrow\left\{c_{t}\right\}
$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

$$
\cdots \begin{array}{cccccc}
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\hline-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array} \cdots \quad a_{-2}=0
$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \quad \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \quad \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

$$
\cdots \begin{array}{cccccc}
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 &
\end{array} \quad a_{-1}=-\frac{1}{4}
$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

$$
\cdots \begin{array}{cccccc}
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\hdashline & : & 1 & 1 & 1 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0
\end{array} \cdots \quad a_{0}=\frac{1}{2}
$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \quad \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

$$
\cdots \begin{array}{cccccc}
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\hline & : & 1 & & \\
0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0
\end{array} \quad a_{1}=-\frac{1}{4}
$$

Cascade of Filters: II

- $A(\cdot)$ is transfer function for equivalent filter for cascade
- let $\left\{a_{t}\right\} \longleftrightarrow A(\cdot),\left\{a_{1, t}\right\} \longleftrightarrow A_{1}(\cdot)$ and $\left\{a_{2, t}\right\} \longleftrightarrow A_{2}(\cdot)$
- to form $\left\{a_{t}\right\}$, just need to convolve $\left\{a_{1, t}\right\}$ and $\left\{a_{2, t}\right\}$ (reverse one filter, multiply by other; shift and repeat)
- example: $a_{1, t}=\left\{\begin{array}{ll}-\frac{1}{2}, & t=-1 \\ \frac{1}{2}, & t=0 \\ 0, & \text { otherwise }\end{array} \& a_{2, t}= \begin{cases}\frac{1}{2}, & t=0 \\ -\frac{1}{2}, & t=1 \\ 0, & \text { otherwise }\end{cases}\right.$

$$
\cdots \begin{array}{cccccc}
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\hline \hline & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{array} \cdots \quad a_{2}=0
$$

Summary of Fourier/Filtering Theory: I

- $\left\{a_{t}: t=\ldots,-1,0,1, \ldots\right\}=\left\{a_{t}\right\}$ has DFT

$$
A(f) \equiv \sum_{t=-\infty}^{\infty} a_{t} e^{-i 2 \pi f t}
$$

- inverse DFT says that

$$
a_{t}=\int_{-1 / 2}^{1 / 2} A(f) e^{i 2 \pi f t} d f
$$

- relationship between $\left\{a_{t}\right\}$ and $A(\cdot)$ denoted by

$$
\left\{a_{t}\right\} \longleftrightarrow A(\cdot) \text { or, less formally, by } a_{t} \longleftrightarrow A(f)
$$

Summary of Fourier/Filtering Theory: II

- given $\left\{a_{t}\right\} \longleftrightarrow A(\cdot)$ and $\left\{b_{t}\right\} \longleftrightarrow B(\cdot)$, their convolution

$$
c_{t} \equiv \sum_{u=-\infty}^{\infty} a_{u} b_{t-u}, \quad t=\ldots,-1,0,1, \ldots,
$$

has a DFT given by

$$
C(f) \equiv \sum_{t=-\infty}^{\infty} c_{t} e^{-i 2 \pi f t}=A(f) B(f)
$$

- $\left\{c_{t}\right\}$ is output from filter with impulse response sequence $\left\{a_{t}\right\}$ and transfer function $A(\cdot)$ related by $\left\{a_{t}\right\} \longleftrightarrow A(\cdot)$
- can express filtering operation in a flow diagram as either

$$
\left\{b_{t}\right\} \longrightarrow\left\{a_{t}\right\} \longrightarrow\left\{c_{t}\right\} \text { or }\left\{b_{t}\right\} \longrightarrow A(\cdot) \longrightarrow\left\{c_{t}\right\}
$$

Summary of Fourier/Filtering Theory: IV

- given $\left\{a_{t}\right\} \&\left\{b_{t}\right\}$ of length N with DFTs $\left\{A_{k}\right\} \&\left\{B_{k}\right\}$, their circular convolution

$$
c_{t} \equiv \sum_{u=0}^{N-1} a_{u} b_{t-u \bmod N}, \quad t=0,1, \ldots, N-1,
$$

has a DFT given by

$$
C_{k}=\sum_{t=0}^{N-1} c_{t} e^{-i 2 \pi f_{k} t}=A_{k} B_{k}
$$

- $\left\{c_{t}\right\}$ is output from circular filtering operation expressible as

$$
\left\{b_{t}\right\} \longrightarrow a_{t} \longrightarrow\left\{c_{t}\right\} \text { or }\left\{b_{t}\right\} \longrightarrow A_{k} \longrightarrow\left\{c_{t}\right\}
$$

Summary of Fourier/Filtering Theory: III

- $\left\{a_{t}: t=0,1, \ldots, N-1\right\}=\left\{a_{t}\right\}$ has DFT

$$
A_{k} \equiv \sum_{t=0}^{N-1} a_{t} e^{-i 2 \pi f_{k} t}, \text { with } f_{k} \equiv \frac{k}{N} \& k=0,1, \ldots, N-1
$$

- inverse DFT says that

$$
a_{t}=\frac{1}{N} \sum_{k=0}^{N-1} A_{k} e^{i 2 \pi f_{k} t}, \quad t=0,1, \ldots, N-1
$$

- relationship between $\left\{a_{t}\right\}$ and $A(\cdot)$ denoted by

$$
\left\{a_{t}\right\} \longleftrightarrow\left\{A_{k}\right\} \text { or, less formally, by } a_{t} \longleftrightarrow A_{k}
$$

Summary of Fourier/Filtering Theory: V

- suppose $\left\{a_{t}\right\}$ has width M with $a_{t}=0$ for $t<0$ and $t \geq M$
- given $\left\{b_{t}\right\}$ of length N, can express

$$
c_{t}=\sum_{u=0}^{M-1} a_{u} b_{t-u \bmod N}, \quad t=0, \ldots, N-1,
$$

as

$$
c_{t}=\sum_{u=0}^{N-1} a_{u}^{\circ} b_{t-u \bmod N}, \text { where } a_{u}^{\circ} \equiv \sum_{n=-\infty}^{\infty} a_{u+n N}
$$

- DFT of $\left\{a_{t}^{\circ}\right\}$ given by $A\left(\frac{k}{N}\right), k=0, \ldots, N-1$, where

$$
A(f) \equiv \sum_{t=-\infty}^{\infty} a_{t} e^{-i 2 \pi f t}=\sum_{t=0}^{M-1} a_{t} e^{-i 2 \pi f t}
$$

Basic Theory for Discrete Wavelet Transform

(DWT)

- can formulate DWT via elegant 'pyramid' algorithm
- defines \mathcal{W} for non-Haar wavelets (consistent with Haar)
- computes $\mathbf{W}=\mathcal{W} \mathbf{X}$ using $O(N)$ multiplications
- 'brute force' method uses $O\left(N^{2}\right)$ multiplications
- faster than celebrated algorithm for fast Fourier transform! (this uses $O\left(N \cdot \log _{2}(N)\right)$ multiplications)
- can study algorithm using linear filters \& matrix manipulations
- will look at both approaches since they are complementary

The Wavelet Filter: I

- precise definition of DWT begins with notion of wavelet filter
- let $\left\{h_{l}: l=0, \ldots, L-1\right\}$ be a real-valued filter
- L called filter width
- both h_{0} and h_{L-1} must be nonzero
- L must be even $(2,4,6,8, \ldots)$ for technical reasons
- will assume $h_{l} \equiv 0$ for $l<0$ and $l \geq L$

The Wavelet Filter: II

- $\left\{h_{l}\right\}$ called a wavelet filter if it has these 3 properties

1. summation to zero:

$$
\sum_{l=0}^{L-1} h_{l}=0
$$

2. unit energy:

$$
\sum_{l=0}^{L-1} h_{l}^{2}=1
$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$
\sum_{l=0}^{L-1} h_{l} h_{l+2 n}=0
$$

- 2 and 3 together are called the orthonormality property

The Wavelet Filter: III

- summation to zero and unit energy relatively easy to achieve (analogous to conditions imposed on wavelet functions $\psi(\cdot)$)
- orthogonality to even shifts is key property
- orthogonality hardest to satisfy, and is reason L must be even
- consider filter $\left\{h_{0}, h_{1}, h_{2}\right\}$ of width $L=3$
- width 3 requires $h_{0} \neq 0$ and $h_{2} \neq 0$
- orthogonality to a shift of 2 requires $h_{0} h_{2}=0$ - impossible!

Haar Wavelet Filter

- simplest wavelet filter is Haar $(L=2): h_{0}=\frac{1}{\sqrt{ } 2} \& h_{1}=-\frac{1}{\sqrt{ } 2}$
- note that $h_{0}+h_{1}=0$ and $h_{0}^{2}+h_{1}^{2}=1$, as required
- orthogonal to even shifts
orthogonality to even shifts also readily apparent

II-16

D(4) Wavelet Filter: II

- Q: what is rationale for $\mathrm{D}(4)$ filter?
- consider $X_{t}^{(1)} \equiv X_{t}-X_{t-1}=a_{0} X_{t}+a_{1} X_{t-1}$, where $\left\{a_{0}=1, a_{1}=-1\right\}$ defines 1st difference filter:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-1\} \longrightarrow\left\{X_{t}^{(1)}\right\}
$$

- Haar wavelet filter is normalized 1st difference filter $-X_{t}^{(1)}$ is difference between two ' 1 point averages'
- consider filter cascade with two 1st difference filters:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-1\} \longrightarrow\{1,-1\} \longrightarrow\left\{X_{t}^{(2)}\right\}
$$

- equivalent filter defines 2 nd difference filter:

$$
\left\{X_{t}\right\} \longrightarrow\{1,-2,1\} \longrightarrow\left\{X_{t}^{(2)}\right\}
$$

D(4) Wavelet Filter: IV

- using conditions

1. summation to zero: $h_{0}+h_{1}+h_{2}+h_{3}=0$
2. unit energy: $h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=1$
3. orthogonality to even shifts: $h_{0} h_{2}+h_{1} h_{3}=0$
can solve for feasible values of a and b

- one solution is $a=\frac{1+\sqrt{ } 3}{4 \sqrt{ } 2} \doteq 0.48$ and $b=\frac{-1+\sqrt{ } 3}{4 \sqrt{ } 2} \doteq 0.13$
(3 other solutions, but these yield essentially the same filter)
- interpret $\mathrm{D}(4)$ filtered output as changes in weighted averages
- 'change' now measured by 2nd difference (1st for Haar)
- average is now 2 point weighted average (1 point for Haar)
- can argue that effective scale of weighted average is one

First Level Wavelet Coefficients: I

- given wavelet filter $\left\{h_{l}\right\}$ of width $L \&$ time series of length $N=2^{J}$, goal is to define matrix \mathcal{W} for computing $\mathbf{W}=\mathcal{W} \mathbf{X}$
- periodize $\left\{h_{l}\right\}$ to length N to form $h_{0}^{\circ}, h_{1}^{\circ}, \ldots, h_{N-1}^{\circ}$
- circularly filter \mathbf{X} using $\left\{h_{l}^{\circ}\right\}$ to yield output

$$
\sum_{l=0}^{N-1} h_{l}^{\circ} X_{t-l \bmod N}, \quad t=0, \ldots, N-1
$$

- starting with $t=1$, take every other value of output to define

$$
W_{1, t} \equiv \sum_{l=0}^{N-1} h_{l}^{\circ} X_{2 t+1-l \bmod N}, \quad t=0, \ldots, \frac{N}{2}-1
$$

$\left\{W_{1, t}\right\}$ formed by downsampling filter output by a factor of 2

Another Wavelet Filter

- LA(8) wavelet filter ('LA' stands for 'least asymmetric')

First Level Wavelet Coefficients: II

- $\left\{W_{1, t}\right\}$ are unit scale wavelet coefficients
- j in $W_{j, t}$ indicates a particular group of wavelet coefficients
$-j=1,2, \ldots, J$ (upper limit tied to sample size $N=2^{J}$)
- will refer to index j as the level
- thus $W_{1, t}$ is associated with level $j=1$
- $W_{1, t}$ also associated with scale 1
- level j is associated with scale 2^{j-1} (more on this later)
- $\left\{W_{1, t}\right\}$ forms first $N / 2$ elements of $\mathbf{W}=\mathcal{W} \mathbf{X}$
- first $N / 2$ elements of \mathbf{W} form subvector \mathbf{W}_{1}
- $W_{1, t}$ is t th element of \mathbf{W}_{1}
- also have $\mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}$, with \mathcal{W}_{1} being first $N / 2$ rows of \mathcal{W}

Upper Half of DWT Matrix: I

- setting $t=0$ in definition for $W_{1, t}$ yields

$$
\begin{aligned}
W_{1,0} & =\sum_{l=0}^{N-1} h_{l}^{\circ} X_{1-l \bmod N} \\
& =h_{0}^{\circ} X_{1}+h_{1}^{\circ} X_{0}+h_{2}^{\circ} X_{N-1}+\cdots+h_{N-2}^{\circ} X_{3}+h_{N-1}^{\circ} X_{2} \\
& =h_{1}^{\circ} X_{0}+h_{0}^{\circ} X_{1}+h_{N-1}^{\circ} X_{2}+h_{N-2}^{\circ} X_{3}+\cdots+h_{2}^{\circ} X_{N-1}
\end{aligned}
$$

- recall $W_{1,0}=\left\langle\mathcal{W}_{0 \bullet}, \mathbf{X}\right\rangle$, where $\mathcal{W}_{0 \bullet}^{T}$ is first row of $\mathcal{W} \&$ of \mathcal{W}_{1}
- comparison with above says that

$$
\mathcal{W}_{0 \bullet}^{T}=\left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}\right]
$$

Upper Half of DWT Matrix: II

- similar examination of $W_{1,1}, \ldots W_{1, \frac{N}{2}}$ shows following pattern - circularly shift $\mathcal{W}_{0} \bullet$ by 2 to get 2 nd row of \mathcal{W} :

$$
\mathcal{W}_{1 \bullet}^{T}=\left[h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{5}^{\circ}, h_{4}^{\circ}\right]
$$

- form $\mathcal{W}_{j \bullet}$ by circularly shifting $\mathcal{W}_{j-1} \bullet$ by 2 , ending with

$$
\mathcal{W}_{\frac{N}{2}-1 \bullet}^{T}=\left[h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{5}^{\circ}, h_{4}^{\circ}, h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}\right]
$$

- if $L \leq N$ (usually the case), then

$$
h_{l}^{\circ} \equiv \begin{cases}h_{l}, & 0 \leq l \leq L-1 \\ 0, & \text { otherwise }\end{cases}
$$

Example: Upper Half of Haar DWT Matrix

- consider Haar wavelet filter $(L=2): h_{0}=\frac{1}{\sqrt{ } 2} \& h_{1}=-\frac{1}{\sqrt{ } 2}$
- when $N=16$, upper half of \mathcal{W} (i.e., \mathcal{W}_{1}) looks like
$\left[\begin{array}{cccccccccccccccc}h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{1} & h_{0}\end{array}\right]$
- rows obviously orthogonal to each other

Example: Upper Half of D(4) DWT Matrix

- when $L=4 \& N=16, \mathcal{W}_{1}$ (i.e., upper half of \mathcal{W}) looks like

$$
\left[\begin{array}{cccccccccccccccc}
h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} \\
h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{3} & h_{2} & h_{1} & h_{0}
\end{array}\right]
$$

- rows orthogonal because $h_{0} h_{2}+h_{1} h_{3}=0$
- note: $\left\langle\mathcal{W}_{0 \bullet}, \mathbf{X}\right\rangle$ yields $W_{0}=h_{1} X_{0}+h_{0} X_{0}+h_{3} X_{14}+h_{2} X_{15}$
- unlike other coefficients from above, this 'boundary' coefficient depends on circular treatment of \mathbf{X} (a curse, not a feature!)

Upper Half of DWT Matrix: III

- if $L \leq N$, orthonormality of rows of \mathcal{W}_{1} follows readily from orthonormality of $\left\{h_{l}\right\}$
- as example of $L>N$ case (comes into play at higher levels), consider $N=4$ and $L=6$:

$$
h_{0}^{\circ}=h_{0}+h_{4} ; h_{1}^{\circ}=h_{1}+h_{5} ; h_{2}^{\circ}=h_{2} ; h_{3}^{\circ}=h_{3}
$$

- \mathcal{W}_{1} is:

$$
\left[\begin{array}{cccc}
h_{1}^{\circ} & h_{0}^{\circ} & h_{3}^{\circ} & h_{2}^{\circ} \\
h_{3}^{\circ} & h_{2}^{\circ} & h_{1}^{\circ} & h_{0}^{\circ}
\end{array}\right]=\left[\begin{array}{cccc}
h_{1}+h_{5} & h_{0}+h_{4} & h_{3} & h_{2} \\
h_{3} & h_{2} & h_{1}+h_{5} & h_{0}+h_{4}
\end{array}\right]
$$

- inner product of two rows is

$$
\begin{aligned}
& h_{1} h_{3}+h_{3} h_{5}+h_{0} h_{2}+h_{2} h_{4}+h_{1} h_{3}+h_{3} h_{5}+h_{0} h_{2}+h_{2} h_{4} \\
& =2\left(h_{0} h_{2}+h_{1} h_{3}+h_{2} h_{4}+h_{3} h_{5}\right)=0
\end{aligned}
$$

because $\left\{h_{l}\right\}$ is orthogonal to $\left\{h_{l+2}\right\}$ (an even shift)

Upper Half of DWT Matrix: IV

- can argue that, for all L and even N,
$W_{1, t}=\sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N,}$ or, equivalently, $\mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}$
forms half an orthonormal transform; i.e.,

$$
\mathcal{W}_{1} \mathcal{W}_{1}^{T}=I_{\frac{N}{2}}
$$

- Q: how can we construct the other half of \mathcal{W} ?

The Scaling Filter

- create $g_{l} \equiv(-1)^{l+1} h_{L-1-l} .\left\{g_{l}\right\}$ is 'quadrature mirror' filter corresponding to $\left\{h_{l}\right\}$
- properties 2 and 3 of $\left\{h_{l}\right\}$ are shared by $\left\{g_{l}\right\}$:

2. unit energy:

$$
\sum_{l=0}^{L-1} g_{l}^{2}=1
$$

3. orthogonality to even shifts: for all nonzero integers n, have

$$
\sum_{l=0}^{L-1} g_{l} g_{l+2 n}=0
$$

- scaling \& wavelet filters both satisfy orthonormality property

First Level Scaling Coefficients: I

- only orthonormality property of $\left\{h_{l}\right\}$ needed to prove that \mathcal{W}_{1} is half of an orthonormal transform (never used $\sum_{l} h_{l}=0$)
- going back and replacing h_{l} with g_{l} everywhere yields another half of an orthonormal transform
- periodize $\left\{g_{l}\right\}$ to length N to form $g_{0}^{\circ}, g_{1}^{\circ}, \ldots, g_{N-1}^{\circ}$
- circularly filter \mathbf{X} using $\left\{g_{l}^{\circ}\right\}$ and downsample to define

$$
V_{1, t} \equiv \sum_{l=0}^{N-1} g_{l}^{\circ} X_{2 t+1-l \bmod N}, \quad t=0, \ldots, \frac{N}{2}-1
$$

First Level Scaling Coefficients: II

- define \mathcal{V}_{1} in a manner analogous to \mathcal{W}_{1} so that $\mathbf{V}_{1}=\mathcal{V}_{1} \mathbf{X}$
- when $L=4$ and $N=16, \mathcal{V}_{1}$ looks like
$\left[\begin{array}{cccccccccccccccc}g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} \\ g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0}\end{array}\right]$
- \mathcal{V}_{1} obeys same orthonormality property as \mathcal{W}_{1} :
similar to $\mathcal{W}_{1} \mathcal{W}_{1}^{T}=I_{\frac{N}{2}}$, have $\mathcal{V}_{1} \mathcal{V}_{1}^{T}=I_{\frac{N}{2}}$

Orthonormality of \mathcal{V}_{1} and \mathcal{W}_{1} : I

- Q: how does \mathcal{V}_{1} help us?
- can show scaling filter obeys important fourth property

4. orthogonality to $\left\{h_{l}\right\}$ and its even shifts: for all n have

$$
\sum_{l=0}^{L-1} g_{l} h_{l+2 n}=0
$$

- implies any row in \mathcal{V}_{1} orthogonal to any row in \mathcal{W}_{1}
- implies $\mathcal{W}_{1} \& \mathcal{V}_{1}$ are jointly orthonormal:
$\mathcal{W}_{1} \mathcal{V}_{1}^{T}=\mathcal{V}_{1} \mathcal{W}_{1}^{T}=0_{\frac{N}{2}}$ in addition to $\mathcal{V}_{1} \mathcal{V}_{1}^{T}=\mathcal{W}_{1} \mathcal{W}_{1}^{T}=I_{\frac{N}{2}}$

Orthonormality of $\mathcal{V}_{1} \& \mathcal{W}_{1}$: II

- implies that

$$
\mathcal{P}_{1} \equiv\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right]
$$

is an $N \times N$ orthonormal matrix since

$$
\begin{aligned}
\mathcal{P}_{1} \mathcal{P}_{1}^{T} & =\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right]\left[\mathcal{W}_{1}^{T}, \mathcal{V}_{1}^{T}\right] \\
& =\left[\begin{array}{ll}
\mathcal{W}_{1} \mathcal{W}_{1}^{T} & \mathcal{W}_{1} \mathcal{V}_{1}^{T} \\
\mathcal{V}_{1} \mathcal{W}_{1}^{T} & \mathcal{V}_{1} \mathcal{V}_{1}^{T}
\end{array}\right]=\left[\begin{array}{cc}
I_{\frac{N}{2}} & 0_{\frac{N}{2}}^{2} \\
0_{\frac{N}{2}} & I_{\frac{N}{2}}
\end{array}\right]=I_{N}
\end{aligned}
$$

- if $N=2$ (not of much interest!), in fact $\mathcal{P}_{1}=\mathcal{W}$
- if $N>2, \mathcal{P}_{1}$ is intermediate step on way to \mathcal{W}
$-\mathcal{V}_{1}$ spans same subspace as lower half of \mathcal{W}
$-\mathcal{P}_{1}$ can be of interest by itself (just needs N even)

Three Comments

- if N even, then \mathcal{P}_{1} is well-defined (don't need $N=2^{J}$)
- rather than defining $g_{l}=(-1)^{l+1} h_{L-1-l}$, could use alternative definition $g_{l}=(-1)^{l-1} h_{1-l}$
- structure of \mathcal{V}_{1} would then not parallel that of \mathcal{W}_{1}
- useful for wavelet filters with infinite widths
- scaling and wavelet filters are often called 'father' and 'mother' wavelet filters, but Strichartz (1994) notes that this terminology
'.. shows a scandalous misunderstanding of human reproduction; in fact, the generation of wavelets more closely resembles the reproductive life style of amoebas.'

Interpretation of Scaling Coefficients: I

- consider Haar scaling filter $(L=2): g_{0}=g_{1}=\frac{1}{\sqrt{ } 2}$
- when $N=16$, matrix \mathcal{V}_{1} looks like
$\left[\begin{array}{cccccccccccccccc}g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & g_{1} & g_{0}\end{array}\right]$
- since $\mathbf{V}_{1}=\mathcal{V}_{1} \mathbf{X}$, each $V_{1, t}$ is proportional to a 2 point average: $V_{1,0}=g_{1} X_{0}+g_{0} X_{1}=\frac{1}{\sqrt{ } 2} X_{0}+\frac{1}{\sqrt{ } 2} X_{1} \propto \bar{X}_{1}(2)$ and so forth

Interpretation of Scaling Coefficients: II

- reconsider shapes of $\left\{g_{l}\right\}$ seen so far:

- for $L>2$, can regard $V_{1, t}$ as proportional to weighted average
- can argue that effective width of $\left\{g_{l}\right\}$ is 2 in each case; thus scale associated with $V_{1, t}$ is 2 , whereas scale is 1 for $W_{1, t}$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: I

- since \mathbf{W}_{1} and \mathbf{V}_{1} contain (downsampled) output from filters, let's consider frequency domain properties of $\left\{h_{l}\right\} \&\left\{g_{l}\right\}$
- define transfer and squared gain functions for wavelet filter:

$$
H(f) \equiv \sum_{l=0}^{L-1} h_{l} e^{-i 2 \pi f l} \text { and } \mathcal{H}(f) \equiv|H(f)|^{2}
$$

- define similar functions for scaling filter:

$$
G(f) \equiv \sum_{l=0}^{L-1} g_{l} e^{-i 2 \pi f l} \text { and } \mathcal{G}(f) \equiv|G(f)|^{2}
$$

- effect of $\left\{h_{l}\right\} \&\left\{g_{l}\right\}$ on \mathbf{X} can be deduced from $\mathcal{H}(\cdot) \& \mathcal{G}(\cdot)$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(4)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(6)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(8)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

II-39

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(12)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(14)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(16)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

II-39

Frequency Domain Properties of $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$: II

- example: $\mathcal{H}(\cdot)$ and $\mathcal{G}(\cdot)$ for Haar \& $\mathrm{D}(20)$ filters

- $\left\{h_{l}\right\}$ is high-pass filter with nominal pass-band $[1 / 4,1 / 2]$
- $\left\{g_{l}\right\}$ is low-pass filter with nominal pass-band $[0,1 / 4]$
- same true for all Daubechies wavelet and scaling filters
- orthonormality condition equivalent to $\mathcal{H}(f)+\mathcal{G}(f)=2$

Example of Decomposing \mathbf{X} into \mathbf{W}_{1} and \mathbf{V}_{1}

- oxygen isotope records \mathbf{X} from Antarctic ice core

II-40

Reconstructing \mathbf{X} from \mathbf{W}_{1} and \mathbf{V}_{1}

- in matrix notation, form wavelet \& scaling coefficients via

$$
\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{W}_{1} \mathbf{X} \\
\mathcal{V}_{1} \mathbf{X}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right] \mathbf{X}=\mathcal{P}_{1} \mathbf{X}
$$

- recall that $\mathcal{P}_{1}^{T} \mathcal{P}_{1}=I_{N}$ because \mathcal{P}_{1} is orthonormal
- since $\mathcal{P}_{1}^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}$, premultiplying both sides by \mathcal{P}_{1}^{T} yields

$$
\mathcal{P}_{1}^{T}\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{W}_{1}^{T} & \mathcal{V}_{1}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\mathcal{W}_{1}^{T} \mathbf{W}_{1}+\mathcal{V}_{1}^{T} \mathbf{V}_{1}=\mathbf{X}
$$

- $\mathcal{D}_{1} \equiv \mathcal{W}_{1}^{T} \mathbf{W}_{1}$ is the first level detail
- $\mathcal{S}_{1} \equiv \mathcal{V}_{1}^{T} \mathbf{V}_{1}$ is the first level 'smooth'
- $\mathbf{X}=\mathcal{D}_{1}+\mathcal{S}_{1}$ in this notation

Example of Decomposing \mathbf{X} into \mathbf{W}_{1} and \mathbf{V}_{1}

- oxygen isotope record series \mathbf{X} has $N=352$ observations
- spacing between observations is $\Delta t \doteq 0.5$ years
- used Haar DWT, obtaining 176 scaling and wavelet coefficients
- scaling coefficients \mathbf{V}_{1} related to averages on scale of $2 \Delta t$
- wavelet coefficients \mathbf{W}_{1} related to changes on scale of Δt
- coefficients $V_{1, t}$ and $W_{1, t}$ plotted against mid-point of years associated with $X_{2 t}$ and $X_{2 t+1}$
- note: variability in wavelet coefficients increasing with time (thought to be due to diffusion)
- data courtesy of Lars Karlöf, Norwegian Polar Institute, Polar Environmental Centre, Troms \varnothing, Norway

Construction of First Level Detail: I

- consider $\mathcal{D}_{1}=\mathcal{W}_{1}^{T} \mathbf{W}_{1}$ for $L=4 \& N>L$:

$$
\mathcal{D}_{1}=\left[\begin{array}{cccccc}
h_{1} & h_{3} & 0 & \cdots & 0 & 0 \\
h_{0} & h_{2} & 0 & \cdots & 0 & 0 \\
0 & h_{1} & h_{3} & \cdots & 0 & 0 \\
0 & h_{0} & h_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & h_{1} & h_{3} \\
0 & 0 & 0 & \cdots & h_{0} & h_{2} \\
h_{3} & 0 & 0 & \cdots & 0 & h_{1} \\
h_{2} & 0 & 0 & \cdots & 0 & h_{0}
\end{array}\right]\left[\begin{array}{c}
\\
W_{1,0} \\
W_{1,1} \\
W_{1,2} \\
\vdots \\
W_{1, N / 2-2} \\
W_{1, N / 2-1}
\end{array}\right]
$$

note: \mathcal{W}_{1}^{T} is $N \times \frac{N}{2} \& \mathbf{W}_{1}$ is $\frac{N}{2} \times 1$

- \mathcal{D}_{1} not result of filtering $W_{1, t}$'s with $\left\{h_{0}, h_{1}, h_{2}, h_{3}\right\}$

Construction of First Level Detail: II

- augment \mathcal{W}_{1} to $N \times N$ and \mathbf{W}_{1} to $N \times 1$:

$$
\mathcal{D}_{1}=\left[\begin{array}{cccccccccc}
h_{0} & h_{1} & h_{2} & h_{3} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & h_{0} & h_{1} & h_{2} & h_{3} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & h_{0} & h_{1} & h_{2} & h_{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & h_{0} & h_{1} & h_{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & h_{1} & h_{2} & h_{3} \\
h_{3} & 0 & 0 & 0 & 0 & 0 & \cdots & h_{0} & h_{1} & h_{2} \\
h_{2} & h_{3} & 0 & 0 & 0 & 0 & \cdots & 0 & h_{0} & h_{1} \\
h_{1} & h_{2} & h_{3} & 0 & 0 & 0 & \cdots & 0 & 0 & h_{0}
\end{array}\right]\left[\begin{array}{c}
0 \\
W_{1,0} \\
0 \\
W_{1,1} \\
0 \\
W_{1,2} \\
\vdots \\
W_{1, N / 2-2} \\
0 \\
W_{1, N / 2-1}
\end{array}\right]
$$

- can now regard the above as equivalent to use of a filter

Construction of First Level Detail: IV

- can now write

$$
\mathcal{D}_{1, t}=\sum_{l=0}^{N-1} h_{l}^{\circ} W_{1, t+l \bmod N}^{\uparrow}, \quad t=0,1, \ldots, N-1
$$

- doesn't look like exactly like filtering, which would look like $\sum_{l=0}^{N-1} h_{l}^{\circ} W_{1, t-l \bmod N}^{\uparrow}$; i.e., direction of $W_{1, t}^{\uparrow}$ not reversed - form that $\mathcal{D}_{1, t}$ takes is what engineers call 'cross-correlation' - if $\left\{h_{l}\right\} \longleftrightarrow H(\cdot)$, cross-correlating $\left\{h_{l}\right\} \&\left\{W_{1, t}^{\uparrow}\right\}$ is equivalent to filtering $\left\{W_{1, t}^{\uparrow}\right\}$ using filter with transfer function $H^{*}(\cdot)$
- \mathcal{D}_{1} formed by circularly filtering $\left\{W_{1, t}^{\uparrow}\right\}$ with filter $\left\{H^{*}\left(\frac{k}{N}\right)\right\}$

Construction of First Level Detail: III

- formally, define upsampled (by 2) version of $W_{1, t}$'s:

$$
W_{1, t}^{\uparrow} \equiv \begin{cases}0, & t=0,2, \ldots, N-2 \\ W_{1,(t-1) / 2}=W_{(t-1) / 2}, & t=1,3, \ldots, N-1\end{cases}
$$

- example of upsampling:
- note: ' \uparrow 2' denotes 'upsample by 2' (put 0's before values)

First Level Variance Decomposition: I

- recall that 'energy' in \mathbf{X} is its squared norm $\|\mathbf{X}\|^{2}$
- because \mathcal{P}_{1} is orthonormal, have $\mathcal{P}_{1}^{T} \mathcal{P}_{1}=I_{N}$ and hence

$$
\left\|\mathcal{P}_{1} \mathbf{X}\right\|^{2}=\left(\mathcal{P}_{1} \mathbf{X}\right)^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}^{T} \mathcal{P}_{1}^{T} \mathcal{P}_{1} \mathbf{X}=\mathbf{X}^{T} \mathbf{X}=\|\mathbf{X}\|^{2}
$$

- can conclude that $\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}$ because

$$
\mathcal{P}_{1} \mathbf{X}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right] \text { and hence }\left\|\mathcal{P}_{1} \mathbf{X}\right\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}
$$

- leads to a decomposition of the sample variance for \mathbf{X} :

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} & =\frac{1}{N}\|\mathbf{X}\|^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2}
\end{aligned}
$$

Summary of First Level of Basic Algorithm

- transforms $\left\{X_{t}: t=0, \ldots, N-1\right\}$ into 2 types of coefficients
- $N / 2$ wavelet coefficients $\left\{W_{1, t}\right\}$ associated with:
$-\mathbf{W}_{1}$, a vector consisting of first $N / 2$ elements of \mathbf{W}
- changes on scale 1 and nominal frequencies $\frac{1}{4} \leq|f| \leq \frac{1}{2}$
- first level detail \mathcal{D}_{1}
$-\mathcal{W}_{1}$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- $N / 2$ scaling coefficients $\left\{V_{1, t}\right\}$ associated with:
$-\mathbf{V}_{1}$, a vector of length $N / 2$
- averages on scale 2 and nominal frequencies $0 \leq|f| \leq \frac{1}{4}$
- first level smooth \mathcal{S}_{1}
$-\mathcal{V}_{1}$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last $N / 2$ rows of \mathcal{W}

First Level Variance Decomposition: II

- breaks up $\hat{\sigma}_{X}^{2}$ into two pieces:

1. $\frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2}$, attributable to changes in averages over scale 1
2. $\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2}$, attributable to averages over scale 2

- Haar-based example for oxygen isotope records
- first piece: $\quad \frac{1}{N}\left\|\mathbf{W}_{1}\right\|^{2} \doteq 0.295$
- second piece: $\frac{1}{N}\left\|\mathbf{V}_{1}\right\|^{2}-\bar{X}^{2} \doteq 2.909$
- sample variance: $\quad \hat{\sigma}_{X}^{2} \doteq 3.204$
- changes on scale of $\Delta t \doteq 0.5$ years account for 9% of $\hat{\sigma}_{X}^{2}$ (standardized scale of 1 corresponds to physical scale of Δt)

Level One Analysis and Synthesis of X

- can express analysis/synthesis of \mathbf{X} as a flow diagram

Constructing Remaining DWT Coefficients: I

- have regarded time series X_{t} as 'one point' averages $\bar{X}_{t}(1)$ over
- physical scale of Δt (sampling interval between observations)
- standardized scale of 1
- first level of basic algorithm transforms \mathbf{X} of length N into
$-N / 2$ wavelet coefficients $\mathbf{W}_{1} \propto$ changes on a scale of 1
$-N / 2$ scaling coefficients $\mathbf{V}_{1} \propto$ averages of X_{t} on a scale of 2
- in essence basic algorithm takes length N series \mathbf{X} related to scale 1 averages and produces
- length $N / 2$ series \mathbf{W}_{1} associated with the same scale
- length $N / 2$ series \mathbf{V}_{1} related to averages on double the scale

Constructing Remaining DWT Coefficients: II

- Q: what if we now treat \mathbf{V}_{1} in the same manner as \mathbf{X} ?
- basic algorithm will transform length $N / 2$ series \mathbf{V}_{1} into
- length $N / 4$ series \mathbf{W}_{2} associated with the same scale (2)
- length $N / 4$ series \mathbf{V}_{2} related to averages on twice the scale
- by definition, \mathbf{W}_{2} contains the level 2 wavelet coefficients
- \mathbf{Q} : what if we treat \mathbf{V}_{2} in the same way?
- basic algorithm will transform length $N / 4$ series \mathbf{V}_{2} into
- length $N / 8$ series \mathbf{W}_{3} associated with the same scale (4)
- length $N / 8$ series \mathbf{V}_{3} related to averages on twice the scale
- by definition, \mathbf{W}_{3} contains the level 3 wavelet coefficients

Constructing Remaining DWT Coefficients: III

- continuing in this manner defines remaining subvectors of \mathbf{W} (recall that $\mathbf{W}=\mathcal{W} \mathbf{X}$ is the vector of DWT coefficients)
- at each level j, outputs \mathbf{W}_{j} and \mathbf{V}_{j} from the basic algorithm are each half the length of the input \mathbf{V}_{j-1}
- length of \mathbf{V}_{j} given by $N / 2^{j}$
- since $N=2^{J}$, length of \mathbf{V}_{J} is 1 , at which point we must stop
- J applications of the basic algorithm defines the remaining subvectors $\mathbf{W}_{2}, \ldots, \mathbf{W}_{J}, \mathbf{V}_{J}$ of DWT coefficient vector \mathbf{W}
- overall scheme is known as the 'pyramid' algorithm

Scales Associated with DWT Coefficients

- j th level of algorithm transforms scale 2^{j-1} averages into
- differences of averages on scale 2^{j-1}, i.e., \mathbf{W}_{j}, the wavelet coefficients
- averages on scale $2 \times 2^{j-1}=2^{j}$, i.e., \mathbf{V}_{j}, the scaling coefficients
- let $\tau_{j} \equiv 2^{j-1}$ be standardized scale associated with \mathbf{W}_{j}
- for $j=1, \ldots, J$, takes on values $1,2,4, \ldots, N / 4, N / 2$
- physical (actual) scale given by $\tau_{j} \Delta t$
- let $\lambda_{j} \equiv 2^{j}$ be standardized scale associated with \mathbf{V}_{j}
- takes on values $2,4,8, \ldots, N / 2, N$
- physical scale given by $\lambda_{j} \Delta t$

Examples of \mathcal{W} and its Partitioning: I

- $N=16$ case for Haar DWT matrix \mathcal{W}
\mathcal{W}_{1}

- above agrees with qualitative description given previously

Multiresolution Analysis

- $\mathcal{D}_{j} \equiv \mathcal{W}_{j}^{T} \mathbf{W}_{j}$ is the j th level detail
- $\mathcal{S}_{j} \equiv \mathcal{V}_{j}^{T} \mathbf{V}_{j}$ is the j th level 'smooth'
- we get multiresolution analyses (MRAs) for levels k and J : for $1 \leq k \leq J$,

$$
\mathbf{X}=\sum_{j=1}^{k} \mathcal{D}_{j}+\mathcal{S}_{k} \text { and, in particular, } \mathbf{X}=\sum_{j=1}^{J} \mathcal{D}_{j}+\mathcal{S}_{J}
$$

i.e., additive decomposition (first of two basic decompositions derivable from DWT)

Examples of \mathcal{W} and its Partitioning: II

- $N=16$ case for $\mathrm{D}(4)$ DWT matrix \mathcal{W}

- note: elements of last row equal to $1 / \sqrt{ } N=1 / 4$, as claimed

Matrix Description of Energy Decomposition: I

- just as we can recover the energy in \mathbf{X} from $\mathbf{W}_{1} \& \mathbf{V}_{1}$ using

$$
\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}
$$

so can we recover the energy in \mathbf{V}_{j-1} from $\mathbf{W}_{j} \& \mathbf{V}_{j}$ using

$$
\left\|\mathbf{V}_{j-1}\right\|^{2}=\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{j}\right\|^{2}
$$

(recall the correspondence $\mathbf{V}_{0}=\mathbf{X}$)

- we can thus write

$$
\begin{aligned}
\|\mathbf{X}\|^{2} & =\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2} \\
& =\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{W}_{2}\right\|^{2}+\left\|\mathbf{V}_{2}\right\|^{2} \\
& =\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{W}_{2}\right\|^{2}+\left\|\mathbf{W}_{3}\right\|^{2}+\left\|\mathbf{V}_{3}\right\|^{2}
\end{aligned}
$$

Matrix Description of Energy Decomposition: II

- generalizing from the bottom line

$$
\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{W}_{2}\right\|^{2}+\left\|\mathbf{W}_{3}\right\|^{2}+\left\|\mathbf{V}_{3}\right\|^{2}
$$

indicates that, for $1 \leq k \leq J$, we can write

$$
\|\mathbf{X}\|^{2}=\sum_{j=1}^{k}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{k}\right\|^{2}
$$

and, in particular,

$$
\|\mathbf{X}\|^{2}=\sum_{j=1}^{J}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{J}\right\|^{2}
$$

- above are energy decompositions for levels k and J; (second of two basic decompositions derivable from DWT)

Example of $J_{0}=4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Partial DWT

- stop at $J_{0}<J$ repetitions - a level J_{0} 'partial' DWT
- only requires N to be integer multiple of $2^{J_{0}}$
- choice of J_{0} is application dependent
- multiresolution analysis for partial DWT:

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \mathcal{D}_{j}+\mathcal{S}_{J_{0}}
$$

$\mathcal{S}_{J_{0}}$ represents averages on scale $\lambda_{J_{0}}=2^{J_{0}}$ (includes \bar{X})

- analysis of variance for partial DWT:

$$
\hat{\sigma}_{X}^{2}=\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{J_{0}}\right\|^{2}-\bar{X}^{2}
$$

Example of MRA from $J_{0}=4$ Partial Haar DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Assigning Times to Wavelet Coefficients

- LA class of wavelet and scaling filters designed to exhibit 'near symmetry' about some point in the filter
- makes it easier to align $W_{j, t}$ and $V_{J_{0}, t}$ with values in \mathbf{X}
- some gory details: if X_{t} is associated with actual time $t_{0}+t \Delta t$, LA wavelet coefficient $W_{j, t}$ should be plotted at time

$$
t_{0}+\left(2^{j}(t+1)-1-\left|\nu_{j}^{(H)}\right| \bmod N\right) \Delta t
$$

e.g., $\left|\nu_{j}^{(H)}\right|=\left[7\left(2^{j}-1\right)+1\right] / 2$ for LA(8) wavelet. For $N=16$ | coefficient | $W_{1,0}$ | $W_{1,1}$ | $W_{1,2}$ | $W_{1,3}$ | $W_{1,4}$ | $W_{1,5}$ | $W_{1,6}$ | $W_{1,7}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| associated time | 13 | 15 | 1 | 3 | 5 | 7 | 9 | 11 |

- order in which elements of \mathbf{W}_{1} should be displayed is thus

$$
W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}
$$

Circularly Shifting a Vector and Time Alignment

- can express reordering elements of

$$
\mathbf{W}_{1}=\left[W_{1,0}, W_{1,1}, W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}\right]^{T}
$$

as they occur in time using

$$
\mathcal{T}^{-2} \mathbf{W}_{1}=\left[W_{1,2}, W_{1,3}, W_{1,4}, W_{1,5}, W_{1,6}, W_{1,7}, W_{1,0}, W_{1,1}\right]^{T}
$$

- can use to time-align wavelet coefficients
- note that the details and smooths do not need to be timealigned as the associated filters do not cause a time shift

Matrices for Circularly Shifting Vectors

- define \mathcal{T} and \mathcal{T}^{-1} to be $N \times N$ matrices that circularly shift $\mathbf{X}=\left[X_{0}, X_{1}, \ldots, X_{N-1}\right]^{T}$ either right or left one unit:

$$
\begin{aligned}
\mathcal{T} \mathbf{X} & =\left[X_{N-1}, X_{0}, X_{1}, \ldots, X_{N-3}, X_{N-2}\right]^{T} \\
\mathcal{T}^{-1} \mathbf{X} & =\left[X_{1}, X_{2}, X_{3}, \ldots, X_{N-2}, X_{N-1}, X_{0}\right]^{T}
\end{aligned}
$$

- for $N=4$, here are what these matrices look like:

$$
\mathcal{T}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \& \mathcal{T}^{-1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- define $\mathcal{T}^{-2}=\mathcal{T}^{-1} \mathcal{T}^{-1}, \mathcal{T}^{-3}=\mathcal{T}^{-1} \mathcal{T}^{-1} \mathcal{T}^{-1}$ and so forth

Example of $J_{0}=4$ Partial LA(8) DWT

- oxygen isotope records \mathbf{X} from Antarctic ice core

Summary of Key Points about the DWT: I

- the DWT \mathcal{W} is orthonormal, i.e., satisfies $\mathcal{W}^{T} \mathcal{W}=I_{N}$
- construction of \mathcal{W} starts with a wavelet filter $\left\{h_{l}\right\}$ of even length L that by definition

1. sums to zero; i.e., $\sum_{l} h_{l}=0$;
2. has unit energy; i.e., $\sum_{l} h_{l}^{2}=1$; and
3. is orthogonal to its even shifts; i.e., $\sum_{l} h_{l} h_{l+2 n}=0$

- 2 and 3 together called orthonormality property
- wavelet filter defines a scaling filter via $g_{l}=(-1)^{l+1} h_{L-1-l}$
- scaling filter satisfies the orthonormality property, but sums to $\sqrt{ } 2$ and is also orthogonal to $\left\{h_{l}\right\}$; i.e., $\sum_{l} g_{l} h_{l+2 n}=0$
- while $\left\{h_{l}\right\}$ is a high-pass filter, $\left\{g_{l}\right\}$ is a low-pass filter

Summary of Key Points about the DWT: II

- $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$ work in tandem to split time series \mathbf{X} into
- wavelet coefficients \mathbf{W}_{1} (related to changes in averages on a unit scale) and
- scaling coefficients \mathbf{V}_{1} (related to averages on a scale of 2)
- $\left\{h_{l}\right\}$ and $\left\{g_{l}\right\}$ are then applied to \mathbf{V}_{1}, yielding
- wavelet coefficients \mathbf{W}_{2} (related to changes in averages on a scale of 2) and
- scaling coefficients \mathbf{V}_{2} (related to averages on a scale of 4)
- continuing beyond these first 2 levels, scaling coefficients \mathbf{V}_{j-1} at level j are transformed into wavelet and scaling coefficients \mathbf{W}_{j} and \mathbf{V}_{j} of scales $\tau_{j}=2^{j-1}$ and $\lambda_{j}=2^{j}$

II-68

Summary of Key Points about the DWT: III

- after J_{0} repetitions, this 'pyramid' algorithm transforms time series \mathbf{X} whose length N is an integer multiple of $2{ }^{J_{0}}$ into DWT coefficients $\mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{J_{0}}$ and $\mathbf{V}_{J_{0}}$ (sizes of vectors are $\frac{N}{2}, \frac{N}{4}, \ldots, \frac{N}{2^{J}}$ and $\frac{N}{2^{J}{ }^{J}}$, for a total of N coefficients in all)
- DWT coefficients lead to two basic decompositions
- first decomposition is additive and is known as a multiresolution analysis (MRA), in which \mathbf{X} is reexpressed as

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \mathcal{D}_{j}+\mathcal{S}_{J_{0}}
$$

where \mathcal{D}_{j} is a time series reflecting variations in \mathbf{X} on scale τ_{j}, while $\mathcal{S}_{J_{0}}$ is a series reflecting its $\lambda_{J_{0}}$ averages

Summary of Key Points about the DWT: IV

- second decomposition reexpresses the energy (squared norm) of \mathbf{X} on a scale by scale basis, i.e.,

$$
\|\mathbf{X}\|^{2}=\sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{J_{0}}\right\|^{2}
$$

leading to an analysis of the sample variance of \mathbf{X} :

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} & =\frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} \\
& =\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{J_{0}}\right\|^{2}-\bar{X}^{2}
\end{aligned}
$$

