Wavelet Methods for Time Series Analysis

Part II: Introduction to the Discrete Wavelet Transform

- will give precise definition of DWT in Part III
- let $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ be a vector of N time series values (note: 'T' denotes transpose; i.e., \mathbf{X} is a column vector)
- need to assume $N = 2^J$ for some positive integer J (restrictive!)
- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W} = \mathcal{W} \mathbf{X}$
 - W is vector of DWT coefficients (*j*th component is W_j)
 - \mathcal{W} is $N \times N$ orthonormal transform matrix; i.e., $\mathcal{W}^T \mathcal{W} = I_N$, where I_N is $N \times N$ identity matrix
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also

II–1

Implications of Orthonormality: II

example from W of dimension 16 × 16 we'll see later on
inner product of row 8 with itself (i.e., squared norm):

$$\mathcal{W}_{8,t}$$
 $\mathcal{W}_{8,t}$ $\mathcal{W}_{8,t}^2$ $\mathrm{sum} = 1$

- row 8 said to have 'unit energy' since squared norm is 1

Implications of Orthonormality: I

- let $\mathcal{W}_{j\bullet}^T$ denote the *j*th row of \mathcal{W} , where $j = 0, 1, \ldots, N-1$
- note that $\mathcal{W}_{i\bullet}$ itself is a column vector
- let $\mathcal{W}_{i,l}$ denote element of \mathcal{W} in row j and column l
- note that $\mathcal{W}_{i,l}$ is also *l*th element of $\mathcal{W}_{j\bullet}$
- let's consider two vectors, say, $\mathcal{W}_{j\bullet}$ and $\mathcal{W}_{k\bullet}$
- orthonormality says

$$\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$$

 $\begin{array}{l} - \langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \text{ is inner product of } j \text{th } \& k \text{th rows} \\ - \|\mathcal{W}_{j\bullet}\|^2 \equiv \langle \mathcal{W}_{j\bullet}, \mathcal{W}_{j\bullet} \rangle \text{ is squared norm (energy) for } \mathcal{W}_{j\bullet} \end{array}$

II-2

Implications of Orthonormality: III

- \bullet another example from same ${\cal W}$
 - inner product of rows 8 and 12:

$$\mathcal{W}_{8,t} \xrightarrow{\bullet} \mathcal{W}_{8,t} \mathcal{W}_{12,t} \xrightarrow{\bullet} \mathcal{W}_{8,t} \mathcal{W}_{12,t} \xrightarrow{\bullet} \mathcal{W}_{8,t} \mathcal{W}_{12,t}$$

- rows 8 & 12 said to be orthogonal since inner product is 0

The Haar DWT: I

The Haar DWT: II

II-8

II-7

The Haar DWT: V

The Haar DWT: VI

 $\mathbf{W} = \mathcal{W} \mathbf{X}$

• *j*th coefficient W_j is inner product of *j*th row $\mathcal{W}_{j\bullet}$ and **X**:

$$W_j = \langle \mathcal{W}_{j \bullet}, \mathbf{X} \rangle$$

- can interpret coefficients as difference of averages
- to see this, let

$$\overline{X}_t(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{`scale } \lambda\text{' average}$$

- note: $\overline{X}_t(1) = X_t = \text{scale 1 'average'}$ - note: $\overline{X}_{N-1}(N) = \overline{X} = \text{sample average}$

Structure of DWT Matrices Two Basic Decompositions Derivable from DWT • $\frac{N}{2\tau_i}$ wavelet coefficients for scale $\tau_j \equiv 2^{j-1}, j = 1, \dots, J$ • additive decomposition $-\tau_j \equiv 2^{j-1}$ is standardized scale - reexpresses **X** as the sum of J + 1 new time series, each of $-\tau_i \Delta t$ is physical scale, where Δt is sampling interval which is associated with a particular scale τ_i - called multiresolution analysis (MRA) • each W_i localized in time: as scale \uparrow , localization \downarrow - related to first 'scary-looking' CWT equation • rows of \mathcal{W} for given scale τ_i : • energy decomposition - circularly shifted with respect to each other - shift between adjacent rows is $2\tau_i = 2^j$ - yields analysis of variance across J scales - called wavelet spectrum or wavelet variance • similar structure for DWTs other than the Haar - related to second 'scary-looking' CWT equation • differences of averages common theme for DWTs - simple differencing replaced by higher order differences - simple averages replaced by weighted averages II-17II-18

Partitioning of DWT Coefficient Vector W

- \bullet decompositions are based on partitioning of ${\bf W}$ and ${\cal W}$
- partition **W** into subvectors associated with scale:

$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \\ \vdots \\ \mathbf{W}_j \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{bmatrix}$

- \mathbf{W}_j has $N/2^j$ elements (scale $\tau_j = 2^{j-1}$ changes) note: $\sum_{j=1}^J \frac{N}{2^j} = \frac{N}{2} + \frac{N}{4} + \dots + 2 + 1 = 2^J - 1 = N - 1$
- \mathbf{V}_J has 1 element, which is equal to $\sqrt{N} \cdot \overline{X}$ (scale N average)

Example of Partitioning of W

Multiresolution Analysis: II

• example of MRA for time series of length N = 16

• adding values for, e.g., t = 14 in $\mathcal{D}_1, \ldots, \mathcal{D}_4$ & \mathcal{S}_4 yields X_{14}

II-25

Energy Preservation Property of DWT Coefficients

• define 'energy' in **X** as its squared norm:

$$\|\mathbf{X}\|^2 = \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

(usually not really energy, but will use term as shorthand)

 \bullet energy of ${\bf X}$ is preserved in its DWT coefficients ${\bf W}$ because

$$\begin{split} \mathbf{W} \|^2 &= \mathbf{W}^T \mathbf{W} = (\mathcal{W} \mathbf{X})^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T \mathcal{W}^T \mathcal{W} \mathbf{X} \\ &= \mathbf{X}^T I_N \mathbf{X} = \mathbf{X}^T \mathbf{X} = \|\mathbf{X}\|^2 \end{split}$$

• note: same argument holds for any orthonormal transform

II-26

Wavelet Spectrum (Variance Decomposition): I

• let
$$\overline{X}$$
 denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$

• let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$$
$$= \frac{1}{N} ||\mathbf{W}||^2 - \overline{X}^2$$
since $||\mathbf{W}||^2 = \sum_{j=1}^J ||\mathbf{W}_j||^2 + ||\mathbf{V}_J||^2$ and $\frac{1}{N} ||\mathbf{V}_J||^2 = \overline{X}^2$,
$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^J ||\mathbf{W}_j||^2$$

II-27

Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

$$P_X(\tau_j) \equiv \frac{1}{N} \|\mathbf{W}_j\|^2$$
, where $\tau_j = 2^{j-1}$

• gives us a scale-based decomposition of the sample variance:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_X(\tau_j)$$

• in addition, each $W_{j,t}$ in \mathbf{W}_j associated with a portion of \mathbf{X} ; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

Wavelet Spectrum (Variance Decomposition): III

• wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length N = 16, each with zero sample mean and same sample variance

Summary of Qualitative Description of DWT

- DWT is expressed by an $N \times N$ orthonormal matrix \mathcal{W}
- \bullet transforms time series ${\bf X}$ into DWT coefficients ${\bf W}=\mathcal{W}{\bf X}$
- \bullet each coefficient in ${\bf W}$ associated with a scale and location
 - $-\mathbf{W}_j$ is subvector of \mathbf{W} with coefficients for scale $\tau_j = 2^{j-1}$
 - coefficients in \mathbf{W}_j related to differences of averages over τ_j
 - last coefficient in ${\bf W}$ related to average over scale N
- orthonormality leads to basic scale-based decompositions
 - multiresolution analysis (additive decomposition)
 - discrete wavelet power spectrum (analysis of variance)
- stayed tuned for precise definition of DWT!

II - 30