Wavelet Methods for Time Series Analysis

Part 1I: Introduction to the Discrete Wavelet Transform

e will give precise definition of DWT in Part 111

elet X = [X, Xy, ... ,XNfl]T be a vector of N time series
values (note: “T" denotes transpose; i.e., X is a column vector)

e need to assume N = 27 for some positive integer .J (restrictive!)
e DWT is a linear transform of X yielding N DWT coefficients
e notation: W = WX

— W is vector of DWT coefficients (jth component is 1)

— W is N x N orthonormal transform matrix; i.e.,
WIW = Iy, where Iy is N x N identity matrix

e inverse of W is just its transpose, so WWT =T N also
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Implications of Orthonormality: I

e let WJT. denote the jth row of W, where 7 =0,1,...,N — 1
e note that Wj, itself is a column vector

e let W;; denote element of W in row j and column [

e note that W is also [th element of W;e

e let’s consider two vectors, say, We and Wi

e orthonormality says

1, when j =k,

0, when j #k

— (We, W) is inner product of jth & kth rows

— [[Wiel|? = (Wje, Wjs) is squared norm (energy) for Wi,

N-1
Wje Whe) = > W Wy = {
=0
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Implications of Orthonormality: I

e example from W of dimension 16 x 16 we’ll see later on

— inner product of row 8 with itself (i.e., squared norm):

WS,t W*“““‘TI'LL
W3, SRS sum = 1
W&t W*“““‘TI'LL

— row 8 said to have ‘unit energy’ since squared norm is 1
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Implications of Orthonormality: III

e another example from same W

— inner product of rows 8 and 12:

Ws

II Ws Wiy “""""'TLL sum = 0

Wiy

— rows 8 & 12 said to be orthogonal since inner product is 0
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The Haar DWT: 1

e like CWT, DWT tell us about variations in local averages
e to see this, let’s look inside W for the Haar DW'T for N = 2/
erow j = 0: [—%,ﬁ, 0,...,0 } EWOT.

N—2 zeros

note: [[Woe||? =4 + 4 =1 & hence has required unit energy
=1 S S = w/I
e row j = 1: [0,0, 5 7 0,....0 ] =W,
N —4 zeros
e Wpe and W, are orthogonal

Wi

O
I WoiWy; wessssssssssssss qum = ()

The Haar DWT: 11

e keep shifting by two to form rows until we come to ...

—wWT

. N ) 1 1
erow j =45 — L [O""’O’_W’W] =Wy ..

N —2 zeros
e first N/2 rows form orthonormal set of N/2 vectors

N = 16 example

N O U W NN = O

The Haar DWT: III

e to form next row, stretch [ — ﬁ, ﬁ, 0,..., 0} out
by a factor of two and renormalize to preserve unit energy
- N. 1 111 — T
03—7.[—§,—?,§,?, 0,,O:|:WN.
N —4 zeros 2
. 1, 1,11 :
note: HVV%.H2 =1+71+7+7=1 asrequired

® Wpe and Wy are orthogonal (% = 8 in example)
2

. —
v 1 Wo i Ws JT“'"“"““* sum = 0

Ws

-7

The Haar DWT: IV

e W, and WN. are orthogonal
2

Wi

Wi Ws, “ﬁ“’“’m sum = 0

I

Wht

e Whe and Wy _ are orthogonal

Wa
Wh Wy ssssssssssssssse qum = ()

I

Wit
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The Haar DWT: V

e form next row by shifting Wy to right by 4 units
2

- _ N . 1 111
¢j=73+1:100,0,00-3-32%0...0]= WMH.
N —8 zeros
e Wy, orthogonal to first N/2 rows and also to Wy
?—‘rl. 7.

Y A—
" W Wy wesessssssssssss qum = ()

Wo.t

e continue shifting by 4 units to form more rows, ending with . . .

3N . 1 111
®TOW j = — .[0,...,0,—2, 2,2,} Wo
N —4 zeros

—le
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The Haar DWT: VI

e to form next row, stretch [ — %, —%, %, %, 0,..., O] out
by a factor of two and renormalize to preserve unit energy

3N 1 1 1
.j—— [_%7"'7_%’%"”’\/87 7"'7,:| W3N
4 of‘t,hcsc 4 of thcso N—8 zeros

note: HWM.HQ =8 % =1, as required
I

o) = % + 1: shift row % to right by 8 units

e continue shifting and stretching until finally we come to ...

s 1 1 1 — T
.j—N—2 [ W,...,—W,W,...,W}:WN_Q.
% of these % of these
. . 1 T
~—,_/
N of these
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The Haar DWT: VII

e N = 16 example of Haar DWT matrix W

0 8ttt
1 9 I'T)
J 10 ii*F

I 11 ii!!
hi 12 [ITT]

LL

= W N
L

I 13 1L

-~ O Ut

15 [manssnsssnnnnnn

y

I I I I
0 5 10 15 0 5 10 15
t t
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Haar DWT Coefficients: 1

e obtain Haar DWT coefficients W' by premultiplying X by W:
W = WX
e jth coefficient W is inner product of jth row W;je and X:
W; = (Wje, X)
e can interpret coefficients as difference of averages

e t0 see this, let

1
Xt(\) = X Z Xy = ‘'scale X\ average

—note: Xy(1) = Xy = scale 1 ‘average’

—note: X y_1(N) =X = sample average
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Haar DWT Coefficients: 11

e consider form Wy = (Wpe, X) takes in N = 16 example:

Wo,t Il—‘ _ _
WXy wgeessssssssssse sum o X (1) — Xo(1)
Xt JW.JJJ_L

o similar interpretation for Wy,..., Wy _ =Wy = (Wre, X):
2

W7’tXt emmermnnnnnnst ) ¢ 715(1) — 714(1)
Xt W‘J‘U‘L
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Haar DWT Coefficients: II1

e now consider form of Wy = Wg = (Ws,e, X):
2

Wht ﬂﬂ*‘““'“"* B B
Wy Xy wteessssssssee sum o X3(2) — X4(2)
Xt J_W_‘JJLL

Wiy
4

e similar interpretation for Wy

Nire 1
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Haar DWT Coefficients: IV

o Wiy = Wi = (Wse, X) takes the following form:
T

Wap g e

Wi Xy =g sum o X7(4) — X3(4)
Xi JW‘I"JH_L

e continuing in this manner, come to Wy _1 = (W4e, X):

Wiar T _

Wig Xy ==ttemmetten qum o< X 5(8) — X7(8)
Xi W"L
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Haar DWT Coefficients: V

e final coefficient W_; = W5 has a different interpretation:

RITILIILIIIITILE
Wis.

Wiz Xy et qum oc X 15(16)
X, WJLL

e structure of rows in W
— first % rows yield W;’s oc changes on scale 1
— next % rows yield W;’s oc changes on scale 2
— next % rows yield W;’s o< changes on scale 4

— next to last row yields W; o change on scale %
— last row yields W; o< average on scale N
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Structure of DWT Matrices

o NV

27

wavelet coefficients for scale 7; = 2J _1, g=1,...,J
j

-7 = 27=1 is standardized scale

— 7j At is physical scale, where At is sampling interval
e cach Wj localized in time: as scale T, localization |
e rows of W for given scale 7;:

— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/

e similar structure for DW'Ts other than the Haar
e differences of averages common theme for DWTs
— simple differencing replaced by higher order differences

— simple averages replaced by weighted averages

1117

Two Basic Decompositions Derivable from DWT

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;

— called multiresolution analysis (MRA)

— related to first ‘scary-looking” CW'T equation

e energy decomposition

— yields analysis of variance across J scales
— called wavelet spectrum or wavelet variance

— related to second ‘scary-looking” CW'T equation
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Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:

e W, has N/ 2J elements (scale T = 2=1 changes)
. J N_N_ N _oJ _
e V has 1 element, which is equal to v/N - X (scale N average)
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Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W, W, W3 W, Vy
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Partitioning of DWT Matrix W

e partition ¥V commensurate with partitioning of W:

oW, is QEJ x N matrix (related to scale 7; = 271 changes)

e V;is 1 x N row vector (each element is ﬁ)
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Example of Partitioning of W

e N = 16 example of Haar DW'T matrix W

0 J.T Ryl
1 ‘T 9 el
2 ‘T 10 “'H WQ
3 ‘T 11 el
Wi 4 Ik (R
5 . 13 a3
6 —I—l—l—l—l“—l—ll—l—lllllf jpe—————TLILLLLE W"l
L L L L L L L
0 5 10 15 0 5 10 15
t t

e two properties: (a) W; = W;X and (b) WjoT =1y
2]
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DWT Analysis and Synthesis Equations

e recall the DW'T analysis equation W = WX

e WI'W = Iy because W is an orthonormal transform
e implies that WI'W = WIWX = X

e yields DW'T synthesis equation:

X - WI'W — [wlT,WQT,...,W}Vf

J
= > WIW; 4V,
j=1
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Multiresolution Analysis: 1

e synthesis equation leads to additive decomposition:
J J
T T _
X =D WiW;+V;V =) D+
j=1 J=1
eD; = WjTWj is portion of synthesis due to scale 7;
e D; is vector of length N and is called jth ‘detail

oS5 = VJTV J = X1, where 1 is a vector containing N ones
(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)
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Multiresolution Analysis: II

e cxample of MRA for time series of length N = 16

e S
T Dy
Pt - Dy
JJTI"“""HH D,
Jrr'f'ffff% D,

0 5 10 15

e adding values for, e.g., t =14 in Dy, ..., Dy & Sy yields Xy
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Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:
N—1
X[ = (X, X) =X'X =} X7
t=0
(usually not really energy, but will use term as shorthand)
e cnergy of X is preserved in its DW'T coefficients W because
W|?=wIw = wx)Twx
= xX'whwx
= XT1yX = XTX = |X]|]?

e note: same argument holds for any orthonormal transform
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Wavelet Spectrum (Variance Decomposition): I

e let X denote sample mean of Xy’s: X = % Zt]\igl Xy

o let c}%( denote sample variance of X¢'s:

1N—1 5 1N—l 5
D 2: 2
t=0 t=0
1 2 —
— IX|I2-X
]YH I
<2
= —|W|*?-X
SIw|

. J 1 <2
o since [W2 = Sy W12 + [V and §[[ V]2 =X

J
1
~2 2
%= 2 I
j=1
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Wavelet Spectrum (Variance Decomposition): II

e define discrete wavelet power spectrum:
PX(Tj) = N||Wj||2, where 7j = 9j—1

e gives us a scale-based decomposition of the sample variance:
J
)
oY = Z Px(75)
7=1

e in addition, each W;; in W associated with a portion of X;
ie., Wth offers scale- & time-based decomposition of 63(
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Wavelet Spectrum (Variance Decomposition): III

e wavelet spectra for time series X and Y of length N = 16,
each with zero sample mean and same sample variance

20 0.3
X o0 { [ { L 1 —! ] l Px(r))
—20L 1 I I I 0.0 Lt [ I
20 0.3
Y 0l— l [ X l ! l N ' l { ; PY<TJ>
—2L | I I 0.0 L1
0 5 10 15 1 248
t 7']'
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Summary of Qualitative Description of DWT

e DWT is expressed by an N x N orthonormal matrix WW
e transforms time series X into DW'T coefficients W = WX
e cach coefficient in W' associated with a scale and location

— W is subvector of W with coefficients for scale 7; = 9 =1
— coefficients in W related to differences of averages over 7;
— last coefficient in W related to average over scale N

e orthonormality leads to basic scale-based decompositions

— multiresolution analysis (additive decomposition)

— discrete wavelet power spectrum (analysis of variance)

e stayed tuned for precise definition of DW'T!
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