
Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

• wavelets are analysis tools for time series and images

• as a subject, wavelets are

− relatively new (1983 to present)

− a synthesis of old/new ideas

− keyword in 29, 826+ articles and books since 1989
(4032 more since 2005: an inundation of material!!!)

• broadly speaking, there have been two waves of wavelets

− continuous wavelet transform (1983 and on)

− discrete wavelet transform (1988 and on)

• will introduce subject via CWT & then concentrate on DWT
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What is a Wavelet?

• sines & cosines are ‘big waves’
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• wavelets are ‘small waves’ (left-hand is Haar wavelet ψ(H)(·))
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Technical Definition of a Wavelet: I

• real-valued function ψ(·) defined over real axis is a wavelet if

1. integral of ψ2(·) is unity:
∫ ∞
−∞ψ2(u) du = 1

(called ‘unit energy’ property, with apologies to physicists)

2. integral of ψ(·) is zero:
∫ ∞
−∞ψ(u) du = 0

(technically, need an ‘admissibility condition,’ but this is al-
most equivalent to integration to zero)
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Technical Definition of a Wavelet: II

• ∫ ∞
−∞ψ2(u) du = 1 &

∫ ∞
−∞ψ(u) du = 0 give a wavelet because:

− by property 1, for every small ε > 0, have∫ −T

−∞
ψ2(u) du +

∫ ∞

T
ψ2(u) du < ε

for some finite T

− ‘business’ part of ψ(·) is over interval [−T, T ]

− width 2T of [−T, T ] might be huge, but will be insignificant
compared to (−∞,∞)

− by property 2, ψ(·) is balanced above/below horizontal axis

• matches intuitive notion of a ‘small’ wave
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Two Non-Wavelets and Three Wavelets

• two failures: f (u) = cos(u) & same limited to [−3π/2, 3π/2]:
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• Haar wavelet ψ(H)(·) and two of its friends:
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What is Wavelet Analysis?

• wavelets tell us about variations in local averages

• to quantify this description, let x(·) be a ‘signal’

− real-valued function of t defined over real axis

− will refer to t as time (but it need not be such)

• consider ‘average value’ of x(·) over [a, b]:

1

b − a

∫ b

a
x(t) dt
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Example of Average Value of a Signal

• let x(·) be step function taking on values x0, x1, . . . , x15 over
16 equal subintervals of [a, b]:
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• here we have

1

b − a

∫ b

a
x(t) dt =

1

16

15∑
j=0

xj = height of dashed line
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Average Values at Different Scales and Times

• define the following function of λ and t

A(λ, t) ≡ 1

λ

∫ t+λ
2

t−λ
2

x(u) du

− λ is width of interval – refered to as ‘scale’

− t is midpoint of interval

• A(λ, t) is average value of x(·) over scale λ centered at t

• average values of signals have wide-spread interest

− one second average temperatures over forest

− ten minute rainfall rate during severe storm

− yearly average temperatures over central England

I–8



Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series x(·) together:
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• integrate resulting function to get ‘wavelet coefficient’ W (1, 0):∫ ∞

−∞
ψ(H)(t)x(t) dt = W (1, 0)

• to see what W (1, 0) is telling us about x(·), note that

W (1, 0) ∝ 1

1

∫ 1

0
x(t) dt − 1

1

∫ 0

−1
x(t) dt = A(1, 1

2) − A(1,−1
2)
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Defining Wavelet Coefficients for Other Scales

• W (1, 0) proportional to difference between averages of x(·) over
[−1, 0] & [0, 1], i.e., two unit scale averages before/after t = 0

− ‘1’ in W (1, 0) denotes scale 1 (width of each interval)

− ‘0’ in W (1, 0) denotes time 0 (center of combined intervals)

• stretch or shrink wavelet to define W (τ, 0) for other scales τ :
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Defining Wavelet Coefficients for Other Locations

• relocate to define W (τ, t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

• for all τ > 0 and all −∞ < t < ∞, can write

W (τ, t) =
1√
τ

∫ ∞

−∞
x(u)ψ(H)

(
u − t

τ

)
du

− u−t
τ does the stretching/shrinking and relocating

− 1√
τ

needed so ψ(H)

τ,t(u) ≡ 1√
τ
ψ(H)

(u−t
τ

)
has unit energy

− since it also integrates to zero, ψ(H)

τ,t(·) is a wavelet

• W (τ, t) over all τ > 0 and all t is Haar CWT for x(·)
• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of averages
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Other Continuous Wavelet Transforms: I

• can do the same for wavelets other than the Haar

• start with basic wavelet ψ(·)
• use ψτ,t(u) = 1√

τ
ψ

(u−t
τ

)
to stretch/shrink & relocate

• define CWT via

W (τ, t) =

∫ ∞

−∞
x(u)ψτ,t(u) du =

1√
τ

∫ ∞

−∞
x(u)ψ

(
u − t

τ

)
du

• analyzes/breaks up/decomposes x(·) into components

− associated with a scale and a time

− physically related to a difference of weighted averages
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Other Continuous Wavelet Transforms: II

• consider two friends of Haar wavelet
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• ψ(fdG)(·) proportional to 1st derivative of Gaussian PDF

• ‘Mexican hat’ wavelet ψ(Mh)(·) proportional to 2nd derivative

• ψ(fdG)(·) looks at difference of adjacent weighted averages

• ψ(Mh)(·) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

• CWT equivalent to x(·) because we can write

x(t) =

∫ ∞

0

[
1

Cτ2

∫ ∞

−∞
W (τ, u)

1√
τ
ψ

(
t − u

τ

)
du

]
dτ,

where C is a constant depending on specific wavelet ψ(·)
• can synthesize (put back together) x(·) given its CWT;

i.e., nothing is lost in reexpressing signal x(·) via its CWT

• regard stuff in brackets as defining ‘scale τ ’ signal at time t

• says we can reexpress x(·) as integral (sum) of new signals,
each associated with a particular scale

• similar additive decompositions will be one central theme
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Second Scary-Looking Equation

• energy in x(·) is reexpressed in CWT because

energy =

∫ ∞

−∞
x2(t) dt =

∫ ∞

0

[
1

Cτ2

∫ ∞

−∞
W 2(τ, t) dt

]
dτ

• can regard x2(t) versus t as breaking up the energy across time
(i.e., an ‘energy density’ function)

• regard stuff in brackets as breaking up the energy across scales

• says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

• function defined by W 2(τ, t)/Cτ2 is an energy density across
both time and scale

• similar energy decompositions will be a second central theme
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Example: Atomic Clock Data

• example: average daily frequency variations in clock 571
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• t is measured in days (one measurment per day)

• plot shows Xt versus integer t

• Xt = 0 for all t would say that clock 571 keeps time perfectly

• Xt < 0 implies that clock is losing time systematically

• can easily adjust clock if Xt were constant

• inherent quality of clock related to changes in averages of Xt

I–17

Mexican Hat CWT of Clock Data: I
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Mexican Hat CWT of Clock Data: II

 

 

     

 

+
60

50

40

30

20

10

0

τ

Xt

−12

−22
0 256 512 768 1024

t (days)

I–19

Mexican Hat CWT of Clock Data: III
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Mexican Hat CWT of Clock Data: IV

 

 

     

 

+

60

50

40

30

20

10

0

τ

Xt

−12

−22
0 256 512 768 1024

t (days)

I–21

Beyond the CWT: the DWT

• can often get by with subsamples of W (τ, t)

• leads to notion of discrete wavelet transform (DWT)
(can regard as discretized ‘slices’ through CWT)
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Rationale for the DWT

• DWT has appeal in its own right

− most time series are sampled as discrete values
(can be tricky to implement CWT)

− can formulate as orthonormal transform
(makes meaningful statistical analysis possible)

− tends to decorrelate certain time series

− standardization to dyadic scales often adequate

− generalizes to notion of wavelet packets

− can be faster than the fast Fourier transform

• will concentrate primarily on DWT for remainder of course
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Qualitative Description of DWT

• will give precise definition of DWT in Part II

• let X = [X0, X1, . . . , XN−1]
T be a vector of N time series

values (note: ‘T ’ denotes transpose; i.e., X is a column vector)

• need to assume N = 2J for some positive integer J (restrictive!)

• DWT is a linear transform of X yielding N DWT coefficients

• notation: W = WX

− W is vector of DWT coefficients (jth component is Wj)

−W is N × N orthonormal transform matrix; i.e.,
WTW = IN , where IN is N × N identity matrix

• inverse of W is just its transpose, so WWT = IN also
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Implications of Orthonormality: I

• let WT
j• denote the jth row of W , where j = 0, 1, . . . , N − 1

• note that Wj• itself is a column vector

• let Wj,l denote element of W in row j and column l

• note that Wj,l is also lth element of Wj•
• let’s consider two vectors, say, Wj• and Wk•
• orthonormality says

〈Wj•,Wk•〉 ≡
N−1∑
l=0

Wj,lWk,l =

{
1, when j = k,

0, when j �= k

− 〈Wj•,Wk•〉 is inner product of jth & kth rows

− ‖Wj•‖2 ≡ 〈Wj•,Wj•〉 is squared norm (energy) for Wj•
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Implications of Orthonormality: II

• example from W of dimension 16 × 16 we’ll see later on

− inner product of row 8 with itself (i.e., squared norm):

..............
..

..............
.. ................W8,t

W8,t

W2
8,t sum = 1

− row 8 said to have ‘unit energy’ since squared norm is 1
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Implications of Orthonormality: III

• another example from same W
− inner product of rows 8 and 12:

..............
..

...........
..... ..............

..W8,t

W12,t

W8,tW12,t sum = 0

− rows 8 & 12 said to be orthogonal since inner product is 0
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The Haar DWT: I

• like CWT, DWT tell us about variations in local averages

• to see this, let’s look inside W for the Haar DWT for N = 2J

• row j = 0:
[− 1√

2
, 1√

2
, 0, . . . , 0︸ ︷︷ ︸
N−2 zeros

] ≡ WT
0•

note: ‖W0•‖2 = 1
2 + 1

2 = 1 & hence has required unit energy

• row j = 1:
[
0, 0,− 1√

2
, 1√

2
, 0, . . . , 0︸ ︷︷ ︸
N−4 zeros

] ≡ WT
1•

• W0• and W1• are orthogonal

.
.
..............

..
.
.
............

................W0,t

W1,t

W0,tW1,t sum = 0
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The Haar DWT: II

• keep shifting by two to form rows until we come to . . .

• row j = N
2 − 1:

[
0, . . . , 0︸ ︷︷ ︸
N−2 zeros

,− 1√
2
, 1√

2

] ≡ WT
N
2 −1•

• first N/2 rows form orthonormal set of N/2 vectors

    

................

................

................

................

................

................

................

................0

1

2

3

4

5

6

7

N = 16 example
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t
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The Haar DWT: III

• to form next row, stretch
[ − 1√

2
, 1√

2
, 0, . . . , 0

]
out

by a factor of two and renormalize to preserve unit energy

• j = N
2 :

[ − 1
2,−1

2,
1
2,

1
2, 0, . . . , 0︸ ︷︷ ︸

N−4 zeros

] ≡ WT
N
2 •

note: ‖WN
2 •
‖2 = 1

4 + 1
4 + 1

4 + 1
4 = 1, as required

• W0• and WN
2 •

are orthogonal (N2 = 8 in example)

.
.
..............

..
..............

.
...............

W0,t

W8,t

W0,tW8,t sum = 0
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The Haar DWT: IV

• W1• and WN
2 •

are orthogonal

..
.
.
............

..
..............

...
.............W1,t

W8,t

W1,tW8,t sum = 0

• W2• and WN
2 •

are orthogonal

....
.
.
..........

..
..............

................W2,t

W8,t

W2,tW8,t sum = 0
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The Haar DWT: V

• form next row by shifting WN
2 •

to right by 4 units

• j = N
2 + 1:

[
0, 0, 0, 0,−1

2,−1
2,

1
2,

1
2, 0, . . . , 0︸ ︷︷ ︸

N−8 zeros

] ≡ WT
N
2 +1•

• WN
2 +1• orthogonal to first N/2 rows and also to WN

2 •

..
..............

......
..........

................W8,t

W9,t

W8,tW9,t sum = 0

• continue shifting by 4 units to form more rows, ending with . . .

• row j = 3N
4 − 1:

[
0, . . . , 0︸ ︷︷ ︸
N−4 zeros

,−1
2,−1

2,
1
2,

1
2

] ≡ WT
3N
4 −1•
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The Haar DWT: VI

• to form next row, stretch
[ − 1

2,−1
2,

1
2,

1
2, 0, . . . , 0

]
out

by a factor of two and renormalize to preserve unit energy

• j = 3N
4 :

[− 1√
8
, . . . ,− 1√

8︸ ︷︷ ︸
4 of these

, 1√
8
, . . . , 1√

8︸ ︷︷ ︸
4 of these

, 0, . . . , 0︸ ︷︷ ︸
N−8 zeros

] ≡ WT
3N
4 •

note: ‖W3N
4 •‖2 = 8 · 1

8 = 1, as required

• j = 3N
4 + 1: shift row 3N

4 to right by 8 units

• continue shifting and stretching until finally we come to . . .

• j = N − 2:
[− 1√

N
, . . . ,− 1√

N︸ ︷︷ ︸
N
2 of these

, 1√
N

, . . . , 1√
N︸ ︷︷ ︸

N
2 of these

] ≡ WT
N−2•

• j = N − 1:
[ 1√

N
, . . . , 1√

N︸ ︷︷ ︸
N of these

] ≡ WT
N−1•
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The Haar DWT: VII

• N = 16 example of Haar DWT matrix W
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Haar DWT Coefficients: I

• obtain Haar DWT coefficients W by premultiplying X by W :

W = WX

• jth coefficient Wj is inner product of jth row Wj• and X:

Wj = 〈Wj•,X〉
• can interpret coefficients as difference of averages

• to see this, let

Xt(λ) ≡ 1

λ

λ−1∑
l=0

Xt−l = ‘scale λ’ average

− note: Xt(1) = Xt = scale 1 ‘average’

− note: XN−1(N) = X = sample average
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Haar DWT Coefficients: II

• consider form W0 = 〈W0•,X〉 takes in N = 16 example:

.
.
..............

.......
.....

.... ................
W0,t

Xt

W0,tXt sum ∝ X1(1) − X0(1)

• similar interpretation for W1, . . . , WN
2 −1

= W7 = 〈W7•,X〉:

.
.

..............
.........

.....
.. ................W7,t

Xt

W7,tXt sum ∝ X15(1) − X14(1)
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Haar DWT Coefficients: III

• now consider form of WN
2

= W8 = 〈W8•,X〉:

..
..............

....
................

...
.....

....
W8,t

Xt

W8,tXt sum ∝ X3(2) − X1(2)

• similar interpretation for WN
2 +1

, . . . , W3N
4 −1
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Haar DWT Coefficients: IV

• W3N
4

= W12 = 〈W8•,X〉 takes the following form:

....
............

.......
.....

.... ................
W8,t

Xt

W8,tXt sum ∝ X7(4) − X3(4)

• continuing in this manner, come to WN−1 = 〈W14•,X〉:

................

.......
.....

.... ................W14,t

Xt

W14,tXt sum ∝ X15(8) − X7(8)
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Haar DWT Coefficients: V

• final coefficient WN−1 = W15 has a different interpretation:

................

.......
.....

....
................

W15,t

Xt

W15,tXt sum ∝ X15(16)

• structure of rows in W
− first N

2 rows yield Wj’s ∝ changes on scale 1

− next N
4 rows yield Wj’s ∝ changes on scale 2

− next N
8 rows yield Wj’s ∝ changes on scale 4

− next to last row yields Wj ∝ change on scale N
2

− last row yields Wj ∝ average on scale N
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Structure of DWT Matrices

• N
2τj

wavelet coefficients for scale τj ≡ 2j−1, j = 1, . . . , J

− τj ≡ 2j−1 is standardized scale

− τj ∆t is physical scale, where ∆t is sampling interval

• each Wj localized in time: as scale ↑, localization ↓
• rows of W for given scale τj:

− circularly shifted with respect to each other

− shift between adjacent rows is 2τj = 2j

• similar structure for DWTs other than the Haar

• differences of averages common theme for DWTs

− simple differencing replaced by higher order differences

− simple averages replaced by weighted averages
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Two Basic Decompositions Derivable from DWT

• additive decomposition

− reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale τj

− called multiresolution analysis (MRA)

− related to first ‘scary-looking’ CWT equation

• energy decomposition

− yields analysis of variance across J scales

− called wavelet spectrum or wavelet variance

− related to second ‘scary-looking’ CWT equation
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Partitioning of DWT Coefficient Vector W

• decompositions are based on partitioning of W and W
• partition W into subvectors associated with scale:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1
W2

...
Wj

...
WJ
VJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Wj has N/2j elements (scale τj = 2j−1 changes)

note:
∑J

j=1
N
2j = N

2 + N
4 + · · · + 2 + 1 = 2J − 1 = N − 1

• VJ has 1 element, which is equal to
√

N ·X (scale N average)
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Example of Partitioning of W

• consider time series X of length N = 16 & its Haar DWT W
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Partitioning of DWT Matrix W

• partition W commensurate with partitioning of W:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1
W2
...

Wj
...

WJ
VJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Wj is N
2j × N matrix (related to scale τj = 2j−1 changes)

• VJ is 1 × N row vector (each element is 1√
N

)
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Example of Partitioning of W

• N = 16 example of Haar DWT matrix W
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• two properties: (a) Wj = WjX and (b) WjWT
j = IN

2j
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DWT Analysis and Synthesis Equations

• recall the DWT analysis equation W = WX

• WTW = IN because W is an orthonormal transform

• implies that WTW = WTWX = X

• yields DWT synthesis equation:

X = WTW =
[
WT

1 ,WT
2 , . . . ,WT

J ,VT
J

]
⎡
⎢⎢⎢⎢⎣

W1
W2

...
WJ
VJ

⎤
⎥⎥⎥⎥⎦

=

J∑
j=1

WT
j Wj + VT

J VJ
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Multiresolution Analysis: I

• synthesis equation leads to additive decomposition:

X =

J∑
j=1

WT
j Wj + VT

J VJ ≡
J∑

j=1

Dj + SJ

• Dj ≡ WT
j Wj is portion of synthesis due to scale τj

• Dj is vector of length N and is called jth ‘detail’

• SJ ≡ VT
J VJ = X1, where 1 is a vector containing N ones

(later on we will call this the ‘smooth’ of Jth order)

• additive decomposition called multiresolution analysis (MRA)
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Multiresolution Analysis: II

• example of MRA for time series of length N = 16
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• adding values for, e.g., t = 14 in D1, . . . ,D4 & S4 yields X14
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Energy Preservation Property of DWT Coefficients

• define ‘energy’ in X as its squared norm:

‖X‖2 = 〈X,X〉 = XTX =

N−1∑
t=0

X2
t

(usually not really energy, but will use term as shorthand)

• energy of X is preserved in its DWT coefficients W because

‖W‖2 = WTW

= (WX)TWX

= XTWTWX

= XTINX

= XTX

= ‖X‖2
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Wavelet Spectrum (Variance Decomposition): I

• let X denote sample mean of Xt’s: X ≡ 1
N

∑N−1
t=0 Xt

• let σ̂2
X denote sample variance of Xt’s:

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt − X

)2
=

1

N

N−1∑
t=0

X2
t − X

2

=
1

N
‖X‖2 − X

2

=
1

N
‖W‖2 − X

2

• since ‖W‖2 =
∑J

j=1 ‖Wj‖2 + ‖VJ‖2 and 1
N‖VJ‖2 = X

2
,

σ̂2
X =

1

N

J∑
j=1

‖Wj‖2
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Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

PX(τj) ≡ 1
N‖Wj‖2, where τj = 2j−1

• gives us a scale-based decomposition of the sample variance:

σ̂2
X =

J∑
j=1

PX(τj)

• in addition, each Wj,t in Wj associated with a portion of X;

i.e., W 2
j,t offers scale- & time-based decomposition of σ̂2

X
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Wavelet Spectrum (Variance Decomposition): III

• wavelet spectra for time series X and Y of length N = 16,
each with zero sample mean and same sample variance
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Summary of Qualitative Description of DWT

• DWT is expressed by an N × N orthonormal matrix W
• transforms time series X into DWT coefficients W = WX

• each coefficient in W associated with a scale and location

− Wj is subvector of W with coefficients for scale τj = 2j−1

− coefficients in Wj related to differences of averages over τj
− last coefficient in W related to average over scale N

• orthonormality leads to basic scale-based decompositions

− multiresolution analysis (additive decomposition)

− discrete wavelet power spectrum (analysis of variance)

• stayed tuned for precise definition of DWT!
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