Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

e wavelets are analysis tools for time series and images
e as a subject, wavelets are

— relatively new (1983 to present)
— a synthesis of old/new ideas

— keyword in 29, 8264 articles and books since 1989
(4032 more since 2005: an inundation of materiallll)

e broadly speaking, there have been two waves of wavelets

— continuous wavelet transform (1983 and on)
— discrete wavelet transform (1988 and on)

e will introduce subject via CWT & then concentrate on DWT
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What is a Wavelet?

e sines & cosines are ‘big waves’
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e wavelets are ‘small waves’ (left-hand is Haar wavelet ™ (+))
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Technical Definition of a Wavelet: 1

e real-valued function v(-) defined over real axis is a wavelet if

; 20 ia it O 0,2 —

1. integral of ¢=(-) is unity: [ ¢*(u)du =1
(called ‘unit energy’ property, with apologies to physicists)
3 1 . o0 —

2. integral of ¥(-) is zero: [°0 4p(u) du =0
(technically, need an ‘admissibility condition,” but this is al-
most equivalent to integration to zero)
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Technical Definition of a Wavelet: 11

o ffooo Vi) du=1& ffooo (u) du = 0 give a wavelet because:
— by property 1, for every small € > 0, have

/_;j@DQ(u) du+/TOO1/)2(u) du < €

for some finite T’
— ‘business’ part of 1(-) is over interval [T, T

— width 27" of [T, T] might be huge, but will be insignificant
compared to (—o0, 00)

— by property 2, 1(+) is balanced above/below horizontal axis

e matches intuitive notion of a ‘small’ wave
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Two Non-Wavelets and Three Wavelets

e two failures: f(u) =rc
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e Haar wavelet ¢)™(-) and two of its friends:

os(u) & same limited to [—37/2, 37 /2]:

What is Wavelet Analysis?

e wavelets tell us about variations in local averages

e to quantify this description, let x(-) be a ‘signal’
— real-valued function of ¢ defined over real axis
— will refer to ¢ as time (but it need not be such)

e consider ‘average value’ of x(-) over [a, b]:

1 b
t) dt
b_a/axu
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Example of Average Value of a Signal

e let z(+) be step function taking on values xq, z1,

., L15 over
16 equal subintervals of [a, b]:

e here we have

15
I 1
7 a/a x(t) dt = T Z x; = height of dashed line
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Average Values at Different Scales and Times

e define the following function of A and ¢
1 t+%
AN\ t) = —/ x(u) du
A =3
— A is width of interval — refered to as ‘scale’
— t is midpoint of interval
e A(\, 1) is average value of z(+) over scale A centered at ¢
e average values of signals have wide-spread interest

— one second average temperatures over forest
— ten minute rainfall rate during severe storm

— yearly average temperatures over central England
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Defining a Wavelet Coefficient W

e multiply Haar wavelet & time series z(-) together:

[®() [(t)z(t)
0 W
L L 1 L L 1 L L J
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t
e integrate resulting function to get ‘wavelet coefficient” W (1, 0):

/_ ) dt = W(1,0)

e to see what W (1,0) is telling us about z(+), note that
1l 1 /0
W(1,0) o< I/ (t)dt — I/ z(t)dt = A(1,3) — A(1, )
0

—1
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Defining Wavelet Coefficients for Other Scales

e W (1,0) proportional to difference between averages of z(+) over
[—1,0] & [0, 1], i.e., two unit scale averages before/after ¢t = (

— ‘17 in W(1,0) denotes scale 1 (width of each interval)

— ‘0" in W(1,0) denotes time 0 (center of combined intervals)

e stretch or shrink wavelet to define W (7, 0) for other scales 7:

yields
W(2,0)

0
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Defining Wavelet Coefficients for Other Locations

e relocate to define W (r,t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

o for all 7 > 0 and all —oo < t < o0, can write

Wirt) = % /_ O:O ()™ (“;t) du

— “T_t does the stretching/shrinking and relocating
- % needed so Y (u) = %z/}“” (“T_t) has unit energy

— since it also integrates to zero, ¥",(+) is a wavelet
o W (r,t) over all 7 > 0 and all ¢ is Haar CW'T for z(-)

e analyzes/breaks up/decomposes z(+) into components

— associated with a scale and a time

— physically related to a difference of averages
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Other Continuous Wavelet Transforms: I

e can do the same for wavelets other than the Haar
e start with basic wavelet ¢(+)

o use Py (u) = \/Tw (L t) to stretch /shrink & relocate
e define CWT via

W(r,t) = /_O:Ox(u)wﬂt(u) du = %/_O:Ox(u)w (u ; t) du

e analyzes/breaks up/decomposes x(-) into components

— associated with a scale and a time

— physically related to a difference of weighted averages

Other Continuous Wavelet Transforms: 11

e consider two friends of Haar wavelet

~ w(H)(u> ~ 1p(fd(})(u) ~ ,(/}(Mh)(u)

Lol AA
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I
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e ¢)"9(.) proportional to 1st derivative of Gaussian PDF
e ‘Mexican hat” wavelet )™ (-) proportional to 2nd derivative
e 1)"9(.) looks at difference of adjacent weighted averages

e )" (.) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

e CWT equivalent to x(-) because we can write

- [ l&/ Wirao (22) ] o

where C'is a constant depending on specific wavelet 1)(-)

e can synthesize (put back together) x(-) given its CW'T;
i.e., nothing is lost in reexpressing signal z(-) via its CWT

e regard stuff in brackets as defining ‘scale 77 signal at time ¢

e says we can reexpress () as integral (sum) of new signals,
each associated with a particular scale

e similar additive decompositions will be one central theme
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Second Scary-Looking Equation

e cnergy in x(-) is reexpressed in CWT because

energy = z=(t) dt = . |oe W=(r,t)dt| dr
—00 —00

o can regard x°(t) versus ¢ as breaking up the energy across time
(i.e., an ‘energy density’ function)

e regard stuff in brackets as breaking up the energy across scales

e says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

e function defined by W?2(r,t)/C72 is an energy density across
both time and scale

e similar energy decompositions will be a second central theme
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Example: Atomic Clock Data

e example: average daily frequency variations in clock 571
~12

X

—22 T
512

t (days)

06 s 102
e ¢ is measured in days (one measurment per day)

e plot shows Xy versus integer ¢

e Xy = 0 for all £ would say that clock 571 keeps time perfectly
e X; < 0 implies that clock is losing time systematically

e can easily adjust clock if X3 were constant

e inherent quality of clock related to changes in averages of Xy

=17

Mexican Hat CWT of Clock Data: 1

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: I1

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: III

=220

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: IV

0 256 512 768 1024
t (days)
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Beyond the CWT: the DWT

e can often get by with subsamples of W(r,t)

e leads to notion of discrete wavelet transform (DWT)
(can regard as discretized ‘slices’” through CWT)

er\A\HHA\fM
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Rationale for the DWT

e DWT has appeal in its own right

— most time series are sampled as discrete values
(can be tricky to implement CW'T)

— can formulate as orthonormal transform
(makes meaningful statistical analysis possible)

— tends to decorrelate certain time series

— standardization to dyadic scales often adequate
— generalizes to notion of wavelet packets

— can be faster than the fast Fourier transform

e will concentrate primarily on DWT for remainder of course
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Qualitative Description of DWT

e will give precise definition of DWT in Part II

elet X = [Xg, X1,...,Xn_1]T be a vector of N time series
values (note: ‘T" denotes transpose; i.e., X is a column vector)

e need to assume N = 27 for some positive integer J (restrictive!)
e DWT is a linear transform of X yielding N DW'T coefficients
e notation: W = WX

— W is vector of DWT coefficients (jth component is 1)

— W is N x N orthonormal transform matrix; i.e.,
WIW = Iy, where Iy is N x N identity matrix

e inverse of W is just its transpose, so WWT = T N also
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Implications of Orthonormality: I

o let W]T. denote the jth row of W, where j =0,1,..., N — 1
e note that Wj, itself is a column vector
e let W, ; denote element of W in row j and column [
e note that WjJ is also lth element of Wie
e let’s consider two vectors, say, Wie and Wi
e orthonormality says
N—-1 .
e = S = {y

— (Wje, Whe) is inner product of jth & kth rows
- ||VV]-.||2 = (Wje, Wja) is squared norm (energy) for Wi,
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Implications of Orthonormality: II

e cxample from W of dimension 16 x 16 we'll see later on

— inner product of row 8 with itself (i.e., squared norm):

T p—
W3, SRS sum = 1
W&t ‘rrl"-‘.‘ll"h

— row 8 said to have ‘unit energy’ since squared norm is 1
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Implications of Orthonormality: III

e another example from same W

— inner product of rows 8 and 12:

Wh ¢

Wias

II Ws Wiy MTLL sum = 0

— rows 8 & 12 said to be orthogonal since inner product is 0
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The Haar DWT: 1

e like CWT, DWT tell us about variations in local averages
e to see this, let’s look inside W for the Haar DW'T for N = 2/
- 1 1 — w7
erow j =0: [—W,W, 0,...,0 ] = Wi
N —2 zeros
note: |[Woel|> = % + % =1 & hence has required unit energy

. . 11 T
orow j = 1: [0707—%77 0,....0 | = Wi,
N —4 zeros

e Wpe and W4 are orthogonal

Wi

S —
I Wo Wiy essesssssssssss qum = ()
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The Haar DWT: 11

e keep shifting by two to form rows until we come to ...

Wi

.I'OW_]':%_L[O"'WOJ \/2’\/2} N

N—2 zeros
e first N/2 rows form orthonormal set of N/2 vectors

N =16 example

~ O U= W NN = O

The Haar DWT: 111

e to form next row, stretch [ — %, %, 0,..., O} out
by a factor of two and renormalize to preserve unit energy

oj=4: -3 11]‘Q”wO}EM§.

20 220D
N —4 zeros
note: ||WN 1? = %—l—%—l—%—l—% 1, as required

® Woe and Wy are orthogonal (% = 8 in example)
2

S —
" " WoiWs JT"'"""""* sum = 0

Wt
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The Haar DWT: IV

e WV, and WN. are orthogonal
2

Wl,t

Wi iWs *'TL""""“* sum = 0

I

Wit

e Whe and Wy _ are orthogonal

Wa s
Wh Wy ssssssssssssssse qum = ()

I

Wit
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The Haar DWT: V

e form next row by shifting Wy to right by 4 units
2

- _ N 1 111 — wT
°j = 1: 10,0,0,0, =5, =5,5,5, 0,...,0 | =
J 9 + [7 sV My Dy T D99y Dy O ) } W%—‘y—l‘
N—8 zeros

e Wy . orthogonal to first N/2 rows and also to Wy
7+1. 7.

ST S—
1 Wy Wy wesssssssssssnss gum = ()

W ¢

e continue shifting by 4 units to form more rows, ending with . ..

_ 3N . 1 111
.I’OW] __ . |: O,...7O7_2, 2,27 ] WSN 1
N —4 zeros
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The Haar DWT: VI

e to form next row, stretch [ — %, —%, %, %, 0,... ,O} out
by a factor of two and renormalize to preserve unit energy
- 3N, 1 1 1 1 — w7
) =7 [—%,...,—%,%,...,%, O,...,O j| :W¥.
4 of these 4 of these N =8 zeros
note: HWgN.H2 =8 % = 1, as required
KN

o) = % + 1: shift row % to right by 8 units
e continue shifting and stretching until finally we come to ...

- . 1 1 1 1 — w71
OJ—N—Q [:W77_\/]\£7Q/N77\/]\£} :WN—2O

% of these % of these

T
WN—lo

© ) 1 1
.]—N—l [W,,W]
~—
N of these
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The Haar DWT: VII

e N = 16 example of Haar DW'T matrix W

0 J.T Ryl

1 JI'F 9 “'H'

) ‘T 10 “H

3 ‘T 11 L

4 ‘T ) LLLL

5 . 13 ettt

O T R T i

7 *“““““'"TL LR
I I I I I I I
0 5 10 15 0 5 10 15

t t
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Haar DWT Coefficients: 1

e obtain Haar DW'T coefficients W by premultiplying X by W:

W = WX
e jth coefficient W is inner product of jth row Wje and X:
Wj = (Wj., X)
e can interpret coefficients as difference of averages

e to see this, let

A—1
1
XN = 3 Z X;_; = ‘scale X" average
=0

— note: X4(1) = Xy = scale 1 ‘average’
—note: X y_1(N) = X = sample average
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Haar DWT Coefficients: 11

e consider form Wy = (Wpe, X) takes in N = 16 example:

W
Wiy Xy wgmessssssssssss sum o< X (1) — Xo(1)
Xt W‘L

e similar interpretation for Wy, ..., Wy 1= Ws = (Wre, X):
N

S—
Wi X; wessmssssssssns® qum o X 5(1) — X (1)
Xf W‘L
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Haar DWT Coefficients: 111

e now consider form of Wy = Wg = (Ws,e, X):
2

W ﬂﬂ““"‘“ _ _
Wy Xy wipgeesssessssse sum o X3(2) — X4(2)
Xf, W‘L

e similar interpretation for Wy

Nop Wan
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Haar DWT Coefficients: IV

o Wiy = Wi = (Wse, X) takes the following form:
I

Wy mﬂﬂm
Wy Xp =" gapreessssss sum o X7(4) — X3(4)
Xy WHH_L

e continuing in this manner, come to Wy _; = (W4e, X):

Wi mmmm _

Wig Xy =mtteeestten qum oc X 15(8) — X7(8)
Xi W’H‘L
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Haar DWT Coefficients: V

e final coefficient W_1 = Wj5 has a different interpretation:

RITIILIILITLITILS
Wis.

Wis Xy ewwgrgeesestlen sumocym(lG)
X, JW‘U—L

e structure of rows in W
— first % rows yleld W;’s o< changes on scale 1
— next % rows yield W;’s o< changes on scale 2
— next % rows yield W;'s oc changes on scale 4
— next to last row yields W o< change on scale %

— last row yields W} oc average on scale N

1-39

Structure of DWT Matrices

° % wavelet coefficients for scale 7; = 0=l j=1,...,J
—Tj = 2J=1 is standardized scale
— 7; At is physical scale, where At is sampling interval
e cach W; localized in time: as scale T, localization |
e rows of W for given scale 7;:

— circularly shifted with respect to each other
— shift between adjacent rows is 27; = 2/

e similar structure for DW'Ts other than the Haar
e differences of averages common theme for DW'Ts

— simple differencing replaced by higher order differences
— simple averages replaced by weighted averages
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Two Basic Decompositions Derivable from DWT

e additive decomposition

— reexpresses X as the sum of J + 1 new time series, each of
which is associated with a particular scale 7;

— called multiresolution analysis (MRA)

— related to first ‘scary-looking” CW'T equation

e energy decomposition

— yields analysis of variance across J scales
— called wavelet spectrum or wavelet variance

— related to second ‘scary-looking” CW'T equation

141

Partitioning of DWT Coefficient Vector W

e decompositions are based on partitioning of W and W

e partition W into subvectors associated with scale:
CW T

e W; has N/ 2 elements (scale T = 2=1 changes)
. J N _N N _9J —
e V; has 1 clement, which is equal to v/N - X (scale N average)
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Example of Partitioning of W

e consider time series X of length N = 16 & its Haar DWT W

W, W, W3 W, Vy
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Partitioning of DWT Matrix W

e partition VW commensurate with partitioning of W:

o W;is é\[—j x N matrix (related to scale 7; = 2/~ changes)

e Vjis 1 x N row vector (each element is \/Lﬁ)
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Example of Partitioning of W

e N = 16 example of Haar DWT matrix W

0 ‘T Ryl
1 ‘T 9 “'H‘
ETTITE 10 - W
3 ‘T 11 L
Wi 4 r 12
5 N 13 TI1 S WS
1 1 1 1 1 1 1

0 5 10 15 0 5 10 15
t t

e two properties: (a) W; = W;X and (b) WjoT =1y
2]
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DWT Analysis and Synthesis Equations

o recall the DWT analysis equation W = WX

e WI'W = Iy because W is an orthonormal transform
e implies that WIW = WIWX = X

e viclds DW'T synthesis equation:

W,
Wy
X =WI'w = [W?,W{,...,W}Vﬂ ;

W,
| V7|

J

:wawj+v§VJ
7=1
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Multiresolution Analysis: I

e synthesis equation leads to additive decomposition:
J J
T T _
X =2 WiW;+VyV =) Dj+S)
j=1 j=1
eD; = WjTWj is portion of synthesis due to scale 7;
e Dj is vector of length N and is called jth ‘detail

oS5 = V;V J = X1, where 1 is a vector containing N ones
(later on we will call this the ‘smooth’ of Jth order)

e additive decomposition called multiresolution analysis (MRA)
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Multiresolution Analysis: II

e ecxample of MRA for time series of length N = 16

T Dy
Pt Dy
e D,
Tt D)

0 5 10 15
t

e adding values for, e.g., t = 14 in Dy,..., Dy & Sy yields X1y
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Energy Preservation Property of DWT Coefficients

e define ‘energy’ in X as its squared norm:
N-1
X[ = (X, X) =X'X = 3 X7
t=0
(usually not really energy, but will use term as shorthand)
e cnergy of X is preserved in its DW'T coefficients W because
2 T
IW[* = W'W
= wx)Twx
= xX'wlwx
= xXT'1yX
- x’'x
2
= [IX]
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Wavelet Spectrum (Variance Decomposition): I

e let X denote sample mean of X;'s: X = v Zi\;al Xy

o et 63( denote sample variance of X3's:

1]\/'—1 5 1N—1
~2 B 2
0% = (Xt—X):NZX—
t=0 t=0
1 2 -2
- X=X
]1VH |
2
— —_|IW]]? =
~IWI

. J 1 2
o since [|[W|? = 57 [|W|17 + ||VJ||2 and | V[ = X

UX NZ |‘Wj‘|2

Wavelet Spectrum (Variance Decomposition): II

e define discrete wavelet power spectrum:
Px () = NHW ||2 where 7; = 9 —1

e gives us a scale-based decomposition of the sample variance:
J
~2
o = Z Px(75)
7=1

e in addition, each W;; in W associated with a portion of X;
ie., Wj2t offers scale- & time-based decomposition of 6§(
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Wavelet Spectrum (Variance Decomposition): III

e wavelet spectra for time series X and Y of length N = 16,
each with zero sample mean and same sample variance

2 0.3
X 0 { N X ! T J l L T l ‘ PX (T])
—2L 1 | | | 0.0 L I I
20 0.3
Y 0 " J I N I 1 J { t l N L Py(Tj)
—20L 1 I I I 0.0 [ 1
0 5 10 15 1 2 48
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Summary of Qualitative Description of DWT

e DWT is expressed by an N X N orthonormal matrix VW
e transforms time series X into DW'T coefficients W = WX
e cach coefficient in W' associated with a scale and location

— W is subvector of W with coefficients for scale 7; = 2J—1
— coefficients in W related to differences of averages over 7;

— last coefficient in W related to average over scale N
e orthonormality leads to basic scale-based decompositions

— multiresolution analysis (additive decomposition)

— discrete wavelet power spectrum (analysis of variance)

e stayed tuned for precise definition of DW'T!




