Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images
- as a subject, wavelets are
- relatively new (1983 to present)
- a synthesis of old/new ideas
- keyword in 29, 826+ articles and books since 1989 (4032 more since 2005: an inundation of material!!!)
- broadly speaking, there have been two waves of wavelets
- continuous wavelet transform (1983 and on)
- discrete wavelet transform (1988 and on)
- will introduce subject via CWT \& then concentrate on DWT

Technical Definition of a Wavelet: I

- real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if

1. integral of $\psi^{2}(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^{2}(u) d u=1$ (called 'unit energy' property, with apologies to physicists)
2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) d u=0$
(technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)

What is a Wavelet?

- sines \& cosines are 'big waves'

- wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{(\mathrm{HI})}(\cdot)$)

Technical Definition of a Wavelet: II

- $\int_{-\infty}^{\infty} \psi^{2}(u) d u=1 \& \int_{-\infty}^{\infty} \psi(u) d u=0$ give a wavelet because: - by property 1 , for every small $\epsilon>0$, have

$$
\int_{-\infty}^{-T} \psi^{2}(u) d u+\int_{T}^{\infty} \psi^{2}(u) d u<\epsilon
$$

for some finite T

- 'business' part of $\psi(\cdot)$ is over interval $[-T, T]$
- width $2 T$ of $[-T, T]$ might be huge, but will be insignificant compared to $(-\infty, \infty)$
- by property $2, \psi(\cdot)$ is balanced above/below horizontal axis
- matches intuitive notion of a 'small' wave

Two Non-Wavelets and Three Wavelets

- two failures: $f(u)=\cos (u) \&$ same limited to $[-3 \pi / 2,3 \pi / 2]$:

- Haar wavelet $\psi^{(\mathrm{HI}}(\cdot)$ and two of its friends:

I-5

What is Wavelet Analysis?

- wavelets tell us about variations in local averages
- to quantify this description, let $x(\cdot)$ be a 'signal'
- real-valued function of t defined over real axis
- will refer to t as time (but it need not be such)
- consider 'average value' of $x(\cdot)$ over $[a, b]$:

$$
\frac{1}{b-a} \int_{a}^{b} x(t) d t
$$

Example of Average Value of a Signal

- let $x(\cdot)$ be step function taking on values $x_{0}, x_{1}, \ldots, x_{15}$ over 16 equal subintervals of $[a, b]$:

- here we have

$$
\frac{1}{b-a} \int_{a}^{b} x(t) d t=\frac{1}{16} \sum_{j=0}^{15} x_{j}=\text { height of dashed line }
$$

Average Values at Different Scales and Times

- define the following function of λ and t

$$
A(\lambda, t) \equiv \frac{1}{\lambda} \int_{t-\frac{\lambda}{2}}^{t+\frac{\lambda}{2}} x(u) d u
$$

$-\lambda$ is width of interval - refered to as 'scale’
$-t$ is midpoint of interval

- $A(\lambda, t)$ is average value of $x(\cdot)$ over scale λ centered at t
- average values of signals have wide-spread interest
- one second average temperatures over forest
- ten minute rainfall rate during severe storm
- yearly average temperatures over central England

Defining a Wavelet Coefficient W

- multiply Haar wavelet \& time series $x(\cdot)$ together:

- integrate resulting function to get 'wavelet coefficient' $W(1,0)$:

$$
\int_{-\infty}^{\infty} \psi^{(\mathrm{H})}(t) x(t) d t=W(1,0)
$$

- to see what $W(1,0)$ is telling us about $x(\cdot)$, note that
$W(1,0) \propto \frac{1}{1} \int_{0}^{1} x(t) d t-\frac{1}{1} \int_{-1}^{0} x(t) d t=A\left(1, \frac{1}{2}\right)-A\left(1,-\frac{1}{2}\right)$

Defining Wavelet Coefficients for Other Locations

- relocate to define $W(\tau, t)$ for other times t :

Defining Wavelet Coefficients for Other Scales

- $W(1,0)$ proportional to difference between averages of $x(\cdot)$ over $[-1,0] \&[0,1]$, i.e., two unit scale averages before/after $t=0$
- ' 1 ' in $W(1,0)$ denotes scale 1 (width of each interval)
- ' 0 ' in $W(1,0)$ denotes time 0 (center of combined intervals)
- stretch or shrink wavelet to define $W(\tau, 0)$ for other scales τ :

Haar Continuous Wavelet Transform (CWT)

- for all $\tau>0$ and all $-\infty<t<\infty$, can write

$$
W(\tau, t)=\frac{1}{\sqrt{ } \tau} \int_{-\infty}^{\infty} x(u) \psi^{(\mathrm{H})}\left(\frac{u-t}{\tau}\right) d u
$$

$-\frac{u-t}{\tau}$ does the stretching/shrinking and relocating
$-\frac{1}{\sqrt{ } \tau}$ needed so $\psi_{\tau, t}^{(\mathrm{H})}(u) \equiv \frac{1}{\sqrt{ } \tau} \psi^{(\mathrm{H})}\left(\frac{u-t}{\tau}\right)$ has unit energy

- since it also integrates to zero, $\psi_{\tau, t}^{(\mathrm{H})}(\cdot)$ is a wavelet
- $W(\tau, t)$ over all $\tau>0$ and all t is Haar CWT for $x(\cdot)$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
- associated with a scale and a time
- physically related to a difference of averages

Other Continuous Wavelet Transforms: I

- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau, t}(u)=\frac{1}{\sqrt{ } \tau} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink \& relocate
- define CWT via
$W(\tau, t)=\int_{-\infty}^{\infty} x(u) \psi_{\tau, t}(u) d u=\frac{1}{\sqrt{ } \tau} \int_{-\infty}^{\infty} x(u) \psi\left(\frac{u-t}{\tau}\right) d u$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
- associated with a scale and a time
- physically related to a difference of weighted averages

Other Continuous Wavelet Transforms: II

- consider two friends of Haar wavelet

- $\psi^{(\mathrm{fra})}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- 'Mexican hat' wavelet $\psi^{(\text {(Nh) })}(\cdot)$ proportional to 2nd derivative
- $\psi^{(\mathrm{taC})}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{(\mathrm{MLI})}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before \& after

First Scary-Looking Equation

- CWT equivalent to $x(\cdot)$ because we can write

$$
x(t)=\int_{0}^{\infty}\left[\frac{1}{C \tau^{2}} \int_{-\infty}^{\infty} W(\tau, u) \frac{1}{\sqrt{ } \tau} \psi\left(\frac{t-u}{\tau}\right) d u\right] d \tau
$$

where C is a constant depending on specific wavelet $\psi(\cdot)$

- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing signal $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' signal at time t
- says we can reexpress $x(\cdot)$ as integral (sum) of new signals, each associated with a particular scale
- similar additive decompositions will be one central theme

Second Scary-Looking Equation

- energy in $x(\cdot)$ is reexpressed in CWT because

$$
\text { energy }=\int_{-\infty}^{\infty} x^{2}(t) d t=\int_{0}^{\infty}\left[\frac{1}{C \tau^{2}} \int_{-\infty}^{\infty} W^{2}(\tau, t) d t\right] d \tau
$$

- can regard $x^{2}(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- function defined by $W^{2}(\tau, t) / C \tau^{2}$ is an energy density across both time and scale
- similar energy decompositions will be a second central theme

Example: Atomic Clock Data

- example: average daily frequency variations in clock 571

- t is measured in days (one measurment per day)
- plot shows X_{t} versus integer t
- $X_{t}=0$ for all t would say that clock 571 keeps time perfectly
- $X_{t}<0$ implies that clock is losing time systematically
- can easily adjust clock if X_{t} were constant
- inherent quality of clock related to changes in averages of X_{t}

Mexican Hat CWT of Clock Data: I

Mexican Hat CWT of Clock Data: III

Mexican Hat CWT of Clock Data: IV

I-21

Beyond the CWT: the DWT

- can often get by with subsamples of $W(\tau, t)$
- leads to notion of discrete wavelet transform (DWT) (can regard as discretized 'slices' through CWT)

I-22

Qualitative Description of DWT

- will give precise definition of DWT in Part II
- let $\mathbf{X}=\left[X_{0}, X_{1}, \ldots, X_{N-1}\right]^{T}$ be a vector of N time series values (note: ' T ' denotes transpose; i.e., \mathbf{X} is a column vector)
- need to assume $N=2^{J}$ for some positive integer J (restrictive!)
- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W}=\mathcal{W} \mathbf{X}$
$-\mathbf{W}$ is vector of DWT coefficients (j th component is W_{j})
$-\mathcal{W}$ is $N \times N$ orthonormal transform matrix; i.e., $\mathcal{W}^{T} \mathcal{W}=I_{N}$, where I_{N} is $N \times N$ identity matrix
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W} \mathcal{W}^{T}=I_{N}$ also

Implications of Orthonormality: I

- let $\mathcal{W}_{j \bullet}^{T}$ denote the j th row of \mathcal{W}, where $j=0,1, \ldots, N-1$
- note that $\mathcal{W}_{j \bullet}$ itself is a column vector
- let $\mathcal{W}_{j, l}$ denote element of \mathcal{W} in row j and column l
- note that $\mathcal{W}_{j, l}$ is also l th element of \mathcal{W}_{j} •
- let's consider two vectors, say, $\mathcal{W}_{j \bullet}$ and $\mathcal{W}_{k} \bullet$
- orthonormality says

$$
\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{k \bullet}\right\rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j, l} \mathcal{W}_{k, l}= \begin{cases}1, & \text { when } j=k \\ 0, & \text { when } j \neq k\end{cases}
$$

$-\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{k \bullet}\right\rangle$ is inner product of j th $\& k$ th rows
$-\left\|\mathcal{W}_{j \bullet}\right\|^{2} \equiv\left\langle\mathcal{W}_{j \bullet}, \mathcal{W}_{j \bullet}\right\rangle$ is squared norm (energy) for $\mathcal{W}_{j \bullet}$

I-25

Implications of Orthonormality: II

- example from \mathcal{W} of dimension 16×16 we'll see later on - inner product of row 8 with itself (i.e., squared norm):

$\mathcal{W}_{8, t}^{2} \quad \ldots \sin ^{\prime} . \quad$ sum $=1$
- row 8 said to have 'unit energy' since squared norm is 1

Implications of Orthonormality: III

- another example from same \mathcal{W}
- inner product of rows 8 and 12:

- rows 8 \& 12 said to be orthogonal since inner product is 0

The Haar DWT: I

- like CWT, DWT tell us about variations in local averages
- to see this, let's look inside \mathcal{W} for the Haar DWT for $N=2^{J}$
- row $j=0:[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \underbrace{0, \ldots, 0}_{N-2 \text { zeros }}] \equiv \mathcal{W}_{0 \bullet}^{T}$
note: $\left\|\mathcal{W}_{0} \bullet\right\|^{2}=\frac{1}{2}+\frac{1}{2}=1 \&$ hence has required unit energy
- row $j=1:[0,0,-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{1 \bullet}^{T}$
- \mathcal{W}_{0} • and \mathcal{W}_{1} are orthogonal

$$
\mathcal{W}_{0, t} \mathcal{W}_{1, t}
$$

\qquad sum $=0$

The Haar DWT: II

- keep shifting by two to form rows until we come to ...
- row $j=\frac{N}{2}-1:[\underbrace{0, \ldots, 0}_{N-2 \text { zeros }},-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}] \equiv \mathcal{W}_{\frac{N}{2}-1}^{T}$ •
- first $N / 2$ rows form orthonormal set of $N / 2$ vectors

I-29

The Haar DWT: III

- to form next row, stretch $\left[-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, 0, \ldots, 0\right]$ out by a factor of two and renormalize to preserve unit energy
- $j=\frac{N}{2}:[-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{\frac{N}{2}}^{T}$. note: $\left\|\mathcal{W}_{\frac{N}{2}} \bullet\right\|^{2}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1$, as required
- \mathcal{W}_{0} • and $\mathcal{W}_{\frac{N}{2}}$ are orthogonal $\left(\frac{N}{2}=8\right.$ in example)

The Haar DWT: IV

- \mathcal{W}_{1} • and $\mathcal{W}_{\frac{N}{2}}$ • are orthogonal

- \mathcal{W}_{2} • and $\mathcal{W}_{\frac{N}{2}}$ • are orthogonal

The Haar DWT: V

- form next row by shifting $\mathcal{W}_{\frac{N}{2}}$ • to right by 4 units
- $j=\frac{N}{2}+1:[0,0,0,0,-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \ldots, 0}_{N-8 \text { zeros }}] \equiv \mathcal{W}_{\frac{N}{2}+1}^{T}$ •
- $\mathcal{W}_{\frac{N}{2}+1 \bullet}$ orthogonal to first $N / 2$ rows and also to $\mathcal{W}_{\frac{N}{2}}$.

- continue shifting by 4 units to form more rows, ending with ...
- row $j=\frac{3 N}{4}-1$: $[\underbrace{0, \ldots, 0}_{N-4 \text { zeros }},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}] \equiv \mathcal{W}_{\frac{3 N}{T}-1 \bullet}^{4}$

The Haar DWT: VI

The Haar DWT: VII

- to form next row, stretch $\left[-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right]$ out by a factor of two and renormalize to preserve unit energy
$\bullet j=\frac{3 N}{4}:[\underbrace{-\frac{1}{\sqrt{8}}, \ldots,-\frac{1}{\sqrt{8}}}_{4 \text { of these }}, \underbrace{\frac{1}{\sqrt{8}}, \ldots, \frac{1}{\sqrt{8}},}_{4 \text { of these }}, \underbrace{0, \ldots, 0}_{N-8 \text { zeros }}] \equiv \mathcal{W}_{\frac{3 N}{4}}^{\frac{T}{4}} \bullet$ note: $\left\|\mathcal{W}_{\frac{3 N}{4}} \cdot\right\|^{2}=8 \cdot \frac{1}{8}=1$, as required
- $j=\frac{3 N}{4}+1$: shift row $\frac{3 N}{4}$ to right by 8 units
- continue shifting and stretching until finally we come to

- $j=N-1:[\underbrace{\frac{1}{\sqrt{ } N}, \ldots, \frac{1}{\sqrt{N}}}_{N \text { of these }}] \equiv \mathcal{W}_{N-1}^{T}$ •
- $N=16$ example of Haar DWT matrix \mathcal{W}

I-34

Haar DWT Coefficients: I

- obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathcal{W} :

$$
\mathbf{W}=\mathcal{W} \mathbf{X}
$$

- j th coefficient W_{j} is inner product of j th row $\mathcal{W}_{j \bullet}$ and \mathbf{X} :

$$
W_{j}=\left\langle\mathcal{W}_{j \bullet}, \mathbf{X}\right\rangle
$$

- can interpret coefficients as difference of averages
- to see this, let

$$
\bar{X}_{t}(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l}=\text { 'scale } \lambda \text { ' average }
$$

- note: $\bar{X}_{t}(1)=X_{t}=$ scale 1 'average'
- note: $\bar{X}_{N-1}(N)=\bar{X}=$ sample average

Haar DWT Coefficients: II

- consider form $W_{0}=\left\langle\mathcal{W}_{0 \bullet}, \mathbf{X}\right\rangle$ takes in $N=16$ example:

$\mathcal{W}_{0, t} X_{t} \quad$............... $\quad \operatorname{sum} \propto \bar{X}_{1}(1)-\bar{X}_{0}(1)$
- similar interpretation for $W_{1}, \ldots, W_{\frac{N}{2}-1}=W_{7}=\left\langle\mathcal{W}_{7 \bullet}, \mathbf{X}\right\rangle$:

Haar DWT Coefficients: III

- now consider form of $W_{\frac{N}{2}}=W_{8}=\left\langle\mathcal{W}_{8 \bullet}, \mathbf{X}\right\rangle$:

- similar interpretation for $W_{\frac{N}{2}+1}, \ldots, W_{\frac{3 N}{4}-1}$

Haar DWT Coefficients: IV

- $W_{\frac{3 N}{4}}=W_{12}=\left\langle\mathcal{W}_{8 \bullet}, \mathbf{X}\right\rangle$ takes the following form:

$$
\begin{aligned}
& X_{t} \quad * \cdot n ?
\end{aligned}
$$

- continuing in this manner, come to $W_{N-1}=\left\langle\mathcal{W}_{14 \bullet}, \mathbf{X}\right\rangle$:

```
\(\mathcal{W}_{14, t}\)
    \(X_{t}\)
```


Haar DWT Coefficients: V

- final coefficient $W_{N-1}=W_{15}$ has a different interpretation:

$$
X_{t} \xlongequal{n} \quad \mathcal{W}_{15, t} X_{t}
$$

- structure of rows in \mathcal{W}
- first $\frac{N}{2}$ rows yield W_{j} 's \propto changes on scale 1
- next $\frac{N}{4}$ rows yield W_{j} 's \propto changes on scale 2
- next $\frac{N}{8}$ rows yield W_{j} 's \propto changes on scale 4
- next to last row yields $W_{j} \propto$ change on scale $\frac{N}{2}$
- last row yields $W_{j} \propto$ average on scale N

Structure of DWT Matrices

- $\frac{N}{2 \tau_{j}}$ wavelet coefficients for scale $\tau_{j} \equiv 2^{j-1}, j=1, \ldots, J$
$-\tau_{j} \equiv 2^{j-1}$ is standardized scale
$-\tau_{j} \Delta t$ is physical scale, where Δt is sampling interval
- each W_{j} localized in time: as scale \uparrow, localization \downarrow
- rows of \mathcal{W} for given scale τ_{j} :
- circularly shifted with respect to each other
- shift between adjacent rows is $2 \tau_{j}=2^{j}$
- similar structure for DWTs other than the Haar
- differences of averages common theme for DWTs
- simple differencing replaced by higher order differences
- simple averages replaced by weighted averages

Two Basic Decompositions Derivable from DWT

- additive decomposition
- reexpresses \mathbf{X} as the sum of $J+1$ new time series, each of which is associated with a particular scale τ_{j}
- called multiresolution analysis (MRA)
- related to first 'scary-looking' CWT equation
- energy decomposition
- yields analysis of variance across J scales
- called wavelet spectrum or wavelet variance
- related to second 'scary-looking' CWT equation

Example of Partitioning of W

- consider time series \mathbf{X} of length $N=16$ \& its Haar DWT W

Partitioning of DWT Coefficient Vector W

- decompositions are based on partitioning of \mathbf{W} and \mathcal{W}
- partition \mathbf{W} into subvectors associated with scale:

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{j} \\
\vdots \\
\mathbf{W}_{J} \\
\mathbf{V}_{J}
\end{array}\right]
$$

- \mathbf{W}_{j} has $N / 2^{j}$ elements (scale $\tau_{j}=2^{j-1}$ changes)
note: $\sum_{j=1}^{J} \frac{N}{2^{j}}=\frac{N}{2}+\frac{N}{4}+\cdots+2+1=2^{J}-1=N-1$
- V_{J} has 1 element, which is equal to $\sqrt{N} \cdot \bar{X}$ (scale N average)

Partitioning of DWT Matrix \mathcal{W}

- partition \mathcal{W} commensurate with partitioning of \mathbf{W} :

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]
$$

- \mathcal{W}_{j} is $\frac{N}{2^{j}} \times N$ matrix (related to scale $\tau_{j}=2^{j-1}$ changes)
- \mathcal{V}_{J} is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

Example of Partitioning of \mathcal{W}

- $N=16$ example of Haar DWT matrix \mathcal{W}
\mathcal{W}_{1}

- two properties: (a) $\mathbf{W}_{j}=\mathcal{W}_{j} \mathbf{X}$ and (b) $\mathcal{W}_{j} \mathcal{W}_{j}^{T}=I_{\frac{N}{2 j}}$

DWT Analysis and Synthesis Equations

- recall the DWT analysis equation $\mathbf{W}=\mathcal{W} \mathbf{X}$
- $\mathcal{W}^{T} \mathcal{W}=I_{N}$ because \mathcal{W} is an orthonormal transform
- implies that $\mathcal{W}^{T} \mathbf{W}=\mathcal{W}^{T} \mathcal{W} \mathbf{X}=\mathbf{X}$
- yields DWT synthesis equation:

$$
\begin{aligned}
\mathbf{X}=\mathcal{W}^{T} \mathbf{W} & =\left[\mathcal{W}_{1}^{T}, \mathcal{W}_{2}^{T}, \ldots, \mathcal{W}_{J}^{T}, \mathcal{V}_{J}^{T}\right]\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{J} \\
\mathbf{V}_{J}
\end{array}\right] \\
& =\sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j}+\mathcal{V}_{J}^{T} \mathbf{V}_{J}
\end{aligned}
$$

Multiresolution Analysis: II

- example of MRA for time series of length $N=16$

- adding values for, e.g., $t=14$ in $\mathcal{D}_{1}, \ldots, \mathcal{D}_{4} \& \mathcal{S}_{4}$ yields X_{14}

Energy Preservation Property of DWT Coefficients

- define 'energy' in \mathbf{X} as its squared norm:

$$
\|\mathbf{X}\|^{2}=\langle\mathbf{X}, \mathbf{X}\rangle=\mathbf{X}^{T} \mathbf{X}=\sum_{t=0}^{N-1} X_{t}^{2}
$$

(usually not really energy, but will use term as shorthand)

- energy of \mathbf{X} is preserved in its DWT coefficients \mathbf{W} because

$$
\begin{aligned}
\|\mathbf{W}\|^{2} & =\mathbf{W}^{T} \mathbf{W} \\
& =(\mathcal{W} \mathbf{X})^{T} \mathcal{W} \mathbf{X} \\
& =\mathbf{X}^{T} \mathcal{W}^{T} \mathcal{W} \mathbf{X} \\
& =\mathbf{X}^{T} I_{N} \mathbf{X} \\
& =\mathbf{X}^{T} \mathbf{X} \\
& =\|\mathbf{X}\|^{2}
\end{aligned}
$$

I-49

Wavelet Spectrum (Variance Decomposition): II

- define discrete wavelet power spectrum:

$$
P_{X}\left(\tau_{j}\right) \equiv \frac{1}{N}\left\|\mathbf{W}_{j}\right\|^{2}, \text { where } \tau_{j}=2^{j-1}
$$

- gives us a scale-based decomposition of the sample variance:

$$
\hat{\sigma}_{X}^{2}=\sum_{j=1}^{J} P_{X}\left(\tau_{j}\right)
$$

- in addition, each $W_{j, t}$ in \mathbf{W}_{j} associated with a portion of \mathbf{X}; i.e., $W_{j, t}^{2}$ offers scale- \& time-based decomposition of $\hat{\sigma}_{X}^{2}$

Wavelet Spectrum (Variance Decomposition): I

- let \bar{X} denote sample mean of X_{t} 's: $\bar{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_{t}$
- let $\hat{\sigma}_{X}^{2}$ denote sample variance of X_{t} 's:

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} \equiv \frac{1}{N} \sum_{t=0}^{N-1}\left(X_{t}-\bar{X}\right)^{2} & =\frac{1}{N} \sum_{t=0}^{N-1} X_{t}^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\|\mathbf{X}\|^{2}-\bar{X}^{2} \\
& =\frac{1}{N}\|\mathbf{W}\|^{2}-\bar{X}^{2}
\end{aligned}
$$

- since $\|\mathbf{W}\|^{2}=\sum_{j=1}^{J}\left\|\mathbf{W}_{j}\right\|^{2}+\left\|\mathbf{V}_{J}\right\|^{2}$ and $\frac{1}{N}\left\|\mathbf{V}_{J}\right\|^{2}=\bar{X}^{2}$,

$$
\hat{\sigma}_{X}^{2}=\frac{1}{N} \sum_{j=1}^{J}\left\|\mathbf{W}_{j}\right\|^{2}
$$

I-50

Wavelet Spectrum (Variance Decomposition): III

- wavelet spectra for time series \mathbf{X} and \mathbf{Y} of length $N=16$, each with zero sample mean and same sample variance

Summary of Qualitative Description of DWT

- DWT is expressed by an $N \times N$ orthonormal matrix \mathcal{W}
- transforms time series \mathbf{X} into DWT coefficients $\mathbf{W}=\mathcal{W} \mathbf{X}$
- each coefficient in \mathbf{W} associated with a scale and location
$-\mathbf{W}_{j}$ is subvector of \mathbf{W} with coefficients for scale $\tau_{j}=2^{j-1}$
- coefficients in \mathbf{W}_{j} related to differences of averages over τ_{j}
- last coefficient in \mathbf{W} related to average over scale N
- orthonormality leads to basic scale-based decompositions
- multiresolution analysis (additive decomposition)
- discrete wavelet power spectrum (analysis of variance)
- stayed tuned for precise definition of DWT!

