Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images
- as a subject, wavelets are
 - relatively new (1983 to present)
 - a synthesis of old/new ideas
 - keyword in 29,826+ articles and books since 1989
 (4032 more since 2005: an inundation of material!!!)
- broadly speaking, there have been two waves of wavelets
 - continuous wavelet transform (1983 and on)
 - discrete wavelet transform (1988 and on)
- will introduce subject via CWT & then concentrate on DWT

I–1

Technical Definition of a Wavelet: I

- \bullet real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if
 - 1. integral of $\psi^2(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^2(u) \, du = 1$ (called 'unit energy' property, with apologies to physicists)
 - 2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) du = 0$ (technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)

What is a Wavelet?

• sines & cosines are 'big waves'

• wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{\scriptscriptstyle ({\rm H})}(\cdot)$)

Technical Definition of a Wavelet: II

• $\int_{-\infty}^{\infty} \psi^2(u) \, du = 1 \& \int_{-\infty}^{\infty} \psi(u) \, du = 0$ give a wavelet because: - by property 1, for every small $\epsilon > 0$, have

$$\int_{-\infty}^{-T} \psi^2(u) \, du + \int_T^{\infty} \psi^2(u) \, du < \epsilon$$

for some finite T

- 'business' part of $\psi(\cdot)$ is over interval [-T, T]
- width 2T of [-T, T] might be huge, but will be insignificant compared to $(-\infty, \infty)$
- by property 2, $\psi(\cdot)$ is balanced above/below horizontal axis
- matches intuitive notion of a 'small' wave

• here we have

$$\frac{1}{b-a} \int_{a}^{b} x(t) dt = \frac{1}{16} \sum_{j=0}^{15} x_j = \text{ height of dashed line}$$

- λ is width of interval refered to as 'scale'
- -t is midpoint of interval
- $A(\lambda, t)$ is average value of $x(\cdot)$ over scale λ centered at t
- average values of signals have wide-spread interest
 - one second average temperatures over forest
 - -ten minute rainfall rate during severe storm
 - yearly average temperatures over central England

Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series $x(\cdot)$ together: $\int_{-3}^{\psi^{(\text{H})}(t)} \int_{0}^{0} \int_{0}^{0} \int_{3-3}^{0} \int_{0}^{0} \int_{3-3}^{0} \int_{0}^{0} \int_{3-3}^{0} \int_{0}^{0} \int_{0}^{0} \int_{3-3}^{0} \int_{0}^{0} \int_{0}^$

Defining Wavelet Coefficients for Other Locations

• relocate to define $W(\tau, t)$ for other times t:

Defining Wavelet Coefficients for Other Scales

W(1,0) proportional to difference between averages of x(·) over [-1,0] & [0,1], i.e., two unit scale averages before/after t = 0
'1' in W(1,0) denotes scale 1 (width of each interval)
'0' in W(1,0) denotes time 0 (center of combined intervals)
stretch or shrink wavelet to define W(τ,0) for other scales τ:

Haar Continuous Wavelet Transform (CWT)

• for all $\tau > 0$ and all $-\infty < t < \infty$, can write

$$W(\tau,t) = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u) \psi^{\rm \tiny (H)} \left(\frac{u-t}{\tau} \right) \, du$$

- $-\frac{u-t}{\tau} \text{ does the stretching/shrinking and relocating}$ $-\frac{1}{\sqrt{\tau}} \text{ needed so } \psi_{\tau,t}^{(\text{H})}(u) \equiv \frac{1}{\sqrt{\tau}} \psi^{(\text{H})}\left(\frac{u-t}{\tau}\right) \text{ has unit energy}$ $- \text{ since it also integrates to zero, } \psi_{\tau,t}^{(\text{H})}(\cdot) \text{ is a wavelet}$
- $W(\tau, t)$ over all $\tau > 0$ and all t is Haar CWT for $x(\cdot)$
- \bullet analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of averages

Other Continuous Wavelet Transforms: I

- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau,t}(u) = \frac{1}{\sqrt{\tau}} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink & relocate
- \bullet define CWT via

$$W(\tau,t) = \int_{-\infty}^{\infty} x(u)\psi_{\tau,t}(u) \, du = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u)\psi\left(\frac{u-t}{\tau}\right) \, du$$

- \bullet analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of weighted averages

I–13

First Scary-Looking Equation

• CWT equivalent to $x(\cdot)$ because we can write

$$x(t) = \int_0^\infty \left[\frac{1}{C\tau^2} \int_{-\infty}^\infty W(\tau, u) \frac{1}{\sqrt{\tau}} \psi\left(\frac{t-u}{\tau}\right) \, du \right] \, d\tau$$

- where C is a constant depending on specific wavelet $\psi(\cdot)$
- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing signal $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' signal at time t
- says we can reexpress $x(\cdot)$ as integral (sum) of new signals, each associated with a particular scale
- similar additive decompositions will be one central theme

Other Continuous Wavelet Transforms: II

• consider two friends of Haar wavelet

- $\psi^{\mbox{\tiny (fdG)}}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- \bullet 'Mexican hat' wavelet $\psi^{\mbox{\tiny (Mh)}}(\cdot)$ proportional to 2nd derivative
- $\psi^{\text{\tiny (fdG)}}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{(Mh)}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before & after

I–14

Second Scary-Looking Equation

• energy in $x(\cdot)$ is reexpressed in CWT because

energy =
$$\int_{-\infty}^{\infty} x^2(t) dt = \int_{0}^{\infty} \left[\frac{1}{C\tau^2} \int_{-\infty}^{\infty} W^2(\tau, t) dt \right] d\tau$$

- can regard $x^2(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- \bullet function defined by $W^2(\tau,t)/C\tau^2$ is an energy density across both time and scale
- similar energy decompositions will be a second central theme

Mexican Hat CWT of Clock Data: II

Mexican Hat CWT of Clock Data: III

- (makes meaningful statistical analysis possible)
- tends to decorrelate certain time series
- standardization to dyadic scales often adequate
- generalizes to notion of wavelet packets
- can be faster than the fast Fourier transform
- will concentrate primarily on DWT for remainder of course

- need to assume $N = 2^J$ for some positive integer J (restrictive!)
- DWT is a linear transform of \mathbf{X} yielding N DWT coefficients
- notation: $\mathbf{W} = \mathcal{W}\mathbf{X}$
 - W is vector of DWT coefficients (*j*th component is W_i)
 - $-\mathcal{W}$ is $N \times N$ orthonormal transform matrix; i.e., $\mathcal{W}^T \mathcal{W} = I_N$, where I_N is $N \times N$ identity matrix
- inverse of \mathcal{W} is just its transpose, so $\mathcal{W}\mathcal{W}^T = I_N$ also

Implications of Orthonormality: I Implications of Orthonormality: II • let $\mathcal{W}_{i\bullet}^T$ denote the *j*th row of \mathcal{W} , where $j = 0, 1, \dots, N-1$ • example from \mathcal{W} of dimension 16×16 we'll see later on • note that $\mathcal{W}_{i\bullet}$ itself is a column vector - inner product of row 8 with itself (i.e., squared norm): • let $\mathcal{W}_{i,l}$ denote element of \mathcal{W} in row j and column l $\mathcal{W}_{8,t} \qquad \mathcal{W}_{8,t} \qquad \mathcal{W}_{8,t}^2 \qquad \mathrm{sum} = 1$ • note that $\mathcal{W}_{i,l}$ is also *l*th element of $\mathcal{W}_{i\bullet}$ • let's consider two vectors, say, $\mathcal{W}_{i\bullet}$ and $\mathcal{W}_{k\bullet}$ • orthonormality says - row 8 said to have 'unit energy' since squared norm is 1 $\langle \mathcal{W}_{j\bullet}, \mathcal{W}_{k\bullet} \rangle \equiv \sum_{l=0}^{N-1} \mathcal{W}_{j,l} \mathcal{W}_{k,l} = \begin{cases} 1, & \text{when } j = k, \\ 0, & \text{when } j \neq k \end{cases}$ $-\langle \mathcal{W}_{i\bullet}, \mathcal{W}_{k\bullet} \rangle$ is inner product of *j*th & *k*th rows $- \|\mathcal{W}_{i\bullet}\|^2 \equiv \langle \mathcal{W}_{j\bullet}, \mathcal{W}_{j\bullet} \rangle \text{ is squared norm (energy) for } \mathcal{W}_{j\bullet}$ I-25I - 26**Implications of Orthonormality: III** The Haar DWT: I • like CWT, DWT tell us about variations in local averages • another example from same \mathcal{W} • to see this, let's look inside \mathcal{W} for the Haar DWT for $N = 2^J$ - inner product of rows 8 and 12: • row j = 0: $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \underbrace{0, \dots, 0}_{N-2 \text{ zeros}}\right] \equiv \mathcal{W}_{0\bullet}^T$ $\mathcal{W}_{8,t} \xrightarrow{\mathbf{U}} \mathcal{W}_{8,t} \mathcal{W}_{12,t} \xrightarrow{\mathbf{U}} \operatorname{sum} = 0$ note: $\|\mathcal{W}_{0\bullet}\|^2 = \frac{1}{2} + \frac{1}{2} = 1$ & hence has required unit energy • row j = 1: $\begin{bmatrix} 0, 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{0, \dots, 0}{\sqrt{2}} \end{bmatrix} \equiv \mathcal{W}_{1\bullet}^T$ • $\mathcal{W}_{0\bullet}$ and $\mathcal{W}_{1\bullet}$ are orthogonal - rows 8 & 12 said to be orthogonal since inner product is 0

I - 28

The Haar DWT: II

- keep shifting by two to form rows until we come to . . .
- row $j = \frac{N}{2} 1$: $\left[\underbrace{0, \dots, 0}_{N-2 \text{ zeros}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \equiv \mathcal{W}_{\frac{N}{2}-1}^{T}$
- first N/2 rows form orthonormal set of N/2 vectors

The Haar DWT: IV

I-31

0 5 10 15

I - 29

The Haar DWT: III

The Haar DWT: VI The Haar DWT: VII • to form next row, stretch $\left[-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \dots, 0\right]$ out by a factor of two and renormalize to preserve unit energy • N = 16 example of Haar DWT matrix \mathcal{W} • $j = \frac{3N}{4}$: $\left[\underbrace{-\frac{1}{\sqrt{8}}, \ldots, -\frac{1}{\sqrt{8}}}_{4 \text{ of these}}, \underbrace{\frac{1}{\sqrt{8}}, \ldots, \frac{1}{\sqrt{8}}}_{4 \text{ of these}}, \underbrace{0, \ldots, 0}_{N-8 \text{ zeros}}\right] \equiv \mathcal{W}_{\frac{3N}{4}}^{T}$ note: $\left\|\mathcal{W}_{\frac{3N}{4}}\right\|^2 = 8 \cdot \frac{1}{8} = 1$, as required . 11..... 9 2 10 3 11 12 • $j = \frac{3N}{4} + 1$: shift row $\frac{3N}{4}$ to right by 8 units 5 13 -----¹---• continue shifting and stretching until finally we come to ... 15 ┝╍╍╍╍╍╍┰┸ • j = N - 2: $\left[\underbrace{-\frac{1}{\sqrt{N}}, \dots, -\frac{1}{\sqrt{N}}}_{\frac{N}{2} \text{ of these}}, \underbrace{\frac{1}{\sqrt{N}}, \dots, \frac{1}{\sqrt{N}}}_{\frac{N}{2} \text{ of these}}\right] \equiv \mathcal{W}_{N-2\bullet}^{T}$ 0 5 10 15 • j = N - 1: $\left[\underbrace{\frac{1}{\sqrt{N}}, \dots, \frac{1}{\sqrt{N}}}_{N \text{ of these}}\right] \equiv \mathcal{W}_{N-1}^{T}$ I-33I - 34Haar DWT Coefficients: I Haar DWT Coefficients: II

• obtain Haar DWT coefficients \mathbf{W} by premultiplying \mathbf{X} by \mathcal{W} :

$\mathbf{W}=\mathcal{W}\mathbf{X}$

• *j*th coefficient W_j is inner product of *j*th row $\mathcal{W}_{j\bullet}$ and **X**:

$$W_j = \langle \mathcal{W}_{j \bullet}, \mathbf{X} \rangle$$

- can interpret coefficients as difference of averages
- to see this, let

$$\overline{X}_{t}(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l} = \text{`scale } \lambda \text{' average}$$

- note: $\overline{X}_t(1) = X_t = \text{scale 1 'average'}$ - note: $\overline{X}_{N-1}(N) = \overline{X} = \text{sample average}$

• consider form
$$W_0 = \langle W_{0\bullet}, \mathbf{X} \rangle$$
 takes in $N = 16$ example:

• similar interpretation for
$$W_1, \ldots, W_{\frac{N}{2}-1} = W_7 = \langle \mathcal{W}_{7\bullet}, \mathbf{X} \rangle$$
:

$$\mathcal{W}_{7,t} \xrightarrow{\bullet} \mathcal{W}_{7,t} X_t \xrightarrow{\bullet} \mathcal{W}_{7,t} X_t \xrightarrow{\bullet} \mathcal{W}_{15}(1) - \overline{X}_{14}(1)$$

Energy Preservation Property of DWT Coefficients

• define 'energy' in **X** as its squared norm:

$$\|\mathbf{X}\|^2 = \langle \mathbf{X}, \mathbf{X} \rangle = \mathbf{X}^T \mathbf{X} = \sum_{t=0}^{N-1} X_t^2$$

(usually not really energy, but will use term as shorthand)

• energy of \mathbf{X} is preserved in its DWT coefficients \mathbf{W} because

$$\|\mathbf{W}\|^{2} = \mathbf{W}^{T}\mathbf{W}$$
$$= (\mathcal{W}\mathbf{X})^{T}\mathcal{W}\mathbf{X}$$
$$= \mathbf{X}^{T}\mathcal{W}^{T}\mathcal{W}\mathbf{X}$$
$$= \mathbf{X}^{T}I_{N}\mathbf{X}$$
$$= \mathbf{X}^{T}\mathbf{X}$$
$$= \|\mathbf{X}\|^{2}$$

I–49

Wavelet Spectrum (Variance Decomposition): II

• define discrete wavelet power spectrum:

$$P_X(\tau_j) \equiv \frac{1}{N} \|\mathbf{W}_j\|^2$$
, where $\tau_j = 2^{j-1}$

• gives us a scale-based decomposition of the sample variance:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_X(\tau_j)$$

• in addition, each $W_{j,t}$ in \mathbf{W}_j associated with a portion of \mathbf{X} ; i.e., $W_{j,t}^2$ offers scale- & time-based decomposition of $\hat{\sigma}_X^2$

Wavelet Spectrum (Variance Decomposition): I

• let
$$\overline{X}$$
 denote sample mean of X_t 's: $\overline{X} \equiv \frac{1}{N} \sum_{t=0}^{N-1} X_t$
• let $\hat{\sigma}_X^2$ denote sample variance of X_t 's:
 $\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} (X_t - \overline{X})^2 = \frac{1}{N} \sum_{t=0}^{N-1} X_t^2 - \overline{X}^2$
 $= \frac{1}{N} ||\mathbf{X}||^2 - \overline{X}^2$
 $= \frac{1}{N} ||\mathbf{W}||^2 - \overline{X}^2$
• since $||\mathbf{W}||^2 = \sum_{j=1}^J ||\mathbf{W}_j||^2 + ||\mathbf{V}_J||^2$ and $\frac{1}{N} ||\mathbf{V}_J||^2 = \overline{X}^2$,
 $\hat{\sigma}_X^2 = \frac{1}{N} \sum_{j=1}^J ||\mathbf{W}_j||^2$

Wavelet Spectrum (Variance Decomposition): III

I-52

Summary of Qualitative Description of DWT

- DWT is expressed by an $N \times N$ orthonormal matrix \mathcal{W}
- transforms time series \mathbf{X} into DWT coefficients $\mathbf{W} = \mathcal{W} \mathbf{X}$
- \bullet each coefficient in ${\bf W}$ associated with a scale and location
 - $-\mathbf{W}_j$ is subvector of \mathbf{W} with coefficients for scale $\tau_j = 2^{j-1}$
 - coefficients in \mathbf{W}_i related to differences of averages over τ_i
 - last coefficient in ${\bf W}$ related to average over scale N
- orthonormality leads to basic scale-based decompositions
 - multiresolution analysis (additive decomposition)
 - discrete wavelet power spectrum (analysis of variance)
- stayed tuned for precise definition of DWT!