Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images
- as a subject, wavelets are
 - relatively new (1983 to present)
 - a synthesis of old/new ideas
 - keyword in 29,826+ articles and books since 1989 (4032 more since 2005: an inundation of material!!!)
- broadly speaking, there have been two waves of wavelets
 - continuous wavelet transform (1983 and on)
- discrete wavelet transform (1988 and on)
- will introduce subject via CWT & then concentrate on DWT

I-1

Technical Definition of a Wavelet: I

- real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if
 - 1. integral of $\psi^2(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^2(u) du = 1$ (called 'unit energy' property, with apologies to physicists)
 - 2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) du = 0$ (technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)

What is a Wavelet?

• sines & cosines are 'big waves'

• wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{\text{\tiny (H)}}(\cdot)$)

I-2

Technical Definition of a Wavelet: II

- $\int_{-\infty}^{\infty} \psi^2(u) du = 1 \& \int_{-\infty}^{\infty} \psi(u) du = 0$ give a wavelet because:
 - by property 1, for every small $\epsilon > 0$, have

$$\int_{-\infty}^{-T} \psi^2(u) \, du + \int_{T}^{\infty} \psi^2(u) \, du < \epsilon$$

for some finite T

- 'business' part of $\psi(\cdot)$ is over interval [-T, T]
- width 2T of [-T, T] might be huge, but will be insignificant compared to $(-\infty, \infty)$
- by property 2, $\psi(\cdot)$ is balanced above/below horizontal axis
- matches intuitive notion of a 'small' wave

Two Non-Wavelets and Three Wavelets

• two failures: $f(u) = \cos(u)$ & same limited to $[-3\pi/2, 3\pi/2]$:

• Haar wavelet $\psi^{\text{\tiny (H)}}(\cdot)$ and two of its friends:

I-5

What is Wavelet Analysis?

- wavelets tell us about variations in local averages
- to quantify this description, let $x(\cdot)$ be a 'signal'
 - real-valued function of t defined over real axis
 - will refer to t as time (but it need not be such)
- consider 'average value' of $x(\cdot)$ over [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} x(t) \, dt$$

I-6

Example of Average Value of a Signal

• let $x(\cdot)$ be step function taking on values x_0, x_1, \ldots, x_{15} over 16 equal subintervals of [a, b]:

• here we have

$$\frac{1}{b-a} \int_a^b x(t) dt = \frac{1}{16} \sum_{j=0}^{15} x_j = \text{ height of dashed line}$$

Average Values at Different Scales and Times

• define the following function of λ and t

$$A(\lambda, t) \equiv \frac{1}{\lambda} \int_{t - \frac{\lambda}{2}}^{t + \frac{\lambda}{2}} x(u) du$$

- $-\lambda$ is width of interval referred to as 'scale'
- t is midpoint of interval
- $A(\lambda, t)$ is average value of $x(\cdot)$ over scale λ centered at t
- average values of signals have wide-spread interest
 - one second average temperatures over forest
 - ten minute rainfall rate during severe storm
 - yearly average temperatures over central England

Defining a Wavelet Coefficient W

• multiply Haar wavelet & time series $x(\cdot)$ together:

• integrate resulting function to get 'wavelet coefficient' W(1,0):

$$\int_{-\infty}^{\infty} \psi^{\text{\tiny (H)}}(t) x(t) \, dt = W(1,0)$$

• to see what W(1,0) is telling us about $x(\cdot)$, note that

$$W(1,0) \propto \frac{1}{1} \int_0^1 x(t) dt - \frac{1}{1} \int_{-1}^0 x(t) dt = A(1,\frac{1}{2}) - A(1,-\frac{1}{2})$$

I-9

Defining Wavelet Coefficients for Other Scales

- W(1,0) proportional to difference between averages of $x(\cdot)$ over [-1,0] & [0,1], i.e., two unit scale averages before/after t=0
 - '1' in W(1,0) denotes scale 1 (width of each interval)
 - '0' in W(1,0) denotes time 0 (center of combined intervals)
- stretch or shrink wavelet to define $W(\tau,0)$ for other scales τ :

I-10

Defining Wavelet Coefficients for Other Locations

• relocate to define $W(\tau, t)$ for other times t:

Haar Continuous Wavelet Transform (CWT)

• for all $\tau > 0$ and all $-\infty < t < \infty$, can write

$$W(\tau,t) = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u) \psi^{(\mathrm{H})} \left(\frac{u-t}{\tau} \right) \, du$$

- $-\frac{u-t}{\tau}$ does the stretching/shrinking and relocating
- $-\frac{1}{\sqrt{\tau}}$ needed so $\psi_{\tau,t}^{(H)}(u) \equiv \frac{1}{\sqrt{\tau}}\psi^{(H)}\left(\frac{u-t}{\tau}\right)$ has unit energy
- since it also integrates to zero, $\psi_{\tau,t}^{\text{\tiny (H)}}(\cdot)$ is a wavelet
- $W(\tau, t)$ over all $\tau > 0$ and all t is Haar CWT for $x(\cdot)$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of averages

Other Continuous Wavelet Transforms: I

- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau,t}(u) = \frac{1}{\sqrt{\tau}} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink & relocate
- define CWT via

$$W(\tau,t) = \int_{-\infty}^{\infty} x(u)\psi_{\tau,t}(u) du = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} x(u)\psi\left(\frac{u-t}{\tau}\right) du$$

- analyzes/breaks up/decomposes $x(\cdot)$ into components
 - associated with a scale and a time
 - physically related to a difference of weighted averages

I-13

First Scary-Looking Equation

• CWT equivalent to $x(\cdot)$ because we can write

$$x(t) = \int_0^\infty \left[\frac{1}{C\tau^2} \int_{-\infty}^\infty W(\tau, u) \frac{1}{\sqrt{\tau}} \psi\left(\frac{t - u}{\tau}\right) du \right] d\tau,$$

where C is a constant depending on specific wavelet $\psi(\cdot)$

- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing signal $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' signal at time t
- says we can reexpress $x(\cdot)$ as integral (sum) of new signals, each associated with a particular scale
- similar additive decompositions will be one central theme

Other Continuous Wavelet Transforms: II

• consider two friends of Haar wavelet

- $\psi^{\text{\tiny (fdG)}}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- 'Mexican hat' wavelet $\psi^{\text{\tiny (Mh)}}(\cdot)$ proportional to 2nd derivative
- $\psi^{\text{\tiny (fdG)}}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{\text{(Mh)}}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before & after

I-14

Second Scary-Looking Equation

• energy in $x(\cdot)$ is reexpressed in CWT because

energy =
$$\int_{-\infty}^{\infty} x^2(t) dt = \int_{0}^{\infty} \left[\frac{1}{C\tau^2} \int_{-\infty}^{\infty} W^2(\tau, t) dt \right] d\tau$$

- can regard $x^2(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- function defined by $W^2(\tau,t)/C\tau^2$ is an energy density across both time and scale
- similar energy decompositions will be a second central theme

Example: Atomic Clock Data

• example: average daily frequency variations in clock 571

- t is measured in days (one measurment per day)
- plot shows X_t versus integer t
- $X_t = 0$ for all t would say that clock 571 keeps time perfectly
- $X_t < 0$ implies that clock is losing time systematically
- \bullet can easily adjust clock if X_t were constant
- ullet inherent quality of clock related to changes in averages of X_t

I-17

Mexican Hat CWT of Clock Data: I

Mexican Hat CWT of Clock Data: II

Mexican Hat CWT of Clock Data: III

Mexican Hat CWT of Clock Data: IV

Rationale for the DWT

- DWT has appeal in its own right
 - most time series are sampled as discrete values (can be tricky to implement CWT)
 - can formulate as orthonormal transform (makes meaningful statistical analysis possible)
 - tends to decorrelate certain time series
 - standardization to dyadic scales often adequate
 - generalizes to notion of wavelet packets
 - can be faster than the fast Fourier transform
- will concentrate primarily on DWT for remainder of lectures

Beyond the CWT: the DWT

- can often get by with subsamples of $W(\tau, t)$
- leads to notion of discrete wavelet transform (DWT) (can regard as discretized 'slices' through CWT)

I-22