Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

e wavelets are analysis tools for time series and images
e as a subject, wavelets are

— relatively new (1983 to present)
— a synthesis of old/new ideas

— keyword in 29, 8264 articles and books since 1989
(4032 more since 2005: an inundation of materiallll)

e broadly speaking, there have been two waves of wavelets

— continuous wavelet transform (1983 and on)
— discrete wavelet transform (1988 and on)

e will introduce subject via CWT & then concentrate on DWT
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What is a Wavelet?

e sines & cosines are ‘big waves’
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e wavelets are ‘small waves’ (left-hand is Haar wavelet ™ (+))
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Technical Definition of a Wavelet: 1

e real-valued function v(-) defined over real axis is a wavelet if

; 20 ia it O 0,2 —

1. integral of ¢=(-) is unity: [ ¢*(u)du =1
(called ‘unit energy’ property, with apologies to physicists)
3 1 . o0 —

2. integral of ¥(-) is zero: [°0 4p(u) du =0
(technically, need an ‘admissibility condition,” but this is al-
most equivalent to integration to zero)
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Technical Definition of a Wavelet: 11

o ffooo Vi) du=1& ffooo (u) du = 0 give a wavelet because:
— by property 1, for every small € > 0, have

/_;j@DQ(u) du+/TOO1/)2(u) du < €

for some finite T’
— ‘business’ part of 1(-) is over interval [T, T

— width 27" of [T, T] might be huge, but will be insignificant
compared to (—o0, 00)

— by property 2, 1(+) is balanced above/below horizontal axis

e matches intuitive notion of a ‘small’ wave
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Two Non-Wavelets and Three Wavelets

e two failures: f(u) =rc

iTANA A
ARV A A

—9 6 —3 9—9 6 —3 9
u,

e Haar wavelet ¢)™(-) and two of its friends:

os(u) & same limited to [—37/2, 37 /2]:

What is Wavelet Analysis?

e wavelets tell us about variations in local averages

e to quantify this description, let x(-) be a ‘signal’
— real-valued function of ¢ defined over real axis
— will refer to ¢ as time (but it need not be such)

e consider ‘average value’ of x(-) over [a, b]:

1 b
t) dt
b_a/axu
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Example of Average Value of a Signal

e let z(+) be step function taking on values xq, z1,

., L15 over
16 equal subintervals of [a, b]:

e here we have

15
I 1
7 a/a x(t) dt = T Z x; = height of dashed line
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Average Values at Different Scales and Times

e define the following function of A and ¢
1 t+%
AN\ t) = —/ x(u) du
A =3
— A is width of interval — refered to as ‘scale’
— t is midpoint of interval
e A(\, 1) is average value of z(+) over scale A centered at ¢
e average values of signals have wide-spread interest

— one second average temperatures over forest
— ten minute rainfall rate during severe storm

— yearly average temperatures over central England
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Defining a Wavelet Coefficient W

e multiply Haar wavelet & time series z(-) together:

[®() [(t)z(t)
0 W
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e integrate resulting function to get ‘wavelet coefficient” W (1, 0):

/_ ) dt = W(1,0)

e to see what W (1,0) is telling us about z(+), note that
1l 1 /0
W(1,0) o< I/ (t)dt — I/ z(t)dt = A(1,3) — A(1, )
0

—1
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Defining Wavelet Coefficients for Other Scales

e W (1,0) proportional to difference between averages of z(+) over
[—1,0] & [0, 1], i.e., two unit scale averages before/after ¢t = (

— ‘17 in W(1,0) denotes scale 1 (width of each interval)

— ‘0" in W(1,0) denotes time 0 (center of combined intervals)

e stretch or shrink wavelet to define W (7, 0) for other scales 7:

yields
W(2,0)

0
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Defining Wavelet Coefficients for Other Locations

e relocate to define W (r,t) for other times t:
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Haar Continuous Wavelet Transform (CWT)

o for all 7 > 0 and all —oo < t < o0, can write

Wirt) = % /_ O:O ()™ (“;t) du

— “T_t does the stretching/shrinking and relocating
- % needed so Y (u) = %z/}“” (“T_t) has unit energy

— since it also integrates to zero, ¥",(+) is a wavelet
o W (r,t) over all 7 > 0 and all ¢ is Haar CW'T for z(-)

e analyzes/breaks up/decomposes z(+) into components

— associated with a scale and a time

— physically related to a difference of averages
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Other Continuous Wavelet Transforms: I

e can do the same for wavelets other than the Haar
e start with basic wavelet ¢(+)

o use Py (u) = \/Tw (L t) to stretch /shrink & relocate
e define CWT via

W(r,t) = /_O:Ox(u)wﬂt(u) du = %/_O:Ox(u)w (u ; t) du

e analyzes/breaks up/decomposes x(-) into components

— associated with a scale and a time

— physically related to a difference of weighted averages

Other Continuous Wavelet Transforms: 11

e consider two friends of Haar wavelet

~ w(H)(u> ~ 1p(fd(})(u) ~ ,(/}(Mh)(u)
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e ¢)"9(.) proportional to 1st derivative of Gaussian PDF
e ‘Mexican hat” wavelet )™ (-) proportional to 2nd derivative
e 1)"9(.) looks at difference of adjacent weighted averages

e )" (.) looks at difference between weighted average and sum
of weighted averages occurring before & after
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First Scary-Looking Equation

e CWT equivalent to x(-) because we can write

- [ l&/ Wirao (22) ] o

where C'is a constant depending on specific wavelet 1)(-)

e can synthesize (put back together) x(-) given its CW'T;
i.e., nothing is lost in reexpressing signal z(-) via its CWT

e regard stuff in brackets as defining ‘scale 77 signal at time ¢

e says we can reexpress () as integral (sum) of new signals,
each associated with a particular scale

e similar additive decompositions will be one central theme
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Second Scary-Looking Equation

e cnergy in x(-) is reexpressed in CWT because

energy = z=(t) dt = . |oe W=(r,t)dt| dr
—00 —00

o can regard x°(t) versus ¢ as breaking up the energy across time
(i.e., an ‘energy density’ function)

e regard stuff in brackets as breaking up the energy across scales

e says we can reexpress energy as integral (sum) of components,
each associated with a particular scale

e function defined by W?2(r,t)/C72 is an energy density across
both time and scale

e similar energy decompositions will be a second central theme
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Example: Atomic Clock Data

e example: average daily frequency variations in clock 571
~12

X

—22 T
512

t (days)

06 s 102
e ¢ is measured in days (one measurment per day)

e plot shows Xy versus integer ¢

e Xy = 0 for all £ would say that clock 571 keeps time perfectly
e X; < 0 implies that clock is losing time systematically

e can easily adjust clock if X3 were constant

e inherent quality of clock related to changes in averages of Xy
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Mexican Hat CWT of Clock Data: 1

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: I1

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: III

=220

0 256 512 768 1024
t (days)
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Mexican Hat CWT of Clock Data: IV

0 256 512 768 1024
t (days)
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Beyond the CWT: the DWT

e can often get by with subsamples of W(r,t)

e leads to notion of discrete wavelet transform (DWT)
(can regard as discretized ‘slices’” through CWT)
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Rationale for the DWT

e DWT has appeal in its own right
— most time series are sampled as discrete values
(can be tricky to implement CW'T)

— can formulate as orthonormal transform
(makes meaningful statistical analysis possible)

— tends to decorrelate certain time series

— standardization to dyadic scales often adequate
— generalizes to notion of wavelet packets

— can be faster than the fast Fourier transform

e will concentrate primarily on DW'T for remainder of lectures
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