Wavelet Methods for Time Series Analysis

Part I: Introduction to Wavelets and Wavelet Transforms

- wavelets are analysis tools for time series and images
- as a subject, wavelets are
- relatively new (1983 to present)
- a synthesis of old/new ideas
- keyword in 29, 826+ articles and books since 1989 (4032 more since 2005: an inundation of material!!!)
- broadly speaking, there have been two waves of wavelets
- continuous wavelet transform (1983 and on)
- discrete wavelet transform (1988 and on)
- will introduce subject via CWT \& then concentrate on DWT

Technical Definition of a Wavelet: I

- real-valued function $\psi(\cdot)$ defined over real axis is a wavelet if

1. integral of $\psi^{2}(\cdot)$ is unity: $\int_{-\infty}^{\infty} \psi^{2}(u) d u=1$ (called 'unit energy' property, with apologies to physicists)
2. integral of $\psi(\cdot)$ is zero: $\int_{-\infty}^{\infty} \psi(u) d u=0$
(technically, need an 'admissibility condition,' but this is almost equivalent to integration to zero)

What is a Wavelet?

- sines \& cosines are 'big waves'

- wavelets are 'small waves' (left-hand is Haar wavelet $\psi^{(\mathrm{HI})}(\cdot)$)

Technical Definition of a Wavelet: II

- $\int_{-\infty}^{\infty} \psi^{2}(u) d u=1 \& \int_{-\infty}^{\infty} \psi(u) d u=0$ give a wavelet because: - by property 1 , for every small $\epsilon>0$, have

$$
\int_{-\infty}^{-T} \psi^{2}(u) d u+\int_{T}^{\infty} \psi^{2}(u) d u<\epsilon
$$

for some finite T

- 'business' part of $\psi(\cdot)$ is over interval $[-T, T]$
- width $2 T$ of $[-T, T]$ might be huge, but will be insignificant compared to $(-\infty, \infty)$
- by property $2, \psi(\cdot)$ is balanced above/below horizontal axis
- matches intuitive notion of a 'small' wave

Two Non-Wavelets and Three Wavelets

- two failures: $f(u)=\cos (u) \&$ same limited to $[-3 \pi / 2,3 \pi / 2]$:

- Haar wavelet $\psi^{(\mathrm{HI}}(\cdot)$ and two of its friends:

I-5

What is Wavelet Analysis?

- wavelets tell us about variations in local averages
- to quantify this description, let $x(\cdot)$ be a 'signal'
- real-valued function of t defined over real axis
- will refer to t as time (but it need not be such)
- consider 'average value' of $x(\cdot)$ over $[a, b]$:

$$
\frac{1}{b-a} \int_{a}^{b} x(t) d t
$$

Example of Average Value of a Signal

- let $x(\cdot)$ be step function taking on values $x_{0}, x_{1}, \ldots, x_{15}$ over 16 equal subintervals of $[a, b]$:

- here we have

$$
\frac{1}{b-a} \int_{a}^{b} x(t) d t=\frac{1}{16} \sum_{j=0}^{15} x_{j}=\text { height of dashed line }
$$

Average Values at Different Scales and Times

- define the following function of λ and t

$$
A(\lambda, t) \equiv \frac{1}{\lambda} \int_{t-\frac{\lambda}{2}}^{t+\frac{\lambda}{2}} x(u) d u
$$

$-\lambda$ is width of interval - refered to as 'scale’
$-t$ is midpoint of interval

- $A(\lambda, t)$ is average value of $x(\cdot)$ over scale λ centered at t
- average values of signals have wide-spread interest
- one second average temperatures over forest
- ten minute rainfall rate during severe storm
- yearly average temperatures over central England

Defining a Wavelet Coefficient W

- multiply Haar wavelet \& time series $x(\cdot)$ together:

- integrate resulting function to get 'wavelet coefficient' $W(1,0)$:

$$
\int_{-\infty}^{\infty} \psi^{(\mathrm{H})}(t) x(t) d t=W(1,0)
$$

- to see what $W(1,0)$ is telling us about $x(\cdot)$, note that
$W(1,0) \propto \frac{1}{1} \int_{0}^{1} x(t) d t-\frac{1}{1} \int_{-1}^{0} x(t) d t=A\left(1, \frac{1}{2}\right)-A\left(1,-\frac{1}{2}\right)$

Defining Wavelet Coefficients for Other Locations

- relocate to define $W(\tau, t)$ for other times t :

Defining Wavelet Coefficients for Other Scales

- $W(1,0)$ proportional to difference between averages of $x(\cdot)$ over $[-1,0] \&[0,1]$, i.e., two unit scale averages before/after $t=0$
- ' 1 ' in $W(1,0)$ denotes scale 1 (width of each interval)
- ' 0 ' in $W(1,0)$ denotes time 0 (center of combined intervals)
- stretch or shrink wavelet to define $W(\tau, 0)$ for other scales τ :

Haar Continuous Wavelet Transform (CWT)

- for all $\tau>0$ and all $-\infty<t<\infty$, can write

$$
W(\tau, t)=\frac{1}{\sqrt{ } \tau} \int_{-\infty}^{\infty} x(u) \psi^{(\mathrm{H})}\left(\frac{u-t}{\tau}\right) d u
$$

$-\frac{u-t}{\tau}$ does the stretching/shrinking and relocating
$-\frac{1}{\sqrt{ } \tau}$ needed so $\psi_{\tau, t}^{(\mathrm{H})}(u) \equiv \frac{1}{\sqrt{ } \tau} \psi^{(\mathrm{H})}\left(\frac{u-t}{\tau}\right)$ has unit energy

- since it also integrates to zero, $\psi_{\tau, t}^{(\mathrm{H})}(\cdot)$ is a wavelet
- $W(\tau, t)$ over all $\tau>0$ and all t is Haar CWT for $x(\cdot)$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
- associated with a scale and a time
- physically related to a difference of averages

Other Continuous Wavelet Transforms: I

- can do the same for wavelets other than the Haar
- start with basic wavelet $\psi(\cdot)$
- use $\psi_{\tau, t}(u)=\frac{1}{\sqrt{ } \tau} \psi\left(\frac{u-t}{\tau}\right)$ to stretch/shrink \& relocate
- define CWT via
$W(\tau, t)=\int_{-\infty}^{\infty} x(u) \psi_{\tau, t}(u) d u=\frac{1}{\sqrt{ } \tau} \int_{-\infty}^{\infty} x(u) \psi\left(\frac{u-t}{\tau}\right) d u$
- analyzes/breaks up/decomposes $x(\cdot)$ into components
- associated with a scale and a time
- physically related to a difference of weighted averages

Other Continuous Wavelet Transforms: II

- consider two friends of Haar wavelet

- $\psi^{(\mathrm{fra})}(\cdot)$ proportional to 1st derivative of Gaussian PDF
- 'Mexican hat' wavelet $\psi^{(\text {(Nh) })}(\cdot)$ proportional to 2nd derivative
- $\psi^{(\mathrm{taC})}(\cdot)$ looks at difference of adjacent weighted averages
- $\psi^{(\mathrm{MLI})}(\cdot)$ looks at difference between weighted average and sum of weighted averages occurring before \& after

First Scary-Looking Equation

- CWT equivalent to $x(\cdot)$ because we can write

$$
x(t)=\int_{0}^{\infty}\left[\frac{1}{C \tau^{2}} \int_{-\infty}^{\infty} W(\tau, u) \frac{1}{\sqrt{ } \tau} \psi\left(\frac{t-u}{\tau}\right) d u\right] d \tau
$$

where C is a constant depending on specific wavelet $\psi(\cdot)$

- can synthesize (put back together) $x(\cdot)$ given its CWT; i.e., nothing is lost in reexpressing signal $x(\cdot)$ via its CWT
- regard stuff in brackets as defining 'scale τ ' signal at time t
- says we can reexpress $x(\cdot)$ as integral (sum) of new signals, each associated with a particular scale
- similar additive decompositions will be one central theme

Second Scary-Looking Equation

- energy in $x(\cdot)$ is reexpressed in CWT because

$$
\text { energy }=\int_{-\infty}^{\infty} x^{2}(t) d t=\int_{0}^{\infty}\left[\frac{1}{C \tau^{2}} \int_{-\infty}^{\infty} W^{2}(\tau, t) d t\right] d \tau
$$

- can regard $x^{2}(t)$ versus t as breaking up the energy across time (i.e., an 'energy density' function)
- regard stuff in brackets as breaking up the energy across scales
- says we can reexpress energy as integral (sum) of components, each associated with a particular scale
- function defined by $W^{2}(\tau, t) / C \tau^{2}$ is an energy density across both time and scale
- similar energy decompositions will be a second central theme

Example: Atomic Clock Data

- example: average daily frequency variations in clock 571

- t is measured in days (one measurment per day)
- plot shows X_{t} versus integer t
- $X_{t}=0$ for all t would say that clock 571 keeps time perfectly
- $X_{t}<0$ implies that clock is losing time systematically
- can easily adjust clock if X_{t} were constant
- inherent quality of clock related to changes in averages of X_{t}

Mexican Hat CWT of Clock Data: I

Mexican Hat CWT of Clock Data: III

Mexican Hat CWT of Clock Data: IV

I-21

Beyond the CWT: the DWT

- can often get by with subsamples of $W(\tau, t)$
- leads to notion of discrete wavelet transform (DWT) (can regard as discretized 'slices' through CWT)

I-22

Rationale for the DWT

- DWT has appeal in its own right
- most time series are sampled as discrete values (can be tricky to implement CWT)
- can formulate as orthonormal transform (makes meaningful statistical analysis possible)
- tends to decorrelate certain time series
- standardization to dyadic scales often adequate
- generalizes to notion of wavelet packets
- can be faster than the fast Fourier transform
- will concentrate primarily on DWT for remainder of lectures

