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Abstract

Current human land use activities are altering many components of the river landscape, resulting in unstable channels. Instability
may have serious negative consequences for water quality, aquatic and riparian habitat, and for river-related human infrastructure
such as bridges and roads. Resource management agencies have developed rapid bioassessment surveys to help assess stability in
a fast and cost-effective way. While this assessment can be done for a single site fairly rapidly, it is still time-consuming to apply
over large watersheds and assessment activities must be prioritized. We constructed a system that employs commonly available
map data as inputs to cost-sensitive variants of decision tree algorithms to predict the relative channel stability of different sites.
In particular, we use bagged lazy option trees (LOTs) and bagged probability estimation trees (PETs) to identify all unstable
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channels while making the smallest number of errors of classifying stable channels as unstable, thereby minimizing
maximizing safety. We measured the performance of the classifiers using ROC curves and found that the PETs perform
than the LOTs in situations where the number of instances of the stable and unstable classes were relatively balanc
LOTs did better where unstable examples were relatively rare compared to stable, perhaps due to the LOTs’ ability to
individual examples.
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1. Introduction

This research proposes methods for prioritizing a
reducing the amount of fieldwork required to ass
the status of various environmental conditions such
stream health through the use of cost-sensitive mac
learning algorithms. The proposed methods invo
learning the outcomes of Rapid [Bio]Assessme
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Protocols (RAPs) from existing data that is commonly
available (e.g., topographic maps). A specific RAP for
stream channel stability is used as an example.

1.1. Problem background

RAPs are commonly used to collect, analyze, and
interpret a variety of stream data to assist diverse man-
agement decisions. The focus of these RAPs may be to
assess salmon habitat, riparian health, channel stability
or any of a number of specific ecological functions for a
given region. RAPs are also used in terrestrial settings
for a variety of purposes such as habitat, vegetation,
and species evaluations.

Many regions have kilometers of unassessed
streams but limited resources for stream monitoring
and surveying.Cooper et al. (1998)note that “Rapid
[Bio]assessment Protocols were created to facilitate
cost-effective stream surveys designed to rapidly col-
lect, compile, analyze, and interpret environmental data
to assist management decisions.” Given this, the con-
ceptual principles of Rapid [Bio]assessment Protocols
(Barbour et al., 1997; Cooper et al., 1998) are: “cost-
effective, yet scientifically valid procedures, provisions
for multiple site investigations in a field season, quick
turn-around of results for management decisions, easily
translated to management and the public, and envi-
ronmentally benign procedures”. In an effort to meet
the principles outlined above, RAPs are often subjec-
tive and do not incorporate detailed data collection.
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could use readily available office materials and make
reliable predictions based on reducing costs (e.g., field
costs, property and infrastructure loss) while increasing
safety (e.g., prioritizing human lives).

In the late 1970s, the United States Department of
Agriculture Forest Service (USFS) designed a RAP
to evaluate stream channel stability using data col-
lected from the Rocky Mountains, USA. The method is
called the Stream Reach Inventory and Channel Stabil-
ity Evaluation (SRICSE). It has been used in over 60%
of the national forests in the United States (Parrott et
al., 1989) and is used by the forest service and others
today (Kaplan-Henry et al., 1994; Myers and Swanson,
1996; United States Forest Service, 1992).

In an effort to reduce costs and increase public
safety, this research explores how estimates of channel
stability may be predicted from data on hydrologi-
cal, biological, and geomorphological features derived
from mapping data commonly available to resource
managers. These hydrobiogeomorphic features include
sinuosity, topographic gradient, elevation, land use and
land cover, and geology. While this study is specific to
detecting channel stability in this region, the methods
described are intended to be applicable for predicting
the outcomes of any Rapid [Bio]Assessment Protocol
for any purpose in any region.

1.2. Channel stability

River channel stability was defined byRosgen
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esources by federal and state agencies in the U
tates and management decisions are often based

hese assessments. In the context of this paper, it
ot matter whether we use the outcomes of RAPs
ore detailed assessment methods; the machine

ng approach proposed would be the same and R
re simply chosen as one example of the approac

Even aided by RAPs, it is still expensive for fede
nd state agencies to send investigative teams in
eld; hence, many sites go unmonitored. Becaus
his, it would be useful to have an automated sys
o prioritize these investigations. Ideally, this sys
1996)as “the ability of the stream, over time, to tra
ort the flows and sediment of its watershed in su
anner that the dimension, pattern and profile of

iver is maintained without either aggrading or deg
ng”. Channel instability is important because it m
ave negative consequences for aquatic and rip
abitat, and for river-related human infrastructure.

Over the course of thousands of years, a river rea
quilibrium; a state of maximum efficiency in tran
orting sediment through its basin (Bonneau and Snow
992). Equilibrium is influenced by geologic and c
atic history, which control the bed and bank m

ial, sediment delivery, vegetation, basin relief, kni
oints, and hydrology (Morisawa, 1968; Mount, 1995).
ore specifically, rivers exhibit dynamic equilibriu
ecause they must constantly scour and deposit
ent in order to maintain equilibrium despite chan

n sediment supply, discharge, and river pattern. W
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some instability is natural, excess instability can indi-
cate river dysfunction.

Unstable channels are often the result of changing
land use and land cover. Historical land use practices
that have disrupted equilibria along the longitudinal
profiles of rivers include farming, grazing, forestry,
urban development, dams and mining (Collins and
Dunne, 1990; Haible, 1980; Mount, 1995; Starkel,
1989). Complex stream channel patterns are simplified
when wetlands and floodplains are filled and drained
for development, riparian vegetation is cleared, and
when banks are stabilized against erosion or leveed for
flood protection. These activities can remove rough-
ness by disconnecting a river from its floodplain, reduce
water storage capacity and can shorten the river length
(its flow path). These factors increase the flow velocity
and reduce sediment storage causing channelization,
channel simplification, riparian degradation and ero-
sion which all contribute to channel instability.

Erosion caused by channel instability produces sed-
iment, which is sometimes regarded as a non-point
source pollutant. It is well documented that excess sedi-
ment has contributed to the decline of salmon and other
aquatic organisms by causing bed siltation and decreas-
ing water quality (Williamson et al., 1995). Excess
material or the wrong size sediment can disable salmon
spawning and smother redds. Deep streambed scour
can reduce embryo survival in salmonids (Montgomery
et al., 1996).

The riparian zone is a key element in both biological
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other structures buried within the riverbed (Collins and
Dunne, 1990), and can cause road and trail damage.
Channel instability often instigates or increases the
intensity and frequency of mass wasting and flooding,
resulting in large-scale events such as bank failures and
landslides. Such events have destroyed many homes
and even lives in the last decade.

It is important to note that channel instability is detri-
mental only when it is excessive and when and where
it negatively impacts aquatic, riparian, and human well
being. Channel instability is, geologically, a positive
reaction to non-equilibrium and is the river’s way of
repairing itself (restoring equilibrium). A natural river
in dynamic equilibrium has both stable and unstable
areas, which vary in frequency and magnitude over
space and time.

2. Methods

2.1. Data collection

The channel stability fieldwork was conducted on a
select portion of third and fourth order drainage sys-
tems at high elevations in the Upper Colorado River
Basin, Colorado, United States of America. These
rivers were selected because they are longer, larger and
more accessible than first and second order streams, and
more diverse in their hydrobiogeomorphic features and
land use.
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able and result in poor health or death of ripa
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y undercutting the supporting banks (Barkhurst and
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normative degree of channel stability is importan
rotecting the riparian zone.

In addition to compromising water quality a
ausing aquatic and riparian habitat damage, c
el instability can be costly to human infrastructu

t can undermine bridge supports, expose pipeline
The Upper Colorado River basin was selected
everal reasons. The primary consideration is tha
ost recognized method for evaluating channel st

ty, the SRICSE, was developed in the Central Ro
ountain region. This region also has large land tr
f relatively undisturbed forest, thus reducing c

ounding variables and exemplifying the problem
imited worker resources covering a vast area.

To evaluate channel stability with the SRIC
ethod, a series of inventory items must be compl
sing maps, field observations, and field meas
ents. The stream reach inventory is a short, simp

ist of the location, basic hydraulic and geomorp
roperties, and water quality components. Cha
tability is evaluated by assigning scores from a ra
heet to 15 channel stability attributes related
tability of the channel bottom, lower bank and up
ank (seven discrete and four continuous attribu
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Attributes include landform slope, mass wasting,
debris jam potential, vegetative bank protection, chan-
nel capacity, bank rock content, obstructions and flow
deflectors, cutting, deposition, rock angularity, moss
content, consolidation, stable materials, scouring and
deposition, and aquatic vegetation. A small handbook
(Pfankuch, 1978) is used to guide the rating choices.
These attribute scores are added together to get a total
reach score (TRS) for each stream. Higher TRS values
indicate more unstable channels.

Fifty-five streams were surveyed at randomly
selected sites during the summer of 1997. Each sur-
vey had one replicate survey taken, for a total of 110
surveys. The survey and replicate were averaged for
each stream. The replicates were taken one-eighth of a
mile upstream from the randomly selected survey site.
Each survey length was 8–12 times the channel width.
Over the 55 streams, the stability measures ranged from
55 to 117.5.

Site-specific information that is not directly mea-
sured by the SRICSE was taken from both paper
maps and a Geographic Information System (ESRI
ArcView combined with EPA Basins). This informa-
tion includes hydrobiogeomorphic features thought to
influence channel stability and be commonly avail-
able without requiring any fieldwork. The continuous
variables measured were topographic stream gradient,
sinuosity, elevation, and precipitation. Categorical vari-
ables measured were geology, and land use and land
cover.
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score is at least 80 will be assigned to the unstable class,
and any reach having a score below 80 will be classed
stable.

Note that there is no “correct” threshold in our
study. The threshold would be chosen by the individual
resource expert according to their specific geographical
area and problem. We have shown a range of thresholds
so that we could examine the behavior of the algorithms
in a variety of conditions. We have defined different
classification problems for each of the possible dif-
ferent values of the stable-unstable thresholdθ in the
interval [80, 95]. The values 80 and 95 were chosen
because values less than 80 are unlikely to ever be con-
sidered unstable and values greater than 95 are rare
and therefore, provide too small a sample of unsta-
bles for reliable learning. While we could have defined
more than two classes (e.g., good, fair, and poor), we
chose to use only two classes because we do not have
cost information for more than two classes and we are
investigating this problem in the context of decision
costs.

2.3. Classification costs

The difficulty in modeling the problem as a classifi-
cation task is that when making a decision, one class of
errors (misclassifying unstable channels) is much more
expensive than the opposite error. Standard statistical
and machine learning techniques attempt to minimize
the total number of mistakes (in the case of classifica-
t ion),
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We are interested in making a binary decision
his problem and the original target data (stab
easures) is in the form of real numbers instea
iscrete classes. Consequently, we have transfo

he problem from its original regression format i
everal two-class classification problems in which
lasses are stable and unstable. These classes
pond to whether investigators will need to go in
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ssumed to have the potential for incurring large lo
nd therefore, require further field investigation. Sta
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ion) and mean squared error (in the case of regress
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rror that may result in destruction (predict stable w

t is really unstable) is treated as no more or less im
ant than an error that results in inconvenience (pre
nstable when it is stable). Such treatment is unsui

or this application because our primary objectives
o reduce cost (i.e., damages) and increase safety.
elated to channel instability might include: agric
ural decline due to a lower water table or bank fail
iparian decline caused by a lower water table,
abitat loss, property loss and loss of lives, as
s infrastructure loss if bridges or pipelines are un
ined.
While we do not have precise values for the c

f the different decisions this problem, we do kn
he approximate range of values for the cost ma
he ranges of the costs are represented inTable 1
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Table 1
The cost matrix for the river channel stability task, representing the ranges of costs associated with each decision

Actual Predicted Result Cost (US$)

Stable Unstable One day labor fp ≈ 103

Unstable Stable Possible loss of infrastructure, property, lives fn ≥ 107

Unstable Unstable One day plus full cost of remediation tp ≈ 103 to 104

Stable Stable No effect, no action required tn ≈ 0

(in US$). The largest cost is the cost of the unstable
channels that are classified as stable, a value in the
order of tens of millions (representing the losses of
human lives and losses of property that can be caused
by an unstable channel that was not remediated). An
incorrect classification of a stable channel has associ-
ated with it the cost of 1 day’s work of an expert sent
to evaluate the channel. A correct classification of an
unstable channel will incur the cost of 1 day’s expert
work plus the cost of the remediation. The dominating
cost however, corresponds to the risk of misclassify-
ing an unstable river channel. Therefore the objectives
of the learned classifiers are to classify all unstables
correctly while having as few misclassified stables as
possible.

2.4. Decision trees

There are a number of machine learning techniques
that could be used for this research. We chose deci-
sion trees for the analysis because they have good
performance, few control parameters, are fast to train,
yield relatively comprehensible models, and the soft-
ware is readily available (Breiman et al., 1984; Quinlan,
1986, 1993). These algorithms produce tree-structured
models for classification consisting of internal nodes
and leaves where the internal nodes specify tests on
attribute values while the leaves specify class labels.

To classify an unlabeled example, the decision tree
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node based on some evaluation function (usually a
heuristic). The test with the highest score is chosen,
and the training data is split using the test. The induc-
tion procedure is called recursively for each resulting
partition of the data. The splitting process halts when
any one of the following conditions is satisfied: (1) all
training instances reaching the node belong to the same
class, (2) all training instances have the same attribute
values, (3) the number of instances is smaller than the
minimum number allowed (a parameter given by the
user), or (4) the assessment heuristic indicates that no
further improvement of the model can be achieved.
Most of the heuristic evaluation functions for choosing
a test that are used in practice, make use of some mea-
sure of the purity of the data (i.e., seek tests that lead
to nodes in which the number of instances in one class
is much larger than the instances from other classes,
ideally having only instances from a single class).
When the tree model is constructed, a pruning pro-
cedure is often employed to avoid overfitting the input
data.

2.5. Learning good class probability estimates

Given the fact that we need classifiers that are cost-
sensitive, the most flexible approach to handle the costs
is to employ classifiers as class probability estimators
(or, conditional density estimators) and compute the
optimal decision based on the estimated probabilities
and the decision costs.
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ill perform the attribute test specified by the root n
nd follow the branch corresponding to the outcom

he test. In the case of reaching another internal n
he instance will traverse the tree through the bran
orresponding to the outcomes of the tests, all the
o a leaf node. When a leaf node is reached, the e
le will be assigned the class label specified by

eaf.
To train the classifier, all possible attribute tests

onsidered and assessed (on the training data) a
In general, in the case of a classification task
nstancex should be labeled with the classγ that min-
mizes the conditional risk (or, expected loss) for
nstance

(γ|x) =
K∑

j=1

P(j|x)C(γ, j) (1)

hereK is the number of classes (in our case, 2:sta-
le and unstable) and C is the K × K cost (or loss
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matrix (C(i, j) is the cost associated with classifying
an instance that is in classj as being in classi). This
equation gives us the optimal labels if the probabilities
P(j|x), for all j = 1, . . ., K, are accurately computed.

All classification algorithms can be converted into
class probability estimators. However, because most
of these algorithms were designed to learn models that
try to minimize the misclassification error (and not for
probability estimation), the computed probabilities are
inaccurate in most cases.

In the case of decision trees, the class probability
estimatesP(y|x) for an unseen instancex that reaches
a leaf l, are approximated using the class counts of
the training instances that reachl. For example, if a
leaf is reached by eight instances from classstable
and 0 instances from the classunstable, the proba-
bility estimated using the tree, for an instancex that
reaches the same leaf is:P(stable|x) = 8/8 = 1.0 and
P(unstable|x) = 0/8 = 0.0.

As noted by different studies (Bradley, 1997;
Provost and Domingos, 2003; Provost et al., 1998;
Smyth et al., 1995), the class probability estimates
of the decision trees are poor. There are three major
factors that cause this deficiency. First, the greedy
induction mechanism that splits the data into smaller
and smaller sets leads to probability estimates that
are computed based on very small samples, and this
leads to inaccurate estimates. Second, most of the exist-
ing decision-tree induction algorithms focus on mini-
mizing the number of misclassifications (through the
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method, bagged lazy option trees (B-LOTs) addresses
the problem of differentiating between values at differ-
ent distances from decision boundaries.

2.6. Probability estimation trees (PETs)

Provost and Domingos (2003)show that decision
tree class probability estimates can be improved by
skipping the pruning phase and smoothing the distri-
butions by applying a Laplace correction (or Dirichlet
prior) as follows:

P(yj|x) = Nj + λj

N + ∑K
i=1λi

(2)

whereN is the total number of training examples that
reach the leaf,Nj the number of examples from class
yj reaching the leaf,K the number of classes, andλj is
the prior for classyj (assumed to be uniformλi = 1.0
for all i = 1, . . ., K in this case, and in all other appli-
cations in which there is no prior knowledge about
the distribution of the instances). The Laplace correc-
tion (Bradford et al., 1998; Cestnik, 1990; Good, 1965)
will smooth probability estimates that are too extreme
because of the small size of the sample that reaches
the leaf. This smoothing permits probability estimation
trees to reduce the effects of the second of the causes for
inaccurate estimates (extreme probabilities), described
in the previous section.
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re too extreme (i.e., close to 0.0 and 1.0), as in
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inear decision boundaries). This kind of decision sp
ssigns uniform probability values to points that

n the same region and will not differentiate betw
oints that are closer to the boundary of the region
oints that are farther from the boundary.

The following sections will present two approac
or learning more accurate probability estimates
iver channel stability and will show how these me
ds have been employed for the task of classifying
hannels. The first method, bagged probability est
ion trees (B-PETs) addresses the problem of ha
xtreme probability values at the leaves. The se
ree-based probability estimates, Provost and Do
os apply Bagging (Breiman, 1996). Bagging average

he probabilities computed by multiple models. Eac
he models is trained using a bootstrap replicate (Efron
nd Tibshirani, 1993) of the training data. The resultin
odels are called bagged probability estimation t

or B-PETs).

.7. Lazy learning

If a point to be classified lies near a decision bou
ry, then points within the same decision region
ill be used to compute the class probabilities are li

o be farther away from it on average (i.e., less sim
han they would be if the test point was in the ce
f the decision region. Standard supervised lear
such as decision tree induction) does not make u
ny knowledge about the points to be classified (s
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as their attribute values), so it is unable to guarantee
that the decision boundaries will be far from the test
point. Lazy learning is a framework in which a model
is built only when the attribute values of the instance
to be classified are known. Using this knowledge, deci-
sion boundaries can be chosen to guarantee that they
do not fall near the test point. Commonly, under this
framework a model is built for each individual unla-
beled test instance. The most popular example of a lazy
learning algorithm is the nearest neighbor algorithm
(Dasarathy, 1990; Wettschereck, 1994), which classi-
fies an example based on the labels of the instances
that are most similar to it (according to some distance
measure).

The vast majority of the efforts in lazy learning have
focused on accurate 0/1-loss classification (Aha, 1997).
We have used a new lazy algorithm for accurate estima-
tion of class probabilities. Our decision to employ the
lazy learning framework is based on the intuition that
lazy models can more accurately capture the specific
characteristics of previously unseen instances and the
neighborhood around them and therefore may be able
to compute better probabilities—especially for tasks
like our river channel stability problem, in which lim-
ited training data is available. The disadvantage of lazy
learning is that classification time can be significantly
larger for lazy algorithms, and this can affect their
utility in some practical applications. For our chan-
nel stability classification task, we employed a method
based on the lazy tree learning algorithms proposed by
M
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2.7.2. Multiple options at nodes: lazy option trees
(LOTs)

Although lazy trees attempt to help avoid inaccurate
estimates of points too close to the decision boundary,
the small sample size at the leaves and the greediness
of the induction method still influence the quality of
the probabilities. The greedy selection of tests used for
splits means that at a given split, there may be more
than one test with a similar information gain, but only
the single split with the highest gain will be chosen.
To correct for this, instead of having a single test in
the internal nodes, we allow multiple tests (options) in
each node to grow lazy option trees (or, LOTs). This
idea extendsBuntine’s (1990)andKohavi and Kunz’s
(1997)ideas of option decision trees for classification
into the lazy tree learning framework.

Given a specified numbert of options to allow, in
each node the lazy option tree algorithm selects the
t-tests with the highest information gain. To compute
the class probabilityP(y|x), the algorithm will calculate
the proportion of training examples from classy from
each of the tree leaves and will average the values. This
corresponds to taking all the paths from the root node
to the leaf node. Because the tree was built just forx, all
the tests on these paths will be satisfied by the attribute
values ofx.

The primary advantage of the options mechanism
is that tests having an information gain almost as high
as the best test will be performed, while they might
never be performed in decision trees, lazy trees, or even
b this
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argineantu and Dietterich (2002).

.7.1. Lazy trees
A combination of the lazy learning idea and de

ion tree algorithms is an algorithm called lazy d
ion trees introduced byFriedman et al. (1996). The
azy decision tree algorithm builds a separate dec
ree for each test instance (the query point). Bec
nly one instance has to be classified by the lea
odel, each internal node will have only one outgo
ranch—the one that tests positive on the query p
or each internal node, the selected test will be the

hat maximally decreases the entropy for the nod
hich the test instance would branch. The informa
ain is defined to be the difference between the
ntropy values. Class probabilities are estimated b
n the counts of the classes of the instances rea

he leaf node as described in Eq.(2).
agged trees. This way, diversity is increased, and
ight lead to better probability estimates. In addit

azy option trees (LOTs) offer a single compact mo
hat is comprehensible because the rules extracte
ery similar to the rules extracted from regular d
ion trees and the options can be interpreted as lo
isjunctions.

The options represent an alternative to the vo
echanism of bagging for smoothing and improv

he probability estimates of the tree models. None
ess, to improve the class probability estimates o
OTs we propose applying bagging on top of the a
ithm, resulting in bagged lazy option trees (B-LOT
ur intuition is that the different nature of the t
echanisms, options and bagging, will help impr

ng the computed estimates.
In the case of LOTs and B-LOTs, the user will h

o set two additional parameters: maxT is the maximum
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number of tests that are allowed in a node, and minG
is the minimum gain proportion (0.0 < minG < 1.0), a
number indicating the minimum gain for a test in order
to be selected.

For all experiments that involved LOTs and B-LOTs
we have chosen the value for the maximum number
of tests allowed in a node to be maxT = 3 and the
gain proportion minG = 0.2. Preliminary experiments
show that although the complexity of the trees grows
a lot with the value of maxT, the results do not show
major improvement of the LOTs or B-LOTs as maxT
is assigned larger values (we tested for maxT = 5,
maxT = 7, and maxT = 10). In the meantime, larger
values of maxG have proven to hurt the overall per-
formance of the algorithm.

3. Experimental results

3.1. ROC curves

A popular method for the evaluation of classifiers
is the receiver operating characteristic, or ROC (Egan,
1975; Provost and Fawcett, 1997). ROC curves assume
that the classification algorithm to be evaluated can
output some instance class rankings. By changing the
thresholds for making the decisions (based on the
ranking), the learned classifier will output the whole
spectrum of hypotheses that are computable by that
classifier.

An ROC curve shows the different cost tradeoffs
available for a given algorithm for different decision
threshold values. The origin of the graph corresponds
to the classifier that always predicts the negative class.
The (1, 1) point of the graph corresponds to the clas-
sifier that always predicts the positive class. The best
possible performance would occur at the point (0, 1)
(corresponding to a false positive rate of 0 and a true
positive rate of 1), where all examples would be clas-
sified correctly. All classifiers above the diagonal from
(0, 0) to (1, 1) have predictions that are better than ran-
dom, while the ones below have an accuracy worse than
random. There have been several attempts at inferring
metrics from the ROC curve that would robustly eval-
uate the performance of learning algorithms. The most
commonly used of these metrics is the area under the
ROC curve or, AUC (Bradley, 1997).

We generated an ROC curve for each classifier at
each value of the stable/unstable threshold. There are
too many curves to show them all here, butFig. 1gives
one example of two ROC curves generated whenθ is
set to 86, one for the B-LOT classifier and one for the
B-PET. We can compare the performance of the two
classifiers across a range of parameter settings with-
out regard to cost by comparing the area under each of
their ROC curves (AUC), with a larger area implying a
better classifier. We can also compare the performance
of the two classifiers with respect to cost. Using this
measure, the best performance for each of these classi-
fiers corresponds to the point where they can recognize

ET cla
Fig. 1. ROC curves for B-LOT and B-P
 ssifiers for stable/unstable thresholdθ = 86.
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100% of the true positives with the smallest num-
ber of false positives. The next two sections give the
details for our tests using each type of the two types of
measure.

3.2. Overall performance without using cost
measures (AUC)

We first evaluated the algorithms in the absence
of any cost matrix using the area under the ROC
curve (AUC) as the performance measure. To do this,
we employed leave-one-out cross-validation (LOOCV)
(Fukunaga, 1972; Kearns and Ron, 1999), because of
the small size of the available data sample.Table 2
shows the values of the AUC for the two algorithms,
for different values of theθ parameter. By this mea-
sure, the B-LOTs had better overall performance than
the B-PETs for all values ofθ except for the [90, 93]
range.

3.3. Overall performance using cost measures

For each threshold valueθ, we have applied the
bagged LOTs (B-LOTs) and the bagged PETs (B-
PETs) to learn the ranking of the river channels to make
the decision that produces the smallest number of false
positives (stables classified as unstable) while finding
all of the true positives (correctly labeled unstables). In
the case shown inFig. 1, that point for the B-LOT clas-
sifier is at the point where it gets 72.7% false positives.
F false
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Table 3
Overall performance using cost measures

θ B-LOTs B-PETs Fraction unstable
sites in dataset

81 0.33 0.22 0.49
84 0.60 0.40 0.45
86 0.72 0.45 0.42
88 0.73 0.55 0.36
90 0.47 0.58 0.29
93 0.50 0.75 0.25
95 0.28 0.50 0.20

The values represent the proportion of stable channels that were
misclassified (out of the total number of stable channels) when all
unstable channels were classified correctly.θ is the value of the sta-
bility factor that sets the threshold between stable and unstable river
channels. The table reports the smallest false positive rate corre-
sponding to a true positive rate of 1.0. The values in bold face indicate
the classifier with the better score. The rightmost column shows the
fraction of sites in the dataset that are unstable at the given thresh-
old θ. This reflects the relative balance of the two classes stable and
unstable.

positives, so it is the better of the two classifiers for the
thresholdθ = 86 when errors are expressed in terms of
cost. The results for all tested values ofθ are summa-
rized inTable 3. The values in the table correspond to
the circled points shown inFig. 1 for each value ofθ.
By this measure, the performance was nearly reversed
from the AUC measure. The B-LOTs were better forθ

in the [90, 95] range and the B-PETs were better forθ

less than 90.

4. Discussion and conclusions

The fact that the AUC for one algorithm A1 is better
than the AUC for another algorithm A2 while the cost
or error rate of A2 is lower than the cost (or error rate)
for A1 shows how important is the assessment method
that is employed. AUC (Table 2) assesses the perfor-
mance of an algorithm over all possible costs/decisions,
whereas the values inTable 3 essentially give the
loss incurred by the algorithms for a given decision
threshold.

Our results show that both the B-LOTs and the
B-PETs can learn to recognize every example of an
unstable channel in the dataset without labeling all of
the stables as unstable. However, the misclassification
rate for calling stables unstable is often in the neighbor-
hood of 50% even if we are allowed to always choose
or the B-PET classifier, the best value is at 45.5%

able 2
verall performance without using cost measures (AUC)

B-LOTs B-PETs

0 0.813 0.743
1 0.839 0.814
4 0.818 0.795
6 0.789 0.743
8 0.78 0.652
0 0.673 0.684
3 0.61 0.656
5 0.671 0.652

he table shows the values of the area under the ROC curve (
or the two algorithms (B-LOTs and B-PETs) for different value
(the value that sets the threshold between stable and unstab
hannels). These values were computed using leave-one-out
alidation. The results printed with bold face indicate the va
orresponding to the algorithm that was better for a particular se
f θ at a significance level ofp < 0.05.
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the better of the two classifiers. This is not surprising
given the complexity of the problem and the small sam-
ple size for training, particularly at higher thresholds.
Nevertheless, there is still a substantial cost savings
for the user since it means that there are many stable
sites that do not have to be visited while it is highly
probable that every unstable site does get visited. More-
over, these results have further practical value in that
they did not require knowledge of exact costs (only
order of magnitude) and the system can be interfaced
to a geographic information system (GIS) to provide
assessments along the full length of all channels in a
large region.

Our results also show that if the classifier’s internal
decision threshold (probability above which an exam-
ple is labeled unstable) is set optimally, the B-PETs give
lower costs whenθ < 90 and the B-LOTs are better for
larger values ofθ. It is important to observe that larger
values ofθ correspond to fewer unstable examples in
the data, creating a class imbalance. This suggests that
lazy learning was able to handle larger class imbalance
better than the B-PETs. The intuition on why the lazy
trees tended to perform better on imbalanced data is
that the lazy trees focus separately on each previously
unseen instance and build “more carefully” the decision
boundaries around the “rare” or “minority” points, and
thus, compute better estimates for these points.

We should also note that while we have only shown
results here for B-PETs and B-LOTs, we have eval-
uated several other methods for this application and
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work, for example, random forests (Breiman, 2001).
This paper has compared the performance of two types
of classifiers based on probability estimation trees for
the purpose of classifying stream channels into cate-
gories of stable and unstable with the goal of insuring
the recognition of all unstable channels and minimiz-
ing the number of misclassified stable channels. We
found that B-PETs performed better at lower thresh-
olds corresponding to more balanced distribution of
training examples and B-LOTs performed better in the
more unbalanced case, perhaps due to their ability to
focus on individual examples. Regardless of whether
these are the best methods for probability estimation,
we have shown that a cost-based learning approach can
increase safety and reduce costs in a difficult practical
application where cost-free methods may fail.
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