~~NOTOC~~ ====== Publications (By Topic) ====== (* indicates student as lead author)\\ (Some publications listed twice under multiple topics)\\ ([[:publications|Return to chronological list]])\\ ===== Landslides ===== Bayer*, B., A. Simoni, M. Mulas, A. Corsini, and D. Schmidt (2018), Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR, Geomorphology, 308, 293-306, doi.org/10.1016/j.geomorph.2018.02.020. [[https://www.sciencedirect.com/science/article/pii/S0169555X18300783?via%3Dihub|Abstract]] Bayer*, B., __D. Schmidt__, and A. Simoni (2017), The Influence of External Digital Elevation Models on PS-InSAR and SBAS Results: Implications for the Analysis of Deformation Signals Caused by Slow Moving Landslides in the Northern Apennines (Italy), IEEE Transactions on Geoscience and Remote Sensing, vol.PP, no.99, pp.1-14 doi: 10.1109/TGRS.2017.2648885. [[http://ieeexplore.ieee.org/document/7835657/|Abstract]] Bayer*, B., A. Simoni, __D. Schmidt__, and L. Bertello (2017), Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Engineering Geology, 226, 20-32, doi:10.1016/j.enggeo.2017.03.026. [[https://www.sciencedirect.com/science/article/pii/S0013795216303787|Abstract]] Tong, X., and __D. A. Schmidt__ (2016), Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method, Rem. Sens. Env., 186, doi:10.1016/j.rse.2016.09.008.[[http://www.sciencedirect.com/science/article/pii/S0034425716303510|Abstract]] Bennett, G. L., J. J. Roering, B. H. Mackey, A. L. Handwerger, __D. A. Schmidt__, and B. P. Guillod (2016), Historic drought puts the brakes on earthflows in Northern California, Geophys. Res. Lett., 43, doi:10.1002/2016GL068378. [[http://onlinelibrary.wiley.com/doi/10.1002/2016GL068378/abstract|Abstract]].\\ Bayer*, B., L. Bertello, A. Simoni, M. Berti, __D. Schmidt__, M. Generali, and M. Pizziolo (2016), Ground surface deformations induced by tunneling under deep-seated landslides in the Northern Appennines of Italy imaged using advanced InSAR techniques, Landslides and Engineered Slopes. Experience, Theory and Practice, Proc. 12th Intl. Sym. Landslides (Napoli, Italy, 12-19 June 2016), Edited by S. Aversa, L. Cascini, L. Picarelli, and C. Scavia, dos: 10.1201/b21520-35. [[http://www.crcnetbase.com/doi/abs/10.1201/b21520-35|Abstract]]\\ Bennett, G., S. Miller, J. Roering, and __D. Schmidt__ (2016), Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction, Geology, DOI:10.1130/G37530.1. [[http://geology.gsapubs.org/content/early/2016/03/30/G37530.1.abstract|Abstract]]\\ Handwerger*, A. L., Roering, J. J., __Schmidt, D. A.__, and Rempel, A.W. (2015). Kinematics of Earthflows in the Northern California Coast Ranges using Satellite Interferometry, Geomorphology, 246, doi:10.1016/j.geomorph.2015.06.003. [[http://www.sciencedirect.com/science/article/pii/S0169555X15300209|Abstract]]\\ Roering, J. J., B. H. Mackey, A. L. Handwerger, A. M. Booth, __D. A. Schmidt__, and C. Cerovski-Darriau, (2015), Beyond the angle of repose: Tracking landslides and landscape evolution using airborne lidar, satellite interferometry, historical air photos, cosmogenic radionuclides, suspended sediment records, and geomorphic process models, Geomorphology, 236, doi:10.1016/j.geomorph.2015.02.013. [[http://www.sciencedirect.com/science/article/pii/S0169555X15000963|Abstract]]\\ Handwerger*, A., J. J. Roering, and __D. A. Schmidt__ (2013), Controls on the seasonal deformation of slow-moving landslides, Earth Planet. Sci. Lett., 377-378, doi: 10.1016/j.epsl.2013.06.047. [[http://www.sciencedirect.com/science/article/pii/S0012821X13003701|Abstract]] \\ Calabro*, M. D., __D. A. Schmidt__, and J. J. Roering (2010), An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry, J. Geophys. Res., 115, F02020, doi:10.1029/2009JF001314. [[http://onlinelibrary.wiley.com/doi/10.1029/2009JF001314/abstract|Abstract]] \\ Roering, J. J., L. L. Stimely, B. H. Mackey, and __D. A. Schmidt__ (2009), Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport, Geophys. Res. Lett., 36, L19402, doi:10.1029/2009GL040374. [[http://onlinelibrary.wiley.com/doi/10.1029/2009GL040374/abstract|Abstract]] \\ ===== Episodic, Tremor, and Slip (ETS) ===== Ducellier*, A., Creager, K, and __D. A. Schmidt__ (2022), Detection of slow slip events using wavelet analysis of GNSS recordings, Bull. Seism. Soc. Amer., DOI: 10.1785/0120210289. [[https://doi.org/10.1785/0120210289|Abstract]] Nuyen*, C. P., & __D. A. Schmidt__ (2021). Filling the gap in Cascadia: The emergence of low-amplitude long-term slow slip. Geochemistry, Geophysics, Geosystems, 22, e2020GC009477. [[https://doi.org/10.1029/2020GC009477|Abstract]] Fredrickson*, E. K., Wilcock, W. S. __D., Schmidt__, D. A., MacCready, P., Roland, E., Kurapov, A. L., et al. (2019). Optimizing sensor configurations for the detection of slow‐slip earthquakes in seafloor pressure records, using the Cascadia Subduction Zone as a case study. Journal of Geophysical Research: Solid Earth, 124, 13504– 13531. https://doi.org/10.1029/2019JB018053 [[https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JB018053|Abstract]] Hall*, K., __Schmidt, D.__, & Houston, H. (2019). Peak tremor rates lead peak slip rates during propagation of two large slow earthquakes in Cascadia. Geochemistry, Geophysics, Geosystems, 20, 4665– 4675. https://doi.org/10.1029/2019GC008510 [[https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008510|Abstract]] Alba*, S., R. J. Weldon II, D. Livelybrooks, and __D. A. Schmidt__ (2019), Cascadia ETS Events Seen in Tidal Records (1980-2011), Bulletin Seismological Society of America, 109, doi:10.1785/0120180218. [[https://pubs.geoscienceworld.org/ssa/bssa/article/109/2/812/568735/cascadia-ets-events-seen-in-tidal-records-1980|Abstract]] Hall*, K., H. Houston, and __D. A. Schmidt__ (2018), Spatial Comparisons of Tremor and Slow Slip as a Constraint on Fault Strength in the Northern Cascadia Subduction Zone, //Geochem. Geophys. Geosyst.//, 19, 2706–2718. doi:10.1029/2018GC007694. [[https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GC007694|Abstract]] Krogstad*, R. D., __D. A. Schmidt__, R. J. Weldon, and R.J. Burgette (2016), Constraints on accumulated strain near the ETS zone in Cascadia, Earth Planet. Sci. Letts., 439, 109-116, doi:10.1016/j.epsl.2016.01.033. [[http://www.sciencedirect.com/science/article/pii/S0012821X16000558|Abstract]]\\ Skarbek*, R. M., A. W. Rempel, and __D. A. Schmidt__ (2012), Geologic heterogeneity can produce aseismic slip transients, Geophys. Res. Lett., 39, L21306, doi:10.1029/2012GL053762. [[http://onlinelibrary.wiley.com/doi/10.1029/2012GL053762/abstract|Abstract]] \\ Gao*, H., __D. A. Schmidt__, and R. Weldon (2012), Scaling relationships of source parameters for slow slip events Bull. Seis. Soc. Am., 102, 1, 352-360, doi:10.1785/0120110096. [[http://faculty.washington.edu/dasc/BSSA/BSSA-D-11-00096_esupp.html|Supplementary Table]] | [[http://bssa.geoscienceworld.org/content/102/1/352.abstract|Abstract]] \\ __Schmidt , D. A.__ and H. Gao (2010), Source parameters and time-dependent slip distributions of slow slip events on the Cascadia subduction zone from 1998 to 2008, J. Geophys. Res., 115, B00A18, doi:10.1029/2008JB006045. [[http://onlinelibrary.wiley.com/doi/10.1029/2008JB006045/abstract|Abstract]] \\ Gomberg, J., P. Bedrosian, P. Bodin, M. Bostock, M. Brudzinski, K. Creager, H. Dragert, G. Egbert, A. Ghosh, J. Henton, H. Houston, H. Kao, P. McCrory, T. Melbourne, S. Peacock, E. Roeloffs, J. Rubinstein, __D. Schmidt__, A. Trehu, J. Vidale, K. Wang, and A. Wech (2010), Slow-slip phenomena in Cascadia from 2007 and beyond: A review, GSA Bull., 122, 7-8, 963-978, DOI: 10.1130/B30287.1. [[http://gsabulletin.gsapubs.org/content/122/7-8/963|Abstract]] \\ ===== Subduction Processes ===== Nuyen*, C. P., & __D. A. Schmidt__ (2022). Strain partitioning among forearc faults in southern Cascadia inferred from GNSS. Journal of Geophysical Research: Solid Earth, 127, e2022JB024236. [[https://doi.org/10.1029/2022JB024236|Abstract]] Han*, J., Vidale, J. E., Houston, H., __Schmidt, D. A.__, & Creager, K. C. (2018), Deep long-period earthquakes beneath Mount St. Helens: Their relationship to tidal stress, episodic tremor and slip, and regular earthquakes. Geophysical Research Letters, 45, 2241–2247, doi.org/10.1002/2018GL077063. Gomberg, J., P. Bodin, J. Borgeois, S. Cashman, D. S. Cowan, K. Creager, B. Crowell, A. Duvall, A. D. Frankel, F. Gonzalez, H. Houston, H. P. Johonson, H. Kelsey, U. Miller, E. Roland, D. Schmidt, L. Staisch, J. Vidale, W. Willcock, and E. Wirth (2016), Planning for a subduction zone observatory, Eos, 97, doi:10.1029/2016EO052635. [[https://eos.org/opinions/planning-for-a-subduction-zone-observatory|Article]] \\ Vidale, J.E., __D. A. Schmidt__, S.D. Malone, A.J. Hotovec-Ellis, S.C. Moran, K.C. Creager, and H. Houston (2014), Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the forearc mantle wedge, Geophys. Res. Lett., doi:10.1029/2013GL059118. [[http://onlinelibrary.wiley.com/doi/10.1002/2013GL059118/abstract|Abstract]] \\ Burgette*, R. J., R. J. Weldon, II, and __D. A Schmidt__ (2009), Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone, J. Geophys. Res., 114, B01408, doi:10.1029/2008JB005679. [[http://onlinelibrary.wiley.com/doi/10.1029/2008JB005679/abstract|Abstract]] \\ Also see ETS publications. ===== Volcanoes ===== Rodríguez-Molina*, S., González, P. J., Charco, M., Negredo, A. M., & __D. A. Schmidt__ (2021). Time-Scales of Inter-eruptive Volcano Uplift Signals: Three Sisters Volcanic center, Oregon (USA), Frontiers in Earth Science 8, 645: 1-30, doi: 10.3389/feart.2020.577588 [[https://doi.org/10.3389/feart.2020.577588|Abstract]] Welch*, M., and __D. A. Schmidt__ (2017), Separating Volcanic Deformation and Atmospheric Signals at Mount St. Helens Using Persistent Scatterer InSAR, J. Vol. Geothem. Res., doi: 10.1016/j.jvolgeores.2017.05.015. [[http://www.sciencedirect.com/science/article/pii/S0377027317302986|Abstract]] Dietterich*., H., M. Poland, __D. A. Schmidt__, K. Cashman, D. Sherrod, and A. T. Espinosa (2012), Tracking lava flow emplacement on the east rift zone of Kilauea, Hawaii, with synthetic aperture radar coherence, Geochem. Geophys. Geosyst., 13, Q05001, doi:10.1029/2011GC004016. [[http://onlinelibrary.wiley.com/doi/10.1029/2011GC004016/abstract|Abstract]] \\ Riddick*, S., and __D. A. Schmidt__ (2011), Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR, Geochem. Geophys. Geosyst., 12, Q12005, doi:10.1029/2011GC003826. Editor's Highlight | [[http://onlinelibrary.wiley.com/doi/10.1029/2011GC003826/abstract|Abstract]] \\ Moran, S.C., Freymueller, J.T., LaHusen, R.A., McGee, K.A., Poland, M.P., Power, J.A., __Schmidt, D.A__., Schneider, D.J., Stephens, G., Werner, C.A., and R. A. White (2008), Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes under the National Volcano Early Warning System, USGS Scientific Investigations Report 2008-5114, 47 p. [[http://pubs.usgs.gov/sir/2008/5114/|Text]] \\ ===== Faulting Processes ===== Nuyen*, C. P., & __D. A. Schmidt__ (2022). Strain partitioning among forearc faults in southern Cascadia inferred from GNSS. Journal of Geophysical Research: Solid Earth, 127, e2022JB024236. [[https://doi.org/10.1029/2022JB024236|Abstract]] Tong, X., D. Sandwell, and __D. A. Schmidt__ (2018), Surface creep rate and moment accumulation rate along the Aceh segment of the Sumatran fault from L-band ALOS-1/PALSAR-1 observations, Geophysical Research Letters. doi.org/10.1002/ 2017GL076723. Vidale, J.E., __D. A. Schmidt__, S.D. Malone, A.J. Hotovec-Ellis, S.C. Moran, K.C. Creager, and H. Houston (2014), Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the forearc mantle wedge, Geophys. Res. Lett., doi:10.1029/2013GL059118. [[http://onlinelibrary.wiley.com/doi/10.1002/2013GL059118/abstract|Abstract]] \\ Weldon, R.J., __D. A. Schmidt__, L. J. Austin, El. M. Weldon, and T. E. Dawson (2013), Compilation of Creep Rate Data for California Faults and Calculation of Moment Reduction Due to Creep, Appendix D, in Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model, U.S. Geological Survey Open-File Report 2013–1165, 97 p. [[http://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165_appendixD.pdf|Paper]] \\ Skarbek*, R. M., A. W. Rempel, and __D. A. Schmidt__ (2012), Geologic heterogeneity can produce aseismic slip transients, Geophys. Res. Lett., 39, L21306, doi:10.1029/2012GL053762. [[http://onlinelibrary.wiley.com/doi/10.1029/2012GL053762/abstract|Abstract]] \\ Gao*, H., __D. A. Schmidt__, and R. Weldon (2012), Scaling relationships of source parameters for slow slip events Bull. Seis. Soc. Am., 102, 1, 352-360, doi:10.1785/0120110096. [[http://faculty.washington.edu/dasc/BSSA/BSSA-D-11-00096_esupp.html|Supplementary Table]] | [[http://bssa.geoscienceworld.org/content/102/1/352.abstract|Abstract]] \\ Burgette*, R. J., R. J. Weldon, II, and __D. A Schmidt__ (2009), Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone, J. Geophys. Res., 114, B01408, doi:10.1029/2008JB005679. [[http://onlinelibrary.wiley.com/doi/10.1029/2008JB005679/abstract|Abstract]] \\ __Schmidt, D. A.__, and R. Bürgmann (2008), Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake, Geophys. Res. Lett., 35, L19305, doi:10.1029/2008GL035270. [[http://onlinelibrary.wiley.com/doi/10.1029/2008GL035270/abstract|Abstract]] \\ Wisely*, B. A., __D. A. Schmidt__, and R. J. Weldon II (2008), Compilation of surface creep on California faults and comparison of WG-07 deformation model to Pacific-North America plate motion, in The Uniform California Earthquake Rupture Forecast, Version 2, USGS Open-File Report 2007-1437P. [[http://pubs.usgs.gov/of/2007/1437/p/|Text]] \\ __Schmidt, D. A.__, and R. Bürgmann (2006), InSAR constraints on the source parameters of the 2001 Bhuj earthquake, Geophys. Res Lett., 33, L022315, doi:10.1029/2005GL025109. [[http://onlinelibrary.wiley.com/doi/10.1029/2005GL025109/abstract|Abstract]] \\ __Schmidt, D. A.__, Bürgmann, R., R. Nadeau, and d’Alessio (2005), Distribution of asiesmic slip rate on the Hayward fault inferred from seismic and geodetic data, J. Geophys. Res., 110, B08406, doi:10.1029/2004JB003397. [[http://onlinelibrary.wiley.com/doi/10.1029/2004JB003397/abstract|Abstract]] \\ d’Alessio, I. A. Johanson, R. Bürgmann, __D. A. Schmidt__, and M. H. Murray (2005), Slicing up the San Francisco Bay Area: Block kinematics and fault slip rate from GPS-derived surface velocities, J. Geophys. Res., 110, B06403, doi:10.1029/2004JB003496. [[http://onlinelibrary.wiley.com/doi/10.1029/2004JB003496/abstract|Abstract]] \\ Bürgmann, R., __Schmidt, D.__, Nadeau, R. M., d’Alessio, M., Fielding, E., Manaker, D., McEvilly, T. V., and M. H. Murray (2000), Earthquake potential along the northern Hayward Fault, California, Science, 289, 1178-1182, doi:10.1126/science.289.5482.1178. [[http://www.sciencemag.org/content/289/5482/1178.abstract|Abstract]] \\ ===== Aquifers ===== Wisely*, B. A., and __D. A. Schmidt__ (2010), Deciphering vertical deformation and poroelastic parameters in a tectonically active fault-bound aquifer using InSAR and well level data, San Bernardino basin, California, Geophys. J. Intl., 181, 3, DOI: 10.1111/j.1365-246X.2010.04568.x [[http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2010.04568.x/abstract|Abstract]] \\ __Schmidt, D. A.__, and R. Bürgmann (2003), Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res., 108 (B9), 2416, doi: 10.1029/2002JB002267. [[http://onlinelibrary.wiley.com/doi/10.1029/2002JB002267/abstract|Abstract]] \\ ===== Satellite Radar / InSAR ===== Tong, X., D. Sandwell, and __D. A. Schmidt__ (2018), Surface creep rate and moment accumulation rate along the Aceh segment of the Sumatran fault from L-band ALOS-1/PALSAR-1 observations, Geophysical Research Letters. doi.org/10.1002/ 2017GL076723. Welch*, M., and __D. A. Schmidt__ (2017), Separating Volcanic Deformation and Atmospheric Signals at Mount St. Helens Using Persistent Scatterer InSAR, J. Vol. Geothem. Res., doi: 10.1016/j.jvolgeores.2017.05.015. [[http://www.sciencedirect.com/science/article/pii/S0377027317302986|Abstract]] Tong, X., and __D. A. Schmidt__ (2016), Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method, Rem. Sens. Env., 186, doi:10.1016/j.rse.2016.09.008.[[http://www.sciencedirect.com/science/article/pii/S0034425716303510|Abstract]] Bayer*, B., L. Bertello, A. Simoni, M. Berti, __D. Schmidt__, M. Generali, and M. Pizziolo (2016), Ground surface deformations induced by tunneling under deep-seated landslides in the Northern Appennines of Italy imaged using advanced InSAR techniques, Landslides and Engineered Slopes. Experience, Theory and Practice, Proc. 12th Intl. Sym. Landslides (Napoli, Italy, 12-19 June 2016), Edited by S. Aversa, L. Cascini, L. Picarelli, and C. Scavia, dos: 10.1201/b21520-35. [[http://www.crcnetbase.com/doi/abs/10.1201/b21520-35|Abstract]] Handwerger*, A. L., Roering, J. J., __Schmidt, D. A.__, and Rempel, A.W. (2015). Kinematics of Earthflows in the Northern California Coast Ranges using Satellite Interferometry, Geomorphology, 246, doi:10.1016/j.geomorph.2015.06.003. [[http://www.sciencedirect.com/science/article/pii/S0169555X15300209|Abstract]] \\ Dietterich*., H., M. Poland, __D. A. Schmidt__, K. Cashman, D. Sherrod, and A. T. Espinosa (2012), Tracking lava flow emplacement on the east rift zone of Kilauea, Hawaii, with synthetic aperture radar coherence, Geochem. Geophys. Geosyst., 13, Q05001, doi:10.1029/2011GC004016. [[http://onlinelibrary.wiley.com/doi/10.1029/2011GC004016/abstract|Abstract]] \\ Riddick*, S., __D. A. Schmidt__, and N. I. Deligne (2012), An analysis of terrain properties and the location of surface scatterers from persistent scatterer interferometry, ISPRS Journal of Photogrammetry and Remote Sensing, 73 , doi:10.1016/j.isprsjprs.2012.05.010. [[http://www.sciencedirect.com/science/article/pii/S0924271612000998|Abstract]] \\ Riddick*, S., and __D. A. Schmidt__ (2011), Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR, Geochem. Geophys. Geosyst., 12, Q12005, doi:10.1029/2011GC003826. Editor's Highlight | [[http://onlinelibrary.wiley.com/doi/10.1029/2011GC003826/abstract|Abstract]] \\ Wisely*, B. A., and __D. A. Schmidt__ (2010), Deciphering vertical deformation and poroelastic parameters in a tectonically active fault-bound aquifer using InSAR and well level data, San Bernardino basin, California, Geophys. J. Intl., 181, 3, DOI: 10.1111/j.1365-246X.2010.04568.x [[http://onlinelibrary.wiley.com/doi/10.1111/j.1365-246X.2010.04568.x/abstract|Abstract]] \\ Calabro*, M. D., __D. A. Schmidt__, and J. J. Roering (2010), An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry, J. Geophys. Res., 115, F02020, doi:10.1029/2009JF001314. [[http://onlinelibrary.wiley.com/doi/10.1029/2009JF001314/abstract|Abstract]] \\ Roering, J. J., L. L. Stimely, B. H. Mackey, and __D. A. Schmidt__ (2009), Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport, Geophys. Res. Lett., 36, L19402, doi:10.1029/2009GL040374. [[http://onlinelibrary.wiley.com/doi/10.1029/2009GL040374/abstract|Abstract]] \\ __Schmidt, D. A.__, and R. Bürgmann (2006), InSAR constraints on the source parameters of the 2001 Bhuj earthquake, Geophys. Res Lett., 33, L022315, doi:10.1029/2005GL025109. [[http://onlinelibrary.wiley.com/doi/10.1029/2005GL025109/abstract|Abstract]] \\ __Schmidt, D. A.__, and R. Bürgmann (2003), Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res., 108 (B9), 2416, doi: 10.1029/2002JB002267. [[http://onlinelibrary.wiley.com/doi/10.1029/2002JB002267/abstract|Abstract]] \\ ===== Miscellaneous ===== Newton*, T. J., Weldon, R., Miller, I. M., __Schmidt, D.__, Mauger, G., Morgan, H., & Grossman, E. (2021). An Assessment of Vertical Land Movement to Support Coastal Hazards Planning in Washington State. Water, 13(3), 281. [[https://doi.org/10.3390/w13030281|Abstract]] __Schmidt, D.__, W. Wilcock, R. LeVeque, F. Gonzales, G. Cram, D. Manalang, M. Harrington, E. Roland, and P. Bodin. Earthquake and Tsunami Early Warning on the Cascadia Subduction Zone: A Feasibility Study for an Offshore Geophysical Monitoring Network. Seattle: University of Washington, 2019, 81 pp. [[http://cascadiaoffshore.org/files/whitepaper_lowres-20200505101921.pdf|Report]] Murray, J.R., Crowell, B.W., Grapenthin, R., Hodgkinson, K., Langbein, J.O., Melbourne, T., Melgar, D., Minson, S.E. and __Schmidt, D.A.__ (2018), Development of a Geodetic Component for the US West Coast Earthquake Early Warning System, Seismological Research Letters, doi:10.1785/0220180162. Crowell, B. W., __D. A. Schmidt__, P. Bodin, J. E. Vidale, B. Baker, S. Barrientos, and J. Geng (2018), G-FAST earthquake early warning potential for great earthquakes in Chile, Seismological Research Letters, 89 (2A): 542–556, doi: doi.org/10.1785/0220170180. Crowell, B. W., __D. A. Schmidt__, P. Bodin, J. E. Vidale, J. Gomberg, J. R. Hartog, Vi. C. Kress, T. I. Melbourne, M. Santillan, S. E. Minson, and D. G. Jamison, (2016), Demonstration of the Cascadia G-FAST Geodetic Earthquake Early Warning System for the Nisqually, Washington Earthquake, Seism. Res. Lett., 87, dos: 10.1785/0220150255. [[http://srl.geoscienceworld.org/content/early/2016/06/03/0220150255|Abstract]]\\ Chandrasekhar, D.V., R. Bürgmann, C. D. Reddy, P. S. Sunil, and __D. Schmidt__ (2009), Weak Mantle in NW India Probed by Geodetic Measurements Following the 2001 Bhuj Earthquake, Earth Planet. Sci. Lett., 280, 229-235, doi:10.1016/j.epsl.2009.01.039. [[http://www.sciencedirect.com/science/article/pii/S0012821X09000600|Abstract]] \\