====== Differences ====== This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
jiangang:report [2014/12/10 23:05] jiangang |
jiangang:report [2014/12/10 23:06] (current) jiangang |
||
---|---|---|---|
Line 42: | Line 42: | ||
The Duvall earthquake occurred about 10 km east of Duvall, Washington on May 3, 1996. The quake area was imaged both before and after the main shock by satellites ERS 1 and ERS 2. We collect four SAR scenes spanning the earthquake, two of which are about one month before the quake and the other two scenes are about one week after the quake. Because the event is located at the edge of the frame, we merged two frames to achieve scenes continuously mapping the Duvall earthquake. The details of the four scenes are shown in table 1. We make a combination of the different SAR scenes before and after the earthquake, and get four date pairs scenes to process for potential interferograms. The date pair scenes must share the same track and frame. These date pairs are shown in table 2. Notice that the perpendicular baseline for each scene pair might be too big to achieve a highly correlated interferograms. We will analyze the baseline effect on the correlation of the phase later in the discussion section. | The Duvall earthquake occurred about 10 km east of Duvall, Washington on May 3, 1996. The quake area was imaged both before and after the main shock by satellites ERS 1 and ERS 2. We collect four SAR scenes spanning the earthquake, two of which are about one month before the quake and the other two scenes are about one week after the quake. Because the event is located at the edge of the frame, we merged two frames to achieve scenes continuously mapping the Duvall earthquake. The details of the four scenes are shown in table 1. We make a combination of the different SAR scenes before and after the earthquake, and get four date pairs scenes to process for potential interferograms. The date pair scenes must share the same track and frame. These date pairs are shown in table 2. Notice that the perpendicular baseline for each scene pair might be too big to achieve a highly correlated interferograms. We will analyze the baseline effect on the correlation of the phase later in the discussion section. | ||
+ | |||
{{:jiangang:Slide1.png|}} {{:jiangang:Slide2.png|}} | {{:jiangang:Slide1.png|}} {{:jiangang:Slide2.png|}} | ||
+ | |||
To obtain the interferogram for each date pair, we perform standard processing both for the master scene and the slave scene with the Repeat Orbit Interferometry Package (ROI_PAC). The interferometric phase contains a topography component that needs to be corrected to get a differential interferogram for deformation interpretation. We first construct digital elevation model (DEM) for the study area using data from Shuttle Radar Topography Mapping (SRTM) mission (http://dds.cr.usgs.gov/srtm). Then we use this DEM and the ROI_PAC to estimate and remove the topography contribution to the interferometric phase. | To obtain the interferogram for each date pair, we perform standard processing both for the master scene and the slave scene with the Repeat Orbit Interferometry Package (ROI_PAC). The interferometric phase contains a topography component that needs to be corrected to get a differential interferogram for deformation interpretation. We first construct digital elevation model (DEM) for the study area using data from Shuttle Radar Topography Mapping (SRTM) mission (http://dds.cr.usgs.gov/srtm). Then we use this DEM and the ROI_PAC to estimate and remove the topography contribution to the interferometric phase. | ||