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Introduction
Over the past several decades, studies of insect flight have
attempted to understand how the aerodynamics of wing motions
determine the forces and energy required to power flight. Much of
this effort focused on the engineering aspects of wing motions,
using approaches that include detailed and elegant reconstruction
of wing motions in scale models (for a review, see Sane, 2003),
theoretical and computational aspects of flapping flight (Hedrick
and Daniel, 2006), measurements of wing motions, and the
subsequent patterns of fluid motion. Processes such as wake
capture, delayed stall, wing rotation and potential unsteady fluid
dynamic flow have all been implicated as important factors
affecting the timing and magnitude of wing muscle forces
generated during flight. These factors contribute to the overall
energy requirements, as well as underlying control mechanisms, for
insect flight.

A variety of physiological experiments complemented these
engineering studies of flight. For example, direct measurement of
metabolic gas exchange (Dickinson and Lighton, 1995; Ellington,
1985), as well as the in vivo timing and magnitude of muscle
activity, have been used to assess the power output in insect flight
(Tu and Daniel, 2004). A unifying approach pioneered by
Josephson (Josephson, 1985; Josephson, 1989) measured the
temporal patterns of muscle force and the associated changes in
muscle length to quantify mechanical work generated by muscle.
This work loop method relates the timing of muscle activation,
relative to its length change, to the overall mechanical power
output. Presumably, the power required for flight, as estimated by
the host of aerodynamic studies, agrees with the power measured
by these physiological methods.

Hawkmoths, among the largest insect fliers, power their flight
with two sets of synchronously activated muscles connected to the

thorax. The dorso-longitudinal muscles (dlm) compress the thorax
in the antero-posterior axis to power the wing downstroke while the
dorso-ventral muscles (dvm) compress the thorax in the orthogonal
plane to power the wing upstroke. Work loop analyses of the dlm
showed a strong phase dependence of muscle mechanical power
output that was consistent with prior findings for insect muscles
(Josephson, 1997). Enigmatically, however, the physiological (in
vivo) dlm phase of activation generated only 40% of the maximal
realizable power (max=100·W·kg–1) (Tu and Daniel, 2004).

Operating at sub-maximal power seems advantageous, assuming
that the physiological phase of activation affords ample power
reserves required for maneuvering flight. Therefore, any additional
energy required for turns, elevations and accelerations becomes
available by simply shifting activation phases to produce higher
mechanical power output. With no clear evidence that the phase of
activation affects the energy derived from myosin cross-bridge
ATPase activity, we have a paradoxical situation: muscles
operating at phases generating sub-maximal power would operate
inefficiently unless ATPase rate varies with phase.

Because neuro-muscular control of locomotion inextricably
links multiple levels of organization (from protein forces to
aerodynamic forces), the dynamics and kinetics of protein level
processes affect organ and organism function. This paper attempts
to resolve the above paradox, drawing on a series of molecular
models of muscle contraction (Daniel et al., 1998; Chase et al.,
2004; Tanner et al., 2007) to examine the coupled relationship
between activation phase, mechanical work and ATP utilization.
Specifically, we ask whether the mechanics and kinetics of myosin
cross-bridges lead to a phase-dependent ATPase behavior at the
sarcomeric level. Our simulations show that mechanical power
output (work) and ATP utilization (energy input) depend upon
phase of activation (each having different sensitivities to phase).
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These results also show that some phases maximizing work do so
at large energy costs (high ATPase rates). Combining our
computational results with prior experimental studies (Tu and
Daniel, 2004) shows that physiological phases of activation
generating sub-maximal power output may do so more efficiently
(by optimizing the ratio of mechanical power output to ATPase
rate).

Materials and methods
The spatially explicit computational model used for these work
loop analyses follows structural, kinetic and mechanical analyses
described more fully in a series of prior studies (Daniel et al., 1998;
Daniel and Tu, 1999; Chase et al., 2004; Tanner et al., 2007). These
modeling studies incorporated a half-sarcomere-length lattice of
compliant thick and thin filaments to determine the mechanics and
energetics of force generation in muscle. A recent advancement for
these models included kinetics for calcium activated thin filaments
(Tanner et al., 2007). This refinement permits simultaneous control
of activation and muscle length, while assessing force, work and
energy consumption. Here we briefly review elements of the
models and indicate how we modified prior approaches to generate
work loop predictions for muscle.

Geometry and mechanics
Rather than specifically modeling the details of Manduca sexta
flight muscle per se, we focus on examining how phase of
activation may influence the energetics of contraction. The model
is based on geometry of a half-sarcomere consisting of four thick
and eight thin filaments packed in a hexagonal array (Tanner et al.,
2007). Each thick filament bears 120 myosin cross-bridges
arranged in a two-start helix. Cross-bridges directly face thin
filaments bearing 90 binding sites per filament. These geometries
reflect those used in previous spatially explicit models (Chase et
al., 2004; Tanner et al., 2007) and generally approximate the cross-
bridge and binding site pattern observed in striated muscle. As no
published accounts of the myofilament ultrastructure from
Manduca flight muscle exist, this geometric model serves as an
approximation for the thick and thin filament arrangement.

Estimates of the myofilament mechanical properties are layered
upon the geometric arrangement described above (Daniel et al.,
1998; Chase et al., 2004; Tanner et al., 2007). Each cross-bridge
has a spring constant (kxb) of 5·pN·nm–1, somewhat stiffer than the
values reported in the literature from single molecule studies, but
more consistent with recent estimates from cellular experiments
(Howard, 2001; Piazzesi et al., 2002; Linari et al., 2007). Thick and
thin filament spring constants (km and ka, respectively) were set at
6060 and 5230·pN·nm–1 for resting (unbound) thick and thin
filament lengths of 14.3 and 12.3·nm, respectively, consistent with
parameter values used in previous studies (Daniel et al., 1998;
Chase et al., 2004; Tanner et al., 2007).

Kinetics of cross-bridges and calcium activation
Ca2+-binding proteins regulate the binding of force-generating
motor proteins (cross-bridges) within this myofilament network.
The kinetics of these two coupled protein systems are described
with a three-state [Ca2+]-sensitive, thin-filament regulatory cycle
coupled to a three-state cross-bridge cycle (for details, see Tanner
et al., 2007). Briefly, the thin-filament regulatory states (Fig.·1A)
describe Ca2+ binding to troponin (a transition from state T1 to T2),
which triggers movement of tropomyosin (into state T3) and
exposes myosin-binding sites along the thin filament (McKillop
and Geeves, 1993; Xu et al., 1999; Pirani et al., 2006). Transition

rates for the thin filament kinetics are as specified elsewhere
(Tanner et al., 2007), with the exception of the rates describing Ca2+

dissociation from the thin filament (rt,21 and rt,31, which were set to
100·s–1; Fig.·1A). These modified rates produced faster relaxation
dynamics to simulate the time-course of a Manduca twitch more
effectively (Tu and Daniel, 2004). The second order rates
associated with activating troponin are functions of intracellular
[Ca2+].

Cross-bridge states are represented as an unbound (state X1) or
weakly bound, non-force bearing state, and two states where cross-
bridges were bound and bear relatively low (state X2) versus high
(state X3) strain (Fig.·1A). The X2 state represents a conformation
preceding the mechanical transition often referred to as the power
stroke, and the X3 state a conformation following the power stroke.
Concomitant with each mechanical state is a biochemical state
representing the cyclical hydrolysis of ATP, release of inorganic
phosphate (Pi) and ADP, and binding of another ATP to dissociate
a myosin cross-bridge from the thin filament. The energetically and
chemo-mechanically coupled thick filament transition rates are
distortion dependent.

We summarize these two kinetic processes by a set of coupled
differential equations that are solved by Monte-Carlo simulation.
The governing equations for each interaction between a cross-
bridge and a potential thin filament binding site are described with
three states of thin filament activation (T1, T2, T3) and three states
associated with the cross-bridge cycle (X1, X2, X3):

where the transition rates rij and kij are specified more fully
elsewhere (Tanner et al., 2007). The equations describing
interactions between these two protein systems are coupled by the
interaction between unbound cross-bridges (X1) and available
binding sites (T3). The availability of binding sites is regulated by
Ca2+ binding to troponin. The system of equations above can be
further reduced to four equations with:

As described more fully elsewhere (Daniel et al., 1998; Tanner
et al., 2007), we implement an instantaneous force balance for a
system of linear springs that characterize each cross bridge, thin
filament and thick filament (Fig.·1B). The total force generated by
the half-sarcomere is determined by the number of attached cross-
bridges and their local distortion. The force on each thick filament
is proportional to the distortion of the spring element closest to the
M-line (!x–xrest) times the thick filament spring constant (km).
Similarly, the force on each thin filament is proportional to the
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distortion of the spring element closest to the Z-disk (!y–yrest) times
the thin filament spring constant (ka). The total force borne by the
model half-sarcomere (FT) is the sum of the forces for all four thick
and eight thin filaments, respectively:

Controlling motion and activation
Initial half-sarcomere length (L0) was 1200·nm (Tanner et al.,
2007), from which sinusoidal length oscillations varied the length
(L) as a function of time (t): L(t)=–Acos(2#ft)+L0, where f
represents wing beat frequency for the hawkmoth (f=25·Hz).
Length oscillated at amplitudes (A) of 30 and 15·nm per half-
sarcomere, yielding normalized peak-to-peak strain amplitudes
($=2A/L0) of 0.05 and 0.025. The frequencies and amplitudes of
length change were chosen to be close to those values reported
previously (Tu and Daniel, 2004).

The modeled activation pulse represents a Ca2+ transient within
the cell (following a neural stimulus) that leads to muscle
contraction, or twitch (in Manduca and other insects there is a one-
to-one correspondence between evoked potential and muscle twitch
forces). This activation transient was modeled with a square wave
of binary amplitude, representing intracellular [Ca2+] of 10–4 or
10–9·mol·l–1 for activated or inactivated contraction, respectively.
While the actual temporal pattern of [Ca2+] is more likely
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represented as a skewed Gaussian function, this simple square wave
provided a sufficient model for probing phase relationships and
duty cycle. Two parameters determined the duration of this wave:
period (P), set to 40·ms (=1/f); and duty cycle (%Ca), the fraction of
P that [Ca2+]=10–4·mol·l–1.

Following with the experimental work loop analysis of Tu and
Daniel (Tu and Daniel, 2004), raw phase (&) equals zero when the
onset of force generation and muscle lengthening are co-incident
in time. To adjust their phases accordingly, Tu and Daniel (Tu and
Daniel, 2004) measured the temporal delay between external
stimulus and muscle force generation (!tep was ~8·ms). Several
processes may contribute to this delay, including the timing of Ca2+

release from the sarcoplasmic reticulum and subsequent diffusion
into the cytosol. As we do not know the actual transient, we
simulated a number [Ca2+] transients by changing their duty cycle
(%Ca) and phase (&Ca). We used three values for %Ca: 0.1, 0.2 and
0.5, each representing an increasing duration of activation (4, 8 and
20·ms, respectively). To compensate for the variable square wave
duration affecting phase of activation, we adjusted the Ca2+

sensitive phase of activation (&Ca) with respect to muscle
lengthening: &Ca=&–%Ca/2. This adjustment aligned the center of
the [Ca2+] activation pulse with the onset of muscle lengthening
(when &=0) even though the duration of activation changes with
%Ca. Consistent with the experimental work loop analysis (Tu and
Daniel, 2004), these simulations examine the relationship between
work output and phase of activation.
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Fig.·1. (A) Kinetics of thin filament regulation and
cross-bridge cycling, modeled as coupled three-state
cycles. Transition rates (kij) between cross-bridge
states (X1–X3) are strain dependent. Transition rates
(rij) between thin filament states (T1–T3) explicitly
encode spatial information about troponin binding Ca2+

and tropomyosin movement. B) We simulated force
production in a network of linear springs, using spring
constants for thick filaments (km), thin filaments (ka)
and cross-bridges (kxb). Thick and thin filament nodes
(white circles between springs) represent modeled
points from which cross-bridges extend from the thick
filament backbone or actin binding sties along the thin
filament where cross-bridges. At each time step,
Monte-Carlo methods simulate likelihoods of Ca2+

regulated cross-bridge attachment to thin filaments,
then forces balance about each node throughout the
filament lattice.
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Implementation

Full details about the simulation algorithm are described elsewhere
(Tanner et al., 2007). Briefly, simulations were implemented in
Matlab (The MathWorks, Natick, MA, USA) using the Matlab
distributed computing engine on a 16 node IBM cluster running
Linux. Thin filament and cross-bridge kinetics were stochastically
driven using a uniform random number generator and state
transitions were accepted using Monte Carlo algorithms.
Simulations at each parameter set ran for 10·s using time steps of
1·ms, yielding 250 work loops. At each time step in the simulation
we record force, ATP utilization, and kinetic state of thin filament
binding sites and cross-bridges. Average values were calculated
from 245 individual work loop cycles, as the initial five ‘start up’
cycles were omitted from averaging.

Results
Simulations of simultaneous periodic calcium activation and
muscle length change result in an oscillating, twitch-like force
response as well as an oscillating pattern of ATP consumption
(Fig.·2). Interestingly, the force response was shifted in phase with
respect to the Ca2+ activation transient, and ATP utilization was
further phase shifted relative to force. At these particularly high
activation rates [relative to those in Tanner et al. (Tanner et al.,
2007)] cross-bridges remained bound after the Ca2+ activation
transient ended. These results largely followed from temporal
delays associated with thin filament de-activation, cross-bridge

binding (force generation) and cross-bridge cycling (ATP
consumption).

A parametric plot of force against strain (known as the work
loop) shows positive work output (=548·pN·nm, Fig.·3). In
simulations described more fully below, work output for our half-
sarcomere model ranges between 200 and 1500·pN·nm
(0.2–1.5·aJ). It is interesting to compare mass specific power output
(W·kg–1) for these simulation results to whole muscle
measurements. Taking our average predicted work output to be
approximately 1000·pN·nm per cycle and a cycle period of 40·ms
(f=25·Hz), the corresponding power output equals 2.5'10–17·W.
Our model half-sarcomere is 1200·nm long, 70·nm high and 80·nm
wide, corresponding to a volume of 6.7'106·nm3 (Tanner et al.,
2007). With a density of 1000·kg·m–3, this would lead to a mass of
6.7'10–18·kg and specific power output of approximately
4·W·kg–1. Over the full set of simulations, we would predict a range
of 1–6·W·kg–1 for specific power output. These predictions are less
than the operating power output of 45·W·kg–1 reported previously
(Tu and Daniel, 2004), but well within the range of power output
values reported (–20 to 80·W·kg–1).

Our simulations used lower strain amplitudes than in the earlier
experiments (Tu and Daniel, 2004). This constraint followed from
a computational limitation in which we were restricted to time steps
greater that those required for large amplitude strains. Because
strain strongly determines predicted power output values, we
rescaled predictions with the assumption that the filament lattice is
linearly elastic. This assumption allows us to compare simulation
results with experiments via normalizing power output to the square
of strain amplitude ($2). This calculation yields predicted values
ranging from 1860 to 2640·W·kg–1 ($=0.05) and 1190 to
4761·W·kg–1 ($=0.025) for mass-specific power output per $2

(Fig.·4A). These values are similar to estimates of power output for
Manduca at the measured physiological strain ($=0.09 yields about
5000·W·kg–1·$–2) (Tu and Daniel, 2004). Thus, our half-sarcomere
model predicts physiological levels of mechanical work and power,
previously measured in whole muscle studies.

For two levels of strain (0.025 and 0.05) we note a clear phase
dependence of both mechanical work output and ATP utilization
rate (Fig.·4). While there appears to be a stronger phase dependence

Fig.·2. Work loop simulations oscillated muscle length and intracellular Ca2+

concentration as a function of time, while monitoring force and ATP
utilization. These panels show the initial half second of a simulation where
muscle strain amplitude ($, normalized peak to peak) was 0.025 and the
Ca2+ transient had a 0.2 duty cycle (%Ca) at a 0.033 phase of activation
(&Ca). Force and ATP utilization were calculated at each time step
(dt=1·ms). Our standard mechanical parameters apply to these simulations:
kxb=5, ka=5229 and km=6060·pN·nm–1 (Tanner et al., 2007).
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for work at the lower strain amplitude (Fig.·4A, right), this is an
artifact of different ordinate scales between the two panels in
Fig.·4A. The resultant mechanical work per ATP (Fig.·4C), a proxy
for contractile efficiency (sensu Kushmerick and Davies, 1969),
also depends on phase of activation. While these efficiencies show
a very similar phase dependence, the magnitudes remains highly
strain dependent (with different ordinate scales between the two
panels, Fig.·4C). At both levels of strain, the peak value for
mechanical work output, ATP use and efficiency all occur at
different phases. Thus, muscles operating at phases that may
maximize work may do so at some considerable reduction in
efficiency. Adjusting phase of activation could modulate the

Research article

muscle function, moving the performance from high power output
to high efficiency.

Although mechanical work output depends on activation phase,
this response is influenced by compliance of the filament network
and duty cycle (%Ca) of calcium activation. The effects of these
parameters are summarized in Fig.·5, where we simulated work
loops at three different duty cycles (0.1, 0.2 and 0.5) and two levels
of filament compliance (the standard values listed above and one
tenth the standard values). Under these standard filament conditions
(at either strain), decreasing duty cycle leads to decreased
mechanical work output and ATP use (broken lines in Fig.·5).
Decreasing duty cycle also shifted the phase maximizing
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mechanical work output and ATP use. These phase shifts differed
between mechanical work output and ATP use and their sensitivities
varied with strain. The correlation between decreasing %Ca and
decreased ATP use follows directly from the smaller fraction of time
during which cross-bridges may cycle each period. Because duty
cycle yields different phase sensitivities between work output and
ATP use, the ratio of these two (efficiency) resulted in even a greater
(and unique) sensitivity to phase as duty cycle decreased.

Under these standard filament conditions (at either strain),
decreasing duty cycle shifted the phase maximizing mechanical
work output and ATP use (broken lines in Fig.·5). Interestingly, the
range of mechanical work output across all phases was unchanged
by duty cycle (at standard filament conditions). In contrast,
decreasing duty cycle decreased the maximal ATP use value as well
as the range of ATP (broken, colored lines in Fig.·5). The
correlation between greater ATP use and increased %Ca follows
directly from the greater fraction of time during which cross-
bridges may cycle each period. Furthermore, decreasing duty cycle
leads to greater sensitivity of efficiency to phase.

In general, increasing filament compliance (the thick and thin
filaments becoming more flexible) decreased work output and
increased ATP use (solid lines, Fig.·5), compared to standard
filament conditions. These observations agree with prior results
showing that cross-bridge cycling rate increases with increased
cross-bridge binding via greater filament movement (compliant
realignment of binding sites) (Daniel et al., 1998; Tanner et al.,
2007). As with the standard filament conditions (at either strain),
decreasing duty cycle shifted the phase maximizing mechanical
work output and ATP use (solid lines, Fig.·5). Interestingly, the
range of mechanical work output across all phases was unchanged
by duty cycle (different from the standard filament condition
results). In contrast with these mechanical work output results,
decreasing duty cycle decreased the maximal ATP use value and
the shift in this peak (toward higher phases at lower duty cycles)
became more pronounced for the more compliant filament values.
Lower values for work with greater ATP utilization (for these more
compliant myofilament values versus standard values) result in
lower efficiency at the more compliant filament values. The
sensitivity of efficiency to phase is also lower when filament
compliance increases. Together, these results demonstrate that the
coupled relationship between filament compliance, duty cycle and
activation phase determines the energetics of muscle contraction.

Discussion
The phase dependence of mechanical power output predicted by

our model is consistent with the studies of whole muscle function
(e.g. Josephson, 1985). However, to our knowledge, no prior study
has shown that myosin cross-bridge ATPase rates vary with phase
of activation. In this regard, our simulations show three key
features: (1) mechanical power output and power input (ATP
consumption rate) both vary with phase, but their respective
maxima occur at different phases (Figs·4, 5); (2) therefore the
maximum efficiency of contraction (the ratio power output to
power input) occurs at yet a third, distinct phase (Figs·4, 5); and
(3) the specific phases leading to maximum power output,
minimum energy consumption or maximum efficiency vary with
the duty cycle of activation and the filament lattice compliance
(Fig.·5). Moreover, our simulation results suggest that these
changes in muscle function could occur over relatively small
adjustments in phase of activation.

The notion that efficiency and power may not share a phase
relationship has not been a central focus of muscle functional

studies, possibly because there has not been a compelling case
made for changes in ATPase rate (and thus efficiency) with
activation phase. There is good evidence, however, that these
metrics should co-vary. A trade-off between power and efficiency
was shown in dogfish muscle (Curtin and Woledge, 1996), and a
modified Hill model (Lichtwark and Wilson, 2005) demonstrated
the co-variance of efficiency and power output during oscillatory
length changes over a range of frequencies.

Periodic length changes produce periodic velocity changes.
With strong evidence that ATPase rate varies with shortening
velocity, we might expect the energy consumption to depend on
phase. Despite these observations, no one has proposed a
molecular mechanism that would explain the co-variance of phase
and energetics. Our simulations show that some phases of
activation may be more advantageous for the efficiency of
contraction, whereas other phases may lead to higher levels of
power output. Thus one reason moths may operate at a phase of
activation leading to sub-maximal power output (Tu and Daniel,
2004) may reside in the potential trade-off between power and
efficiency with respect to phase. As suggested (Tu and Daniel,
2004), operating at sub-maximal power output affords power
reserves for use in extreme behaviors such as escape, load
carrying, or take-off. However, this only makes sense if ATP
consumption also varies with phase, so that sub-maximal power
output reduces energy consumption rate.

The relationship between power and efficiency is complicated
by the strong dependence of these parameters on duty cycle
(Fig.·5). Very short duty cycles lead to lower mechanical power
output and lower ATP use. At the same time, the phases producing
peak power output and peak ATP use increase with decreasing duty
cycle (each with different sensitivities to phase; Fig.·5). One
component of this process that we have not considered is the
possible correlation between short duty cycles (at a given
frequency) and the energetics of Ca2+ pumping into the
sarcoplasmic reticulum of flight muscle. Hence, short duty cycles
may require greater ATP use simply because the faster rates at
which Ca2+ sequestering must occur become energetically
expensive. Adding these ATP costs at decreased duty cycles may
yield more similar values of ATP use per oscillatory cycle, thereby
further amplifying the differences in efficiency of muscle
contraction (work/ATP) shown in Fig.·5.

Filament compliance also affected the magnitudes of power
output and power input (Fig.·5). Interestingly, the phases at which
these components generate their respective maxima and minima are
somewhat independent of the mechanical properties of the
myofilament lattice. Our result showing higher ATP use with
greater filament compliance is consistent with previous work
(Daniel et al., 1998; Daniel and Tu, 1999; Tanner et al., 2007).
Thus, these basic mechanical characteristics may underlie varied
performance in muscles among diverse taxa. The extent to which
the mechanical properties of filaments vary among species is not
well understood, although the lattice geometry (myofilament
ultrastructure) varies considerably (Hoyle, 1983). To our
knowledge studies of the mechanical properties of isolated
filaments and cross-bridges have focused on vertebrate striated
muscle.

Combining our existing ability to calculate work loops from
measured force and length changes (Tu and Daniel, 2004) with
simultaneous measurements of oxygen consumption and carbon
dioxide production allows one to measure the phase dependence of
power and efficiency relationships in synchronous insect flight
muscle. While instantaneous measurements of ATPase activity in



muscle during oscillatory length changes and concomitant phase
changes may be challenging, the relatively poor capacity of insect
flight muscle for anaerobic metabolism allows one to use oxygen
consumption as a proxy for ATP use. As shown previously (Tu and
Daniel, 2004), work loop preparations are stable for a sufficiently
long time to facilitate this experimental approach (approximately
1·h).
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