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Abstract— Many brain-machine interface (BMI) algorithms,
such as the population vector decoder, must estimate neural
spike rates before transforming this information into an exter-
nal output signal. Often, rate estimation is performed via the
selection of a bin width corresponding to the effective sampling
rate of the decoding algorithm. Here, we implement real-time
rate estimation by extending prior work on the optimization
of Gaussian filters for offline rate estimation. We show that
higher sampling rates result in improved spike rate estimation.
We further show that the choice of sampling rate need not
dictate the number of parameters which must be used in an
autoregressive decoding algorithm. Multiple studies in other
neural signal processing contexts suggest that BMI performance
could be improved substantially via careful choice of smoothing
filter, discrete-time decoder representation, and sampling rate.
Together, these ensure minimal deviation from the behavior of
the modeled continuous-time systems.

I. INTRODUCTION

Brain-machine interfaces mapping activity of well-isolated
neurons or multiunits in cortex have shown promise for
allowing the continuous control of robotic limbs and com-
puterized assistive devices [8]. Original single-neuron BMI
experiments required the use of analog circuitry to implement
low-pass filters for neural spike rate estimation [4]. This was
an encumbrance that limited design flexibility. As recently
as 2004, studies investigating the effect of sampling rate
on digital BMI performance were limited by the available
computing hardware [16]. Enabled by ever more compact
and powerful computing hardware, contemporary algorithms
for converting the recorded activity of large populations of
individual neurons into movement commands are increas-
ingly complex, drawing on tools from control theory and
machine learning such as Wiener Filters [12], [16], Support
Vector Machines [6], [15], and Kalman filters [7], [9], [10].
Sampling rates for the digitally implemented dynamics of
these systems remain as low as 10 Hz [1], [2], [10], [13].
By comparison, modern action-oriented computer games
typically refresh the screen at 30 Hz or above and simulate
underlying game physics at even higher sampling rates in
order to achieve a sense of realism.

Many BMI architectures implement spike rate estimation
and decoders such that the behavior of both is driven by the
choice of a shared sampling rate. This need not be the case.
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Consequently, there is an opportunity for improvement by
increasing sample rates that has been overlooked thus far.

Our use of the term decoder refers broadly to the math-
ematical transform between spike rate estimates and BMI
output signals, and is inclusive of transforms which do not
attempt to literally decode limb movement.

Here we demonstrate three advances. In Section II, we
show that the use of a Gaussian smoother with optimized
bandwidth outperforms the time-bin (histogram) method in
spike rate estimation. In Section III, we discuss the benefits
of high sampling rates and illustrate with an example of
spike rate estimation performance. In Section IV, we show
the benefits of choosing a model with the minimum number
of parameters to capture dynamics. And in Section V, we
describe how down-sampling can be used to implement such
a model with a high sampling rate.

II. SPIKE RATE ESTIMATION WITH SMOOTHING FILTERS

Spiking neurons are well-modeled as inhomogenous Pois-
son processes, making it possible to estimate the underly-
ing time-varying distribution parameter using a variety of
methods [14]. The vast majority of BMI designs estimate
instantaneous neural firing rates by counting the number of
spike events in a temporal bin, with widths typically in the
range of 30 to 100 ms. This histogram process is equivalent
to two separate steps: filtering using a rectangular kernel,
then sampling with a sample period equal to the kernel width.
This is illustrated in Fig. 1.

This simple method produces an estimate because, for
a time-invariant Poisson process, the expected number of
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Fig. 1. Illustration of the two underlying components of the histogram
spike rate estimation method: filtering with a rectangular moving
average, followed by sampling with sample period equal to window
width, 100ms. For comparison, the output of a Gaussian smoothing
filter with σ = 100ms is shown as well.
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events in a given time interval is proportional to the dis-
tribution parameter. This estimate is still rather noisy, and in
some designs is fed into another moving average filter [12],
[16].

The rectangular kernel can be replaced with an arbitrary
kernel function, and the sampling rate need not be the
inverse of the kernel width. Shimazaki and Shinomoto (2009)
developed an algorithm for selecting the optimal width of
a given symmetric kernel function by minimizing the mean
integrated square error (MISE) between the rate estimate and
unknown underlying rate [14],

MISE =

∫
E(λ̂t − λt)

2dt (1)

Their algorithm utilizes sample data as a proxy for the
statistics of unknown rate λt to optimize rate estimate λ̂t.

They showed that using a Gaussian kernel significantly
outperformed the histogram method when both had widths
optimized for offline spike rate estimation. Their perfor-
mance comparison of different rate estimation methods us-
ing synthesized neural recordings is shown in Fig. 2. The
Gaussian kernel is also an attractive choice for real-time
applications because it has minimal rise and fall time with
no overshoot. For a more in-depth discussion of methods of
spike rate estimation, see [3].

The optimization algorithm generates the optimal kernel
width for a specific data set. Therefore, to find the kernel
width best suited for a particular BMI application, a data set
which captures neural firing statistics during BMI operation
is needed.

Moritz and Fetz (2011) showed that modulation depth of
neural firing can vary substantially between tasks performed
manually and under single-neuron BMI control by macaque
monkeys [11]. This means that optimizing a kernel based on
recorded data prior to BMI control may not result in good
performance under BMI control. To bootstrap the system, we
can use a data set recorded during manual tasks or while the

     















   























Fig. 2. Performance comparison of six rate estimation methods based
on MISE when applied to synthesized data with sinusoidal and sawtooth
underlying rate functions. Modified from [14].

animal is at rest. Once data recorded during BMI control is
available, a sufficiently large duration of recordings should be
used to capture the full range of firing behavior and re-select
the optimal kernel bandwidth. Fig. 3 shows the resultant
MISE cost functions for neural firing recorded from the same
neuron under different conditions. We can see that the cost
function is relatively flat for a wide range of kernel widths,
regardless of recording context. In choosing a kernel width
for better robustness, an experimenter can select one that may
not correspond to the global minimum for the most recent
data set, but will result in an acceptable MISE. As a low-pass
filter, the Gaussian smoother places limits on the bandwidth
of the entire BMI system and also introduces a delay, creating
an incentive to choose the smallest kernel width that results
in an acceptable error. The threshold near zero width at
which the cost function begins to increase dramatically is
fairly consistent among recording contexts, indicating that a
kernel width near this threshold should continue to perform
well as neural modulation changes with BMI use. Thus,
firing rate estimation variance can be robustly reduced by
the replacement of a histogram estimator with a Gaussian
smoothing filter. Gaussian kernel smoothing is optimal in
terms of both latency and firing rate estimation accuracy
compared to other moving-window smoothing filters, and no
more computationally demanding in on-line implementation
than the rectangular filter. In Section III, we address the
digital implementation of a Gaussian filter.

III. DIGITAL IMPLEMENTATION OF DYNAMIC SYSTEMS

Multiple rules of thumb exist for selecting a sufficient
sampling rate for the discrete-time representation of a dy-
namic system. In order to avoid aliasing (signal artifacts that
result from too low a sampling frequency), the signal must
be sampled faster than the Nyquist rate. The Nyquist rate is
defined as two times the bandwidth, or maximum frequency,
of a signal or dynamic system response. The Nyquist rate
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Fig. 3. Estimated MISE as a function of Gaussian kernel bandwidth for
the same neuron in different recording conditions. Optimal bandwidths,
marked by open circles, are different, but in relatively flat regions
of the cost function. Sample data sets are 1- to 3-minute single
neuron recordings from microwire array in motor cortex of a macaque
monkey. Recorded with a Cerebus Neural Signal Processor (Blackrock
Microsystems, Salt Lake City, UT). See [11] for additional details of
recording and task configuration.
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Fig. 4. Comparison of continuous and sampled Gaussian kernels,
σ = 0.2s, at left, and MISE cost as a function of standard deviation
at right. Sampling rate affects both the minimum achievable MISE
and the optimal bandwidth to achieve minimum MISE. Note that this
analysis does not account for the latency in the firing rate estimate
introduced by the use of a causal filter. Sample data recorded from
motor cortex of macaque during 10-minute brain control session.

represents an absolute lower bound on sampling rate for
reconstruction of the original signal or system dynamics;
sampling at or marginally above this rate, as is sometimes
done [10], [16], does not result in good reconstruction up to
the bandwidth frequency. In fact, it is desirable to sample 10
or more times faster than the bandwidth, because this factor
represents the number of sample points used to represent one
cycle of a sinusoidal signal.

For example, Figure 4 illustrates the effect of sampling
rate selection on the MISE associated with a Gaussian filter
sampled at different rates and truncated at ±2σ in order to
reduce latency. Gaussian filters have a cutoff frequency of
1/σ where σ is the standard deviation of the kernel, making
the Nyquist sampling rate 2/σ = 10Hz in this example. We
can see that MISE is significantly improved at a sampling
rate of 60Hz, which is 12 times the bandwidth.

We have chosen an appropriate sampling rate for a Gaus-
sian filter based on an application-specific criteria, without
regard to the bandwidth of the incoming spike train. In
general, it is essential to select a sampling rate which
captures the full bandwidth of the input signal as well as the
dynamic response of the system. This will be our approach
to implementing the decoder following the rate estimation
filter.

By virtue of being the solution to the rate estimator
optimization problem, the bandwidth of the Gaussian filter
provides an upper bound on the bandwidth of the firing rate
estimate signal. More information may exist in the spike
activity, but we implicity ignore it as noise. We maintain the
sampling rate of 60Hz for the decoder, and in the next section
we address the system identification problem of literally
decoding limb movement.

IV. MODEL SELECTION

Dynamic models are often used to decode limb movement
from neural firing, and subsequently to map neural firing
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Fig. 5. Block diagram illustrating the system identification problem
for decoding limb movement. The relationship between u(t) and y(t)
is only equivalent to the spinal cord and limb transformation if the
output filter is the same as the input smoothing filter.

to BMI output signals. Moving-average architectures such
as the Wiener filter have been widely used [1], [12], and
more recently Kalman filtering methods based on state-space
models have gained popularity [3], [10].

The block diagram in Fig. 5 illustrates the system identi-
fication problem for decoding limb movement. Consider the
frequency-domain transformations from the spike train S(s)
to U(s) and Y (s),

U(s) = Fi(s)S(s)

Y (s) = Fo(s)G(s)S(s)

Y (s)

U(s)
= G(s)

Fo(s)

Fi(s)

We can see that in order for the relationship between the
recorded input u(t) and output y(t) to be equal to the un-
known transformation from neural spiking to limb movement
g(t), the two filters in the recording pathways, fi(t) and
fo(t), must be identical. Although this approach appears to
discard information from the output signal, remember that
the smoothing filter implicitly considers signal energy above
its bandwidth to be noise. Note that we are sampling a tiny
subset of the neural activity driving low-level control of
muscle recruitment. Therefore, it is possible that the spike
rate signal has higher bandwidth than observable gross limb
movement. We can bound the bandwidth of the dynamics
relating neural firing rate to limb movement by the bandwidth
of the observed output signal, limb trajectories during motor
activity.

In order to build a higher-bandwidth model of the rela-
tionship, it would be necessary to obtain a higher-bandwidth
input signal, such as by incorporating the firing of additional
neurons.

In selecting a model architecture either for directly trans-
forming neural activity or for use in a Kalman filter, it is
important be aware of the implications of the model structure
and of the number of free parameters. Specifically, a higher
number of model parameters will be required to capture
higher-order dynamics, but requires substantially more data
for a fitting algorithm to arrive at good parameter estimates.
Therefore, the experimenter should choose a model with
the minimum number of parameters required to capture the

1701



dominant dynamics thought to exist in the system. Autore-
gressive moving average (ARMA) models have been shown
to perform well among other linear models [5]. A dynamic
system of a given order can be modeled with less parameters
with the ARMA structure than via a state-space or impulse-
response formulation.

V. DECODER IMPLEMENTATION

Because a small number of model parameters will be fit
to a large data set with noise, the sampling rate of the model
must be chosen so that the dynamics capture the underlying
system behavior while ignoring the noise. This motivates the
selection of a sampling rate only a few times greater than
the bandwidth of the signal content of the recorded data.
The bandwidth of limb trajectories and the optimal kernel
bandwidth both suggest choices for the model bandwidth. To
convert the 60 Hz sampled signal from the smoothing filter
to, for example, a 10 Hz dynamic model (Nyquist rate of
20Hz), we can down-sample, as shown in Fig. 6. In this case,
even if only every third sample is used by the dynamic model
at a given instant, the prior Gaussian smoothing incorporates
a significantly larger temporal window into this data. Note
that the 20 Hz model is still updated at 60 Hz, but it models
dynamics below 10 Hz while ignoring higher frequencies in
the input signal.

Finally, the output command from the brain will drive a
visual feedback signal. As mentioned previously, 30 Hz is
at the lower end of refresh rates used for computer games,
and should be a reasonable rate for this application. Most
computer displays now support a refresh rate of 60 Hz or
above. In the absence of other hardware constraints on com-
putation, there is no reason not to implement the system at a
base sampling rate of 60 Hz. Thus, a model implementation
allowing a small number of parameters to capture desired
low-bandwidth dynamics can be implemented in a digital
system with a high sampling rate for smooth and responsive
visual feedback.

incoming'raw'spikes'

Gaussian''
smoothing'

down4sampled'recent'values'for'model:''''''''''
'''''''''''''''(t)'''(t43)'''(t46)'

rate'es=mate'

Fig. 6. Illustration of down-sampling spike rate estimate to increase
temporal window of data available to model while decreasing redun-
dancy of sample information. The transparent Gaussian kernels and
green and red samples represent delayed copies of the current filter
output (blue) used by the model.

VI. CONCLUSION

We have described three areas for improvement in BMI
systems which can be implemented without significant addi-
tional computational requirements or changes to the underly-
ing models used to decode brain activity: (1) Gaussian kernel
smoothing using a kernel width optimized for observed cell
behavior provides the best firing rate estimate with the
lowest latency among other choices of smoothing filters;
(2) careful choice of dynamic model structure and number
of parameters can improve the performance of decoding
algorithms, potentially leading to improved performance of
decoder-based BMIs; and (3) implementing the full system at
a sampling rate of 60 Hz will allow faithful reproduction of
the underlying continuous-time dynamics and provide seam-
less and smooth visual feedback to the subject. Together,
these improvements should facilitate substantial performance
improvement of existing BMI designs.
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