
Engineering muscle cells

OUTLINE

- I. Why and how would you engineer muscles
- II. Example 1: myosin types I, IIa, and IIx
- III. Example 2: dystrophin protein (connects actin with proteins on inside of cell membrane)

$B-2a \\ MSSDQEMAIFGEAAPYLRKSEKERIEAQNKPFDAKTSVFVAEPKESFVKGTIQSREGGKVTVKTEGGATLTVKEDQVFPMNPPKFDKIEDMAMMTHLHEP$	100
B -2xV	100
B -slow . VDA A L TR L. KD PDD E A L AE H. K. V LQQ L. F	99
$B-2a \\ AVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNPEVVTAYRGKKRQEAPPHIFSISDNAYQFMLTDRENQSILITGESGAGKTVNTKRVIQYFATIA$	200
B -2x	200
B -slow S I A A S Y V	199
Loop 1	
B -2a VTCDKKKEEITSGKIQCTLEDQIISANPLLEAFGNAKTVRNDNSSRFGKFIRIHFGTTGKLASADIETYLLEKSRVTFQLKAERSYHIFYQITSNRKPEL	300
B -2x E P M	300
B -slow AI. RS. K. QAT Q A	297
B-2a IEMLLITTNPYDYPFISQGEISVASIDDQEELIATDSAIDILGFTNEEKVSIYKLTGAVMHYGNLKFKQKQREEQAEPDGTEVADKAAYLQSLNSADLLK	400
B -2x	
B -slow LDNATTAMN.F.VTN.MIFMLESMG	397
B -2a ALCYPRVKVGNEYVTKGQTVEQVTNAVGALAKAVYEKMFLWMVARINQQLDTKQPRQYFIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFVLE	500
B -2xFYD	500
B -slow G H	497
B -2a QEEYKREGIEWTFIDFGMDLAACIELIEKPMGIFSILEEECMFPKATDMSFKNKLYDQHLGKSANFQKPKVVKGKPEAHFALIHYAGVVDYNITGWLEKN	
B -2xKE	
B -slow K E Q D M T A. F. N S RNI S T I Q	597
Loop 2	
B -2a KDPLNDTVVGLYQKSALKTLAFLFSGTPTGDSEASGGTKKGGKKKGSSFQTVSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHELVLHQLRC	
B -2x E SV L PAS. EA P	
B -slow E D K S M. SS ANYAGF. TP-IEKG KA H S VIDNP M	695
ELC binding	
B -2a NGVLEGIRICRKGFPSRILYADFKQRYKVLNASAIPEGQYIDSKKASEKLLASIDIDHTQYKFGHTKVFFKAGLLGLLEEMRDEKLAQLMTRTQARCRGF	
	798
B -slow	795
region RLC binding region	
B -2a LARVEYQKIN ERRESIFCIQYNIRAFMNVKHWPWMKLFFRIKPLLKSAETEKEMATMKEEFQKTKDELAKSEAKRKELEEKMVTLLKEKNDLQLQVQSEA	
B -2x	
B -slow S. M. FK. 44 D. LLI. W G. N Y. K I. L GRL. EA. E R S Q A. Q	895
B -2a EGLADAEERCDQLIKTKIQLEAKIKEVTERAEDEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDETIAKLTKE	
B -2x DA	
B -slow DN	

Cow myosin heavy chain amino acid sequences. From K. Chikuni et al., *Meat Science* **67**: 87-94, 2004.

Protein $\Delta45$ -55 dystrophin know to be functional from BMD patients

Using antisense oligonucleotides (AONs) for exon skipping, a possible treatment for Duchenne's Muscular Dystrophy (DMD). From A. Goyenvalle et al., *Molecular Therapy* **26**: 1212-1221, 2012.