7th grade science for Nov. 27 to Dec. 1: Simple Machines!

Review of Nov. 21 worksheet

- Mathematical definition of WORK?
- Definition of MACHINE?
- Change in FORCE vs. change in DISTANCE?

Figure 4 on page 103 of your textbook

Review of Nov. 21 worksheet

• Mathematical definition of MECHANICAL ADVANTAGE?

• Range of possible values?

Figure 4 on page 103 of your textbook

Types of simple machines: LEVERS

- Terms
 - Input force (effort)
 - Output force
 - Load
 - Fulcrum

Types of simple machines: LEVERS

• Class (1st, 2nd, or 3rd) depends on arrangement of input force, output force, and fulcrum

- Mnemonics
 - F-L-E 1-2-3
 - Easy examples

Figures from pages 106-107 of your textbook

LO: Investigate the mechanical advantage of levers. SLE: Work collaboratively.

Problem: Does mechanical advantage depend on fulcrum position? Hypothesis (with reason):

Independent variable/dependent variable/3 controls:

- Procedure:
- 1. Make a first-class lever (lever "A") with the fulcrum in the middle. Measure the distances to the "load end" and the "effort end."
- 2. Place a 5-N weight (the load) at one end of the lever.
- 3. Using a spring scale, measure the amount of "effort" force needed (at the other end of the lever) to lift the weight.
- 4. Move the fulcrum away from the middle of the lever. Measure distances.
- 5. Repeat steps 2 & 3.

Data:	Type of lever	Fulcrum to effort (cm)	Fulcrum to load (cm)	Input force (N)	Output force (N)	Mechanical advantage	Conclusion:
	А						
	В						

November 30, 2017

Types of simple machines: PULLEYS

- Definition
- 3 types

Figures from pages 106-107 of your textbook

LO: Compare the mechanical advantage of fixed & movable pulleys. SLE: Work collaboratively.

Problem: Does a movable pulley have a greater mechanical advantage than a fixed pulley?

Hypothesis:

Independent variable:

Dependent variable:

3 controlled variables:

Procedure:

- 1. Make a fixed pulley.
- 2. Use the pulley to lift a 5N weight.
- 3. Observe how much force you need to put into the pulley to lift the weight.
- 4. Repeat Steps 1-3 with a movable pulley.

Data:

Type of Pulley	Input Force (N)	Output Force (N)	Mechanical Advantage
Fixed			
Movable			

Conclusion:

Review for Friday quiz

- How is work calculated?
- Define machine.
 - Do machines change the work done?
 - What DO they change?
- What are the 6 types of simple machines?
- Define lever.
 - Be able to classify a lever as 1st-class, 2nd-class, or 3rd-class.
- Define pulley.
 - What are the 3 types of pulleys?
- How is mechanical advantage calculated?
 - What is the range of possible values?

The 6 simple machines (again)

https://www.quora.com/What-are-examples-of-the-6-simple-machines

Compound machines: combinations of simple machines!

Figure from page 112 of your textbook

Rube Goldberg devices are compound machines

Drawing by Rube Goldberg