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Postulates of a Personalistic

The seven postulates (Pl through P7) scattered through the first
five chapters of this book are reproduced here for ready reference along
with 8 minimum of explanatory material The language of the postu-
lates is here changed somewhat for conciseness and to show an alterna-
tive mode of expression, but the logical content of each postulate is
left unaltered.

The formal subject matter of the theory
The states, & set S of elements s, o', - - - with subsets 4, B,C, - - - (page 11).
The consequences, a set F of elements f, g, &, -+ (page 14).

Acts, arbitrary functions f, g, b, - - - from S to F (page 14).
The relation “is not preferred to” between acts, < {page 18).

The postulates, and definitions on which they depend

Definitions of terms not in general mathematical use are given here
as D1 through D5; for others consult the General Index (page 289)
and the Technical Symbols (page 283).

Pl The relation < iz a simple ordering (page 18).

D1 f <ggven B, if and only if ' < g’ for every ' and g’ that
agree with f and g, respectively, on B and with each other on ~B
and g < f either for all such pairs or for none (page 22},



Theory of Decision
P2 Foreveryf, g and B, f < g given B or g < f given B (page 23).

D2 g¢g<y¢;ifandonlyif f <f, when f(s) = g, f'(s) = ¢ for every
& ¢ S (page 25).

D3  Bis null, if and only if f < g given B for every {, g (page 24).
P3 If f(s) =g, f'(s) = ¢’ for every ¢ ¢ B, and B is not null; then
f < ¥ given B, if and only if g < ¢’ (page 26).

D4 A <B;if and only if f4 <fz or g < ¢’ for every {4, fs, g, ¢

such that: fu(s) = g for se A, fa(s) = ¢’ for s e~A4, fa(s) = g, for
se B, fg(s) = ¢ for 8 e ~B (page 31).

P4 Forevery A,B,A < BorB < A (page 31).
P5 It is false that, for every f, /', f < f* (page 31).

P6  Suppose it false that g < h; then, for every f, there is a (finite)
partition of S such that, if g’ agrees with g and b’ agrees with h except
on an arbitrary element of the partition, g’ and h’ being equal to f
there, then it will be false that g’ < h or g < h' (page 39).

D5 f<ggven B (g<fgiven B); if and only if f <h given B
(h < f given B), when h(s) = g for every s (page 72).

P7  If £ < g(s) given B (g(s) <f given B) for every se¢B, then
f < ggiven B (g < f given B) (page 77).



Copyrighted material



The Foundations
of Statistics

This One

A AR

QJSL-52Z-Y871




Copyrighted material



The Foundations
of Statistics

LEONARD ]. SAVAGE

Late Eugene Higgins Professor of Siatistics
Yale Unrversity

SECOND REVISED EDITION

DOVER PUBLICATIONS, INC,
NEW YORK



Copyright © 1972 by Dover Publications, Inc.

Copyright © 1954 by I. Richard Savage.

All rights reserved under Pan American and Inter-
national Copyright Conventions.

This Dover edition, first published in 1972, is a
revised and enlarged version of the work originally
published by John Wiley & Sons in 1954,

International Standard Book Number: 0-486-62349-1
Library of Congress Catalog Card Number: 79-188243

Manufactured in the United States of America
Dover Publications, Inc.
180 Varick Street
New York, N.Y. 10014



TO MY FATHER



Copyrighted material



Preface to the Dover Edition

CONTINUING INTEREST HAS ENCOURAGED PUBLICATION OF A SECOND
edition of this book. Because revising it to fit my present thinking and
the new climate of opinion about the foundations of statistics would
obliterate rather than restore, I have limited myself in the preparation
of this edition much as though dealing with the work of another.

The objective errors that have come to my attention, mainly through
the generosity of readers, of whom Peter Fishburn has my special
thanks, have been eorrected, of eourse. Minor and mechanical ones, such
as a name misspelled or an inequality that had persisted in pointing in
the wrong direetion, have been silently eliminated. Other changes are
eonspicnous as additions, They consist mainly of this Preface, Appendix
4: Bibliographiec Supplement, and several footnotes identified as new
by the sign*. To enable you to pursue the many new developments
sinee 1954 aceording to the intemnsity and direction of your own
interests, & number of new references leading to many more are listed in
the Bibliographic Supplement, and the prineiple advances known to me
are pointed out in new footnotes or in comments on the new references.

Citations to the bibliography in the original Appendix 3 are made
by a compaet, but otherwise ill-advised, letter and number eode; those
to the new Appendix 4 are made by a now popular system, which is
effective, informative, and flexible, Example : The historie papers ( Borel
1924) and [D2] have been translated by Kyburg and Smokler (1964).

The following paragraphs are intended to help you approach
this book with a more current perspective, To some extent, they will be
intelligible and useful even to a noviee in the foundations of statistics,
but they are necessarily somewhat technieal and will therefore take om
new meaning if yon return to them as your reading in this hook and
elsewhere progresses,

The book falls into two parts. The first, ending with Chapter 7, is a
general introduction to the personalistie tradition in probability and
utility. Were this part to be done over, radical revision would not be
required, though T would now supplement the line of argument center-
ing around a system of postulates by other less formal approaches, each
convineing in its own way, that converge to the general conclusion that
personal (or subjective) probability is a good key, and the hest yet

il
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known, to all our valid ideas about the applications of probability. There
would also be many new works to report on and analyze more thoroughly
than ean be done in footnotes,

The original aim of the second part of the book, beginning with
Chapter 8, is all too plainly stated in the second complete paragraph on
page 4. There, a personalistie justification is promised for the popular
body of devices developed by the enthusiastically frequentistic schools
that then oeeupied almost the whole statistical scene and still dominate
it, though less completely, The second part of the book is indeed devoted
to personalistic discussion of frequentistic devices, but for one after
another it reluctantly admits that justification has not been found.
Freud alone could explain how the rash and unfulfilled promise on
page 4 went unamended through so many revisions of the manuseript.

Today, as I see it, the theory of personal probability applied to sta-
tisties shows that many of the prominent frequentistie devices can at
best lead to aceidental and approximate, not systematic and eogent, sue-
cess, as 1s expanded upon, perhaps more optimistieally, by Pratt (1963).
Among the ill-founded frequentistic devices are minimax rules, almost
all tail-area tests, tolerance intervals, and, in a sort of class by itself,
fiducial probability.

If I have lost faith in the devices of the frequentistic schools, I have
learned new respect for some of their general theoretical ideas. Let me
amplify first in connection with the Neyman-Pearson school. While
insisting on long-run frequency as the basis of probability, that school
wisely emphasizes the ultimate subjeetivity of statistical inference or
behavior within the objective constraint of ‘‘ admissibility,’’ as in (Leh-
mann 1958 ; Wolfowitz 1962). But careful study of admissibility leads
almost inexorably to the recognition of personal probabilities and their
central role in statistics (Savage 1961, Seetion 4; 1962, pp. 170-175),
80 personalistic statistics appears as a natural late development of the
Nevman-Pearson ideas.

One consequence of this sort of analysis of admissibility is the ex-
tremely important likelihood prineiple, a ecorollary of Bayes’ theorem,
of which I was not even aware when writing the first edition of this book.
This prineiple, inferable from, though nominally at varianece with,
Neyman-Pearson ideas (Birnbaum 1962), was first put forward by
Barnard (1947) and by Fisher (1955), members of what might be
ealled the Fisher school of frequentists. See also ( Barnard 1965; Bar-
nard et al. 1962 ; Cornfield 1966).

The views just expressed are evidently eontroversial, and if T have
permitted myself such expressions as “‘show’’ and '‘inexorably,’’ they
are not meant with mathematical finality. Yet, controversial though
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they may be, they are today shared by a number of statisticians, who
may be called personalistic Bayesians, or simply personalists. This book
has played—and econtinues to play—a role in the personalistic move-
ment, but the movement itself has other sources apart from those from
which this book itself was drawn. One with great impaect on praetical
statistics and scientific management is a book by Robert Sechlaifer
(1959). This is a welcome opportunity to say that his ideas were devel-
oped wholly independently of the present book, and indeed of other
personalistie literature. They are in full harmony with the ideas in
this book but are more down to earth and less spellbound by tradition.

L. J. Savace
Yale Umiversity
June, 1971
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Preface to the First Edition

A BOOE ABOUT 50 CONTROVERSIAL A SUBJECT AS THE FOUNDATIONS
of statistics may have some value in the classroom, as I hope this one
will; but it cannot be a textbook, or manual of instruetion, stating the
accepted facts about its subject, for there scarcely are any. Openly, or
eoyly screened behind the polite conventions of what we eall a disinter-
ested approach, it must, even more than other books, be an airing of
its author's current opinions.

One who so airs his opinions has serious misgivings that (as may be
judged from other prefaces) he often tries to communicate along with
his book. First, he longs to know, for reasons that are not altogether
noble, whether he is really making a valuable contribution. His own
conceit, the encouragement of friends, and the confidence of his pub-
lisher have given him hope, but he knows that the hopes of others in
his position have seldom been fully realized.

Again, what he has written is far from perfect, even to his biased
eye. He has stopped revising and called the book finished, because
one must sooner or later.

Finally, he fears that he himself, and still more such public as he
has, will forget that the book is tentative, that an author’s most recent
word need not be his last word.

The application of statistics interests some workers in almost every
field of empineal investigation—not only in science, but also in com-
merce and industry. Moreover, the foundations of statistics are con-
nected conceptually with many diseciplines outside of statistics itself,
particularly mathematics, philosophy, economics, and psychology—a
situation that, incidentally, must augment the natural misgivings of
an author in this field about his own competence. Those who read in
this book may, therefore, be diverse in background and interests, With
this consideration in mind, I have endeavored to keep the book as free
from technical prerequisites as its subject matter and its restriction to
a reasonable size permit.

Technical knowledge of statistics is nowhere assumed, but the reader
who has some general knowledge of statistics will be much better pre-
pared to understand and appraise this book. The books Siatistics, by
L. H. C. Tippett, and On the Principles of Statistical Inference by



viii PREFACE TO THE FIRST EDITION

A. Wald, listed in the Bibliography at the end of Appendix 3, are short
authoritative introductions to statisties, either of which would provide
some statistical background for this book. The books of Tippett and
Wald are so different in tone and emphasis that it would by no means
be wasteful to read them both, in that order.

Any but the most casual reader should have some formal preparation
in the theory of mathematical probability. Those aequainted with
moderately advanced theoretical statisties will automatically have this
preparation; others may acquire it, for example, by reading Theory of
Probability, by M. E. Munroe, or selected parts of An Introduction to
Probability Theory and Its Applications, by W. Feller, according to
their taste. In Feller's book, a thorough reading of the Introduection
and Chapter 1, and a casual reading of Chapters 5, 7, and 8 would be
sufficient.

The explicit mathematieal prerequisites are not great; a year of cal-
culus would in principle be more than enough. But, in practice, read-
ers without some training in formal logic or one of the abstract branches
of mathematics usually taught only after ealculus will, I fear, find some
of the long though elementary mathematical deductions quite forbid-
ding. For the sake of such readers, I therefore take the liberty of giv-
ing some pedagogical advice here and elsewhere that mathematically
more mature readers will find superfluous and possibly irntating. In
the first place, it cannot be too strongly emphasized that a long mathe-
matical argument can be fully understood on first reading only when it
is very elementary indeed, relative to the reader’'s mathematical knowl-
edge. If one wants only the gist of it, he may read such material once
only; but otherwise he must expect to read it at least once again. Seri-
ous reading of mathematics is best done sitting bolt upright on a hard
chair at a desk. Pencil and paper are nearly indispensable; for there
are always figures to be sketched and steps in the argument to be veri-
fied by calculation. In this book, as in many mathematical books,
when exercises are indicated, it is absolutely essential that they be
read and nearly essential that they be worked, because they constitute
part of the exposition, the exercise form being adopted where it seema
to the author best for conveying the particular information at hand.

To some mathematicians, and even more to logicians, I must say a
word of apology for what they may consider lapses of rigor, such as
using the same symbol with more than one meaning and failing to dis-
tinguish uniformly between the use and the mention of a symbol; but
they will understand that these lapses are sacrifices to what I take to
be general intelligibility and will have, I hope, no real difficulty in re-
pairing them.
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Few will wish to read the whole book; therefore introductions to the
chapters and sections have been so written as not only to provide orien-
tation but also to facilitate skipping. In particular, safe detours are
indicated around mathematically advanced topics and other digressions.

A few words in explanation of the conventions, such as those by which
internal and external references are made in this book, may be useful,

The abbreviation § 3.4 means Section 4 of Chapter 3; within Chapter
3 itself, this would be abbreviated still further to § 4, The abbreviation
(3.4.1) means the first numbered and displayed equation or other ex-
pression in §3.4; within Chapter 3, this would be abbreviated still
further to (4.1) and within § 3.4 simply to (1). Theorems, lemmas,
exercises, corollaries, figures, and tables are named by a similar system,
e.g., Theorem 3.4.1, Theorem 4.1, Theorem 1. Incidentally, the proofs
of theorems are terminated with the special punctunation mark 4, a
device borrowed from Halmos’s Measure Theory.

Seven postulates, P1, P2, ete., are introduced over the course of
several chapters. For ready reference these are, with some explanatory
material, reproduced on the end papers.

Entries in the Bibliography at the end of Appendix 3 are designated
by a self-explanatory notation In square brackets. For example, the
works of Tippett, Wald, Munroe, Feller, and Halmos, already referred
to, are [T2], [W1], [M6], [F1], and [H2], respectively.

I often allude to a set of key references to a given topic. This means
a set of external references intended to lead the reader that wishes to
pursue that particular topic to the fullest and most recent bibliographies;
it has nothing to do with the merit or importance of the works referred to.

Technical terms (except for non-verbal symbols) that are defined in
this book are printed in bold face or italies (depending on the mmpor-
tance of the term for thiz book or for established usage) in the context
where the term is defined. These special fonts are occasionally used
for other purposes as well. Terms are sometimes used informally—
even in unofficial definitions—before being officially defined. Even the
official definitions are sometimes of necessity very loose, corresponding
to the well-known principle that, in a formal theory, some terms must
in strict logic be left undefined.

L. J. BavaGe

University of Chicago

April, 1654
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CHAPTER 1

Introduction

1 The role of foundations

It is often argued academically that no science can be more secure
than its foundations, and that, if there is controversy about the foun-
dations, there must be even greater controversy about the higher parts
of the science. As a matter of fact, the foundations are the most con-
troversial parts of many, if not all, sciences. Physics and pure mathe-
matics are excellent examples of this phenomenon. As for statistics,
the foundations include, on any interpretation of which I have ever
heard, the foundations of probability, as controversial a subject as one
could name. As in other sciences, controversies over the foundations
of statistics reflect themselves to some extent in everyday practice, but
not nearly so catastrophically as one might imagine. I believe that
here, as elsewhere, catastrophe is avoided, primarily because in prac-
tical situations common sense generally saves all but the most pedantic
of us from flagrant error. It is hard to judge, however, to what extent
the relative calm of modern statistics is due to its domination by a
vigorous school relatively well agreed within itself about the foundations.

Although study of the foundations of a science does not have the
role that would be assigned to it by naive first-things-firstism, it has a
certain continuing importance as the science develops, influencing, and
being influenced hy, the more immediately practical parts of the science.

2 Historical background

The concept and problem of inductive inference have been promi-
nent in philosophy at least since Aristotle. Mathematical work on some
aspects of the problem of inference dates back at least to the early
gighteenth century. Leibniz is said to be the first to publish a sugges-
tion in that direction, but Jacob Bernoulli's posthumous Ars Congee-
tandi (1713) [B12] seems to be the first concerted effort. This mathe-

t Valuable information on this and other topies of the early philosophic history of

probability is attractively presented in Keynes' treatise [K4), especially in Chapters
VII, XXIII, and the bibliography.
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matical work has always revolved around the concept of probability;
but, though there was active interest in probability for nearly a cen-
tury before the publication of Ars Conjeclandi, earlier activity seems
not to have been concerned with inductive inference.

In the present century there has been and continues to be extra-
ordinary interest in mathematical treatment of problems of inductive
inference. For reasons I cannot and need not analyze here, this ac-
tivity has been strikingly concentrated in the English-speaking world.
It is known under several names, most of which stress some aspect of
the subject that seemed of overwhelming importance at the moment
when the name was coined. ‘“Mathematical statistics,” one of its
earliest names, is still the most popular. In this name, “mathematical”
seems to be intended to connote rational, theoretical, or perhaps mathe-
matically advanced, to distinguish the subject from those problems of
gathering and condensing numerical data that can be considered apart
from the problem of nductive inference, the mathematical treatment
of which is generally relatively trivial. The name “statistical inference
recognizes that the subject is concerned with inductive inference. The
name “statistical decision’ reflects the idea that inductive inference is
not always, if ever, concerned with what to believe in the face of in-
conclusive evidence, but that at least sometimes it is concerned with
what action to deecide upon under such circumstances. Within this
book, there will be no harm in adopting the shortest possible name,
“‘statistics.”

It is unanimously agreed that statistics depends somehow on proba-
bility. But, as to what probability is and how it is connected with
statistics, there has seldom been such complete disagreement and break-
down of communication since the Tower of Babel. There must be
dozens of different interpretations of probability defended by living
authorities, and some authorities hold that several different interpreta-
tions may be useful, that is, that the concept of probability may have
different meaningful senses in different contexts. Doubtless, much of
the disagreement is merely terminological and would disappear under
sufficiently sharp analysis. Some believe that it would all disappear,
or even that they have themselves already made the necessary
analysis.

Considering the confusion about the foundations of statisties, it is
gurprising, and certainly gratifying, to find that almost everyone is
agreed on what the purely mathematical properties of probability are,
Virtually all controversy therefore centers on questions of interpreting
the generally accepted axiomatic concept of probability, that is, of de-
termining the extramathematical properties of probability.
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The widely accepted axiomatic concept referred to is commonly as-
eribed to Kolmogoroff [K7] and goes by his name. It should be men-
tioned that there is some dissension from it on the part of a small group
led by von Mises [V2]. There are also a few minor technical variations
on the Kolmogoroff system that are sometimes of interest; they will be
discussed in § 3.4.

I would distinguish three main classes of views on the interpretation
of probability, for the purposes of this book, calling them objectivistic,
personalistic, and necessary. Condensed descriptions of these three
classes of views seem called for here. If some readers find these deserip-
tions condensed to the point of unintelligibility, let them be assured
that fuller ones will gradually be developed as the book proceeds.

Objectivistic views hold that some repetitive events, such as tosses
of a penny, prove to be in reasonably close agreement with the mathe-
matical concept of independently repeated random events, all with the
same probability. According to such views, evidence for the quality
of agreement between the behavior of the repetitive event and the
mathematical concept, and for the magnitude of the probability that
applies (in case any does), is to be obtained by observation of some
repetitions of the event, and from no other source whatsoever.

Personalistic views hold that probability measures the confidence
that a particular individual has in the truth of a particular proposition,
for example, the proposition that it will rain tomorrow. These views
postulate that the individual concerned is in some ways “reasonable,”
but they do not deny the possibility that two reasonable individuals
faced with the same evidence may have different degrees of confidence
in the truth of the same proposition.

Necessary views hold that probability measures the extent to which
one set of propositions, out of logical necessity and apart from human
opinion, confirms the truth of another. They are generally regarded
by their holders as extensions of logic, which tells when one set of prop-
ositions necessitates the truth of another.

After what has been said about the intensity and complexity of the
controversy over the probability concept, you must realize that the
short taxonomy above is bound to infuriate any expert on the founda-
tions of probability, but I trust it may do the less learned more good
than harm.

The great burst of statistical research in the English-speaking world
in the present century has revolved around objectivistic views on the
interpretation of probability. As will shortly be explained, any purely
objectivistic view entails a severe difficulty for statistics, This diffi-
culty is recognized by members of the British-American School, if 1
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may use that name without its being taken too literally or at all na-
tionalistically, and is regarded by them as a great, though not insur-
mountable, obstacle; indeed, some of them see it as the central problem
of statistics.

The difficulty in the objectivistic position is this. In any objecti-
vistic view, probabilities can apply fruitfully only to repetitive events,
that is, to certain processes; and (depending on the view in question)
it is either meaningless to talk about the probability that a given propo-
sition i true, or this probability can be only 1 or 0, according as the
proposition is in fact true or false. Under neither interpretation can
probability serve as a measure of the trust to be put in the proposition.
Thus the existence of evidence for a proposition can never, on an ob-
jectivistic view, be expressed by saying that the proposition is true with
a certain probability. Again, if one must choose among several courses
of action in the light of experimental evidence, it is not meaningful, in
terms of objeetive probability, to compute which of these actions is
most promising, that 1s, which has the highest expected income. Hold-
ers of objectivistic views have, therefore, no recourse but to argue that
it is not reasonable to assign probabilities to the truth of propositions
or to caleulate which of several actions is the most promising, and that
the need expressed by the attempt to set up such concepts must be
met in other ways, if at all.

The British-American School has had great success in several re-
spects. The number of its adherents has rapidly inereased. It has con-
tributed many procedures of strong intuitive appeal and (one feels) of
lasting worth. These have found widespread application in many
sciences, in industry, and in commerce. The success of the school may
pragmatically be taken as evidence for the correctness of the general
view on which it is based. Indeed, anyone who overthrows that view
must either discredit the procedures to which it has led, or show, as
I hope to show in this book, that they are on the whole consistent with
the alternative proposed.

Some, | among them, hold that the grounds for adopting an objec-
tivistic view are not overwhelmingly strong; that there are serious log-
ical objections to any such view; and, most important of all, that the
difficulty a strictly objectivistic view meets in statisties reflects real
inadequacy.

3 General outline of this book

This book presents a theory of the foundations of statistics which is
based on a personalistic view of probability derived mainly from the
work of Bruno de Finetti, as expressed for example in [D2]. The theory
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is presented in a tentative spirit, for I realize that the serious blemishes
in it apparent to me are not the only ones that will be discovered by
critical readers. A theory of the foundations of statistics that appears
contrary to the teaching of the most productive statisticians will prop-
erly be regarded with extraordinary caution. Other views on proba-
bility will, of course, be discussed in this book, partly for their own in-
terest and partly to explain the relationship between the personalistie
view on which this book iz based and other views.

The book is organized into seventeen chapters, of which the present
introduetion is the first. Chapters 2-7 are, so to speak, concerned with
the foundations at a relatively deep level. They develop, explain, and
defend a certain abstract theory of the behavior of a highly idealized
person faced with uncertainty., That theory is shown to have as im-
plications a theory of personal probability, corresponding to the per-
sonalistic view of probability basic to this book, and also a theory of
utility due, in its modern form, to von Neumann and Morgenstern
[V4].

There is a transition, occurring in Chapter 8 and maintained through-
out the rest of the book, to a shallower level of the foundations of sta-
tistics; I might say from pre-statistics to statistice proper. In those
later chapters, it is recognized that the theory developed in the earlier
ones is too highly idealized for immediate application. Some compro-
mises have to be made, and the appropriate ones are sought in an anal-
ysis of some of the inventions and ideas of the British-American School.
It will, I hope, be demonstrated thereby that the superficially incom-
pahhhsymﬂfﬂmsammmdmthamhmdmthapmnﬂmuc
view of probability and on the other with the objectivistically inspired
developments of the British-American School do in fact lend each other
mutual support and clarification.



CHAPTER 2

Preliminary Considerations
on Decision 1n
the Face of Uncertainty

1 Introduction

Decisions made in the face of uncertainty pervade the life of every
individual and organization. Ewven animsls might be said continually
to make such decisions, and the psychological mechanisms by which
men decide may have much in common with those by which animals
do s0, But formal reasoning presumably plays no role in the decisions
of animals, little in those of children, and less than might be wished in
those of men. It may be said to be the purpose of this book, and in-
deed of statistics generally, to discuss the implications of reasoning for
the making of decisions.

Reasoning is commonly associated with logic, but it is obvious, as
many have pointed out, that the implications of what is ordinarily
called logic are meager indeed when uncertainty is to be faced. It has
therefore often been asked whether logic cannot be extended, by prin-
ciples as acceptable as those of logic itself, to bear more fully on un-
certainty. An attempt to extend logic in this way will be begun in
this chapter, differing in two important respects from most, but not
all, other attempts,

First, since logic is concerned with implications among propositions,
many have thought it natural to extend logic by setting up criteria for
the extent to which one proposition tends to imply, or provide evidence
for, another. It seems to me obvious, however, that what is ultimately
wanted is criteria for deciding among possible courses of action; and,
therefore, generalization of the relation of implication seems at best a
roundabout method of attack. It must be admitted that logic itself
does lead to some criteria for decision, because what is implied by a
proposition known to be true is in turn true and sometimes relevant to
making a decision. Should some notion of partial implication be de-
monstrably even better articulated with decision than is implication it-

L]
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gelf, that would be excellent; but how is such a notion to be sought ex-
cept by explicitly studying decision? Ramsey's discussion in [R1] of
the point at issue here is especially forceful.

Second, it is appealing to suppose that, if two individuals in the same
situation, having the same tastes and supplied with the same informa-
tion, act reasonably, they will act in the same way. Such agreement,
belief in which amounts to a necessary (as opposed to a personalistic)
view of probability, is certainly worth looking for. Personally, I be-
lieve that it does not correspond even roughly with reality, but, hav-
ing at the moment no strong argument behind my pessimism on this
point, I do not insist on it. But I do insist that, until the conirary be
demonstrated, we must be prepared to find reasoning inadequate to
bring about complete agreement. In particular, the extensions of logic
to be adduced in this book will not bring about complete agreement;
and whether enough additional principles to do so, or indeed any addi-
tional principles of much consequence, can be adduced, I do not know.
It may be, and indeed I believe, that there is an element in decision
apart from taste, about which, like taste itself, there is no disputing,

The next four sections of this chapter build up a formal model, or
scheme, of the situation in which a person is faced with uncertainty;
the final two, in terms of this model, motivate and state some of the
few principles that seem to me entitled to be taken as postulates for
rational decision.

2 The person

I am about to build up a highly idealized theory of the behavior of a
“rational” person with respect to decisions. In doing so I will, of course,
have to ask you to agree with me that such and such maxims of behavior
are “rational.” In so far as “rational” means logical, there is no live
question; and, if I ask your leave there at all, it is only as a matter of
form.t But our person is going to have to make up his mind in situa-
tions in which criteria beyond the ordinary ones of logic will be neces-
sary. BSo, when certain maxims are presented for your consideration,
you must ask yourself whether you try to behave in accordance with
them, or, to put it differently, how you would react if you noticed your-
self violating them.

t The assumption that a person’s behavior is logical is, of eourse, far from vacuous.
In particular, such a person cannot be uncertain about decidable mathematical prop-
ositions. This suggests, at least to me, that the tempting program sketched by Polva
[P8] of establishing a theory of the probability of mathematical conjectures cannot
be fully suecessful in that it cannot lead to a truly formal theory, but de Finetti
[D5] seems more optimistic about the program.+

+ Polyva has greatly elaborated his program, but not in the direction of seek-
ing a formal theory. A eurious early work by Cérésole (1915) is somewhat

pertinent, and Hacking (1967} argues for the possibility of incloding math-
ematical nneertainty in a formal theory,
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It is brought out in economic theory that organizations sometimes
behave like individual people, so that a theory originally intended to
apply to people may also apply to (or may even apply better to) such
units as families, corporations, or nations. In view of this possibility,
economic theorists are sometimes reluctant to use the word “person,”
or even “individual,” for the behaving units to which they refer; but
for our purpose “person” threatens no confusion, though the possi-
bility of using it in an extended sense may well be borne in mind.

3 The world, and states of the world

A formal deseription, or model, of what the person is uncertain about
will be needed. To motivate this formal description, let me begin in-
formally by considering a list of examples. The person might be un-
certain about:

1. Whether a particular egg is rotten.

2. Which, if any, in a particular dozen eggs are rotten.

3. The temperature at noon in Chicago yesterday.

4. What the temperature was and will be in the place now covered
by Chicago each noon from January 1, 1 A.p., to January 1, 4000 4.p.

5. The infinite sequence of heads and tails that will result from re-
peated tosses of a particular (everlasting) coin.

6. The complete decimal expansion of .

7. The exact and entire past, present, and future history of the uni-
verse, understood in any sense, however wide.

These examples have a few features in common, though, if there are
more than a few, it is a diseredit to my imagination. Thus, in each
there 1s some object about which the person is uncertain, an egg, a
dogen eggs, a temperature, a sequence of temperatures, etc. FEach ob-
ject admits a certain class of descriptions that might thinkably apply
to it. To illustrate, the egg of Example 1 might be rotten or not; and
the terms of the example are meant to exclude any other description
from consideration, though, of course, & real egg has many other fea-
tures. Again, since any subset of the dozen eggs (including the extreme
cases of all and none at all) might be rotten, there are 2'* deseriptions
associated with Example 2. For Example 3 and each subsequent one,
there are an infinite number of descriptions, though the array of de-
seriptions is more complicated in some than in others, reaching the ulti-
mate of complexity in Example 7. Example 6§ is a little anomalous
in that anything the person does not know about the description of »
he could know in principle by thinking sufficiently hard about it, that
is, by logic alone. This point, banal to some readers, needs explanation
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for others. If, for example, = is understood to be the area of a cirele of
unit radius, it follows by logic alone that = is not greater than the area
of & square circumseribing the unit circle, that is, * < 4. By an elabo-
ration of this method = can be computed to any degree of sccuracy,
and by other purely logical methods many other facts about » can be
established, such as the fact that » is not a rational number.,

In connection with the concepts suggested by the preceding para-
graph, the following nomenclature is proposed as brief, suggestive, and
in reasonable harmony with the usages of statistics and ordinary dis-
course,

Term Definition
the world the object about which the person is
concerned
a state (of the world) & description of the world, leaving no

relevant aspect undeseribed
the true state (of the world)  the state that does in fact obtain, i.e.,
the true deseription of the world

In application of the theory, the question will arise as to which world
to use in a given context. Thus, if the person is interested in the only
brown egg in a dozen, should that egg or the whole dozen be taken as
the world? It will be seen as the theory is developed that in principle
no harm is done by taking the larger of two worlds as a model of the
situation. One is therefore tempted to adopt, once and for all, one
world sufficiently large, say Example 7. The most serious objection to
this is that Example 7 is vague, and some mathematical and philosophi-
cal experience suggests that the vagueness cannot be removed without
ruining the universality of the example. It may also be added that the
use of modest little worlds, tailored to particular contexts, is often a
simplification, the advantage of which is justified by a considerable
body of mathematical experience with related ideas.

The sense in which the world of a dozen egggs is larger than the world
of the one brown egg in the dozen is in some respects obvious. It may

well, however, to emphasize that a state of the smaller world corre-

ds not to one state of the larger, but to a set of states. Thus,
“The brown egg is rotten" describes the smaller world completely, and
therefore is a state of it; but the same statement leaves much about the
larger world unsaid and corresponds to a set of 2" states of it. In the
sense under discussion a smaller world is derived from a larger by neg-
lecting some distinctions between states, not by ignoring some states
outright. The latter sort of contraction may be useful in case certain
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states are regarded by the person as virtually impossible so that they
can be ignored.

4 Events

An event is a set of states. For example, in connection with the
world of Example 2, the person might well be concerned with the event
that exactly one egg in the dozen is rotten (an event having 12 states
as elements), or, a little less academically, that at least one of the eggs
is rotten (an event having 2' — 1 states as elements, i.e., all the states
in the world but one). In connection with the world of Example 3,
the person might be concerned with the event, having an infinite num-
ber of states, that the temperature at noon in Chicago yesterday was
below freeging. To give a final illustration, of a more mathematical
flavor, consider in connection with Example 5 the event that the ratio
of the number of heads to tails approaches 3 as the sequence progresses
to infinity,

In connection with any given world, there are two events that are
of the utmost logical importance, though in ordinary discourse it may
seem banal even to mention their existence. These are the universal
and the vacuous events. The universal event, here to be symbolized
by &, is the event having every state of the world as element. In so
far as “world" has a real technical meaning, S is the world. The vacu-
ous event, which can here be safely enough symbolized by the 0 of
arithmetie, is the event having no states as elements. To illustrate, in
Example 1 the event that the egg is rotten or good is the universal
event, and that it is both rotten and good is the vacuous event,

It is important to be able to express the idea that a given event con-
tains the true state among its elements. English usage seems to offer
no alternative to the rather stuffy expression, “the event obtains.”

The theory under development makes no formal reference to time.
In particular, the concept of event as here formulated is timeless, though
temporal ideas may be employed in the description of particular events,
Thus, it would not be said that Lincoln’s assassination is an event that
occurred in 1865 and that the next return of Halley's comet is one that
will occur in 1985, but that Lincoln’s assassination in 1865 and the
return of Halley's comet in, but not before, 1985 are events that
obtain.

Modern mathematical usage, especially that of a branch of mathe-
matics called Boolean algebra, suggests the following table of defini-
tions in connection with the concepts of state and event. Some of
these are synonyms, others abbreviations, and still others new terms
compounded out of old.
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Though the notations introduced in Table 1 are very elementary
and of great utility, they are not ordinarily taught except in connec-
tion with logic or relatively advanced mathematics. A set of exercises
illustrating their use is therefore given below in the form of a numbered
list of statements. These statements are true whatever the sets A, B,

Taste 1. MATHEMATICAL NOMENCLATURE PERTAINING TO STATE AND EVENTS
Term Definition
(Basic terms)
set event
A, B, C, --- generic symbols for eventa
5 8, 8" generic symbols for states
S the universal event
0 the vacuous event
(Kelations)
sed g is an element of A, i.e., & state in 4.1

AC B{or BD A).

A is contained in B, i.e., every element
of A is an element of B.

A = B, A equals B, i.e,, A is the same set as B,
i.e., A and B have exactly the same
elements,

(Constructs)
the complement of A with those elements of S that are not in A
respect to S

~A the complement of A with respect to S

the union of the 4s those elements of S that are elements
of at least one of the sets A, A, ete.

Ui 4 the union of the 4's

AUB the union of A and B, ie., those ele-

the intersection of the A,'s

N:A
AN B

ments of S that are elements of 4 or
B (possibly of both)

those elements of 8 that are elements
of each of the sets A, 4,, ete.

the intersection of the A,'s

the intérsection of 4 and B, i.e., those
elementz of § that are elements of
both A and B

t Typographieal note: The Porson font of the Greek alphabet (o, 8, v, 8, ¢, [, =)
is the one almost slways printed, at least in America, when mathematical constanta
and variables are denoted by Greek letters. The symbol « used in this and some other
publications to denote “eclement of"’ is, however, the epsilon of the Vertical font
{x, 8 7,8 &% ). Some publications use the special symbol £; and some use «,
the Porson epsilon, presumably because of its resemblance to €. The latter usage
entails either using « for two different purposes or else changing fonts in mid alphabet
{a, 8, ¥, 8, & §, --+) when constants and variables are denoted by Greek letters.
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C may be. Mathematicians would for the most part verify them by
translating them into English and appealing to common sense, though
in eomplicated cases explicit use might be made of Exercise 9. Dia-~
grams, called Venn diagrams, in which sets are symbolized by areas,
as illustrated by Figure 1, are often suggestive.

o ESE;

Figure 1

It 18 a remarkable and useful fact that any universally valid state-
ment about sets remains so if, throughout, U is interchanged with N,
0 with S, and C with D. The dual in this sense of each exercise should
be studied along with the exercise itself. For example, the dual of
Exercise 7 is: A D B, if and only if A = A U B. Note that the first
parts of Exercises 1 through 6 are dual to the second parts.

It may be remarked that, if Exercises 1-6 are taken as axioms and
7 as a definition, Exercises 821 and also the duslity prineiple follow
formally from them. For example, 10 can be proved thus: By 7, if
ANBis A, then A C B; but, by 1, A N A is A; therefore A C A.
Again, 8 can be proved, using 6, 3, 2, 1, 3, and 6 in that order, thus:

(1) 0NA=AN~ANA=(~ANANA
=~ANANA)=~ANA=AN ~4 =0,

Such formal demonstration is fun and helps develop mathematical skill.
In the present exercises the noviee, however, should consider it as a
possible supplement to, but not as a substitute for, demonstration by
interpretation.

If the exercises fail to render the notations familiar, it would be best
to talk with someone to whom they are already famibiar or failing that,
to read in any elementary book where the subject is treated, for ex-
ample, Chapter II, “The Boole-Schroeder Algebra,” in the text of
Lewis and Langford [L7].

Exercises illustrating Boolean algebra

1L ANA=A=A4AUA.

2ANBNC=ANENC; (AUBUC=4AU(BUQO.
(These facts often render parentheses superfluous.)

3. ANB=BNA;AUB=EBUA.
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BUC=ANBUMANCHLAUBNC) =

U..*i A.
A}-=D AU (~4) = 8.
B,ifandonlyif A = A N B.

9 A=58 ifandonlyif A C Band B C A.

10. A C A.

11. (A N B) C A.

122 fACB, then (ANC)C(BNC),and (AU C)y (B U ().
3. AUB)c(C,ifandonlyif A cCand B C C.

4. 0c A CS,

15 ANAUB =4

16, ~(~A) = A

17. ~(A U B) = (~A) N (~B) (De Morgan’s theorem).

1B, ~0 = §,

19. AN(~AUB)=4nN B.

2). A C B, if and only if (~B) C (~A).

2. ACB,if and only if A N (~B) = 0.

22. ~(J:4:) = ()i (~A) (General De Morgan’s theorem),
23. AU ([):B:) = [):(4 U BY).

24. AN r:nfﬂf:r = [s(4 N By.

25. ( H o U (U;By) = Hu (A; U By).
26. ( .}U{ iBj) = [ )is(A: U By).

27. Ac (N .}ﬂmdnnlyﬁd:ﬂ for every 1.
28. ([):By) r:B;r: (U By) for every j.

b Consequences, acts, and decisions

To say that a decision is to be made is to say that one of two or more
acts is to be chosen, or decided on. In deciding on an act, account
must be taken of the possible states of the world, and also of the con-
sequences implicit in each act for each possible state of the world. A
consequence is anything that may happen to the person.

Consider an example. Your wife has just broken five good eggs into
a bowl when you come in and volunteer to finish making the omelet.
A sixth egg, which for some reason must either be used for the omelet
or wasted altogether, lies unbroken beside the bowl. You must de-
cide what to do with this unbroken egg. Perhaps it is not too great an
oversimplification to say that you must decide among three acts only,
namely, to break it into the bowl containing the other five, to break it
into a saucer for inspection, or to throw it away without inspection.
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Depending on the state of the egg, each of these three acts will have
some consequence of concern to you, say that indicated by Table 1.

Tasie 1. AN EXAMPLE ILLUSTRATING ACTS, STATES, AND CONSEQUENCES

State
Act
Good Rotten
break into bowl | six-egg omelet no omelet, and five good eges
destroyed

break into saucer | six-egg omelet, and a saucer | five-egg omelet, and a saucer

to wash to wash
throw away five-egg omelet, and one good | five-egg omelet

ege destroyed

Even the little example concerning the omelet suggests how varied
the things, or experiences, regarded as consequences, can be. They
might in general involve money, life, state of health, approval of friends,
well-being of others, the will of God, or anything at all about which the
person could possibly be concerned. Consequences might appropriately
be called states of the person, as opposed to states of the world. They
might also be referred to, with some extension of the economic notion
of income, as the possible incomes of the person. In any one problem,
the set of consequences envisaged will be denoted by F, and the indi-
vidual consequences will be denoted by f, g, k, ete. In the omelet ex-
ample, F consists of the six consequences tabulated in Table 1: six-egg
omelet; no omelet, and five good eggs destroyed; ete.

If two different acts had the same consequences in every state of the
world, there would from the present point of view be no point in con-
sidering them two different acts at all. An act may therefore be iden-
tified with its possible consequences. Or, more formaly, an act is a
function attaching a consequence to each state of the world. The nota-
tion f will be used to denote an act, that is, a function, attaching the
consequence f(s) to the state &. The notation f is logically a better
name for a function than the more customary f(s) for exactly the same
reason that the word “logarithm™ is a better term for logarithm than
“logarithm of z"" would be. The notational distinetion involved here is
often justifiably neglected in mathematical work, but we will have spe-
cial need to observe it, at least in connection with acts, as will soon be
explained. When several acts are to be discussed at once, they may be
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denoted by different letters thus: f, g, h; by the use of primes thus: f,
f’, f'; or by subscripts thus: f;, f;, The set of all acts available in a
given situation will be denoted by F or a similar symbol. In the ex-
ample of the omelet, F has three acts as elements. If, for example, f
denotes the first of the three acts listed in Table 1, then f is defined

thus:
flgood) = six-egg omelet;

f(rotten) = no omelet, and five good eggs destroyed.

(1)

The argument might be raised that the formal description of decision
that has thus been erected seems inadequate because a person may not
know the eonsequences of the acts open to him in each state of the
world. He might be s0 ignorant, for example, as not to be sure whether
one rotten egg will spoil a six-egg omelet. But in that ease nothing
eould be simpler than to admit that there are four states in the world
corresponding to the two states of the egg and the two conceivable
answers to the culinary question whether one bad egg will spoil a six-
egg omelet. It seems to me obvious that this solution works in the
greatest generality, though a thoroughgoing analysis might not be triv-
ial. A reader interested in the technicalities of this point or that of
the succeeding paragraph will find an extensive discussion of a similar
problem in Chapter II of [V4), where von Neumann and Morgenstern
discuss the reduction of a general game to its reduced form.

Again, the formal deseription might seem inadequate in that it does
not provide explicitly for the possibility that one decision may lead to
another. Thus, if the omelet should be spoiled by breaking a rotten
egg into it, new questions might arise about what to substitute for
breakfast and how to appease your justifiably furious wife, But, just
as in the preceding paragraph an apparent shorteoming of the proposed
mode of description was attributed to an incomplete analysis of the
possible states, here 1 would say that the list of available acts envisaged
in Table 1 is inadequate for the interpretation that has just been put
on the problem. Where the single act “break into bowl” now stands,
there should be several, such as: “break into bowl, and in case of dis-
aster have toast,” “break into bowl, and in case of disaster take family
to a neighboring restaurant for breakfast.”” Appropriate consequences
of these new acts can easily be imagined.

As has just been suggested, what in the ordinary way of thinking
might be regarded as a chain of decisions, one leading to the other in
time, 15 in the formal description proposed here regarded as a single de-
cision. To put it a little differently, it is proposed that the choice of &
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policy or plan be regarded as s single decision. This point of view,
though not always in so explicit & form, has played a prominent role
in the statistical advances of the present century. For example, the
great majority of experimentalists, even today, suppose that the funec-
tion of statistics and of statisticians is to decide what conclusions to
draw from data gathered in an experiment or other observational pro-
gram. But statisticians hold it to be lacking in foresight to gather data
without a view to the method of analysis to be employed, that is, they
hold that the design and analysis of an experiment should be decided
upon as an articulated whole.

The point of view under discussion may be symbolized by the prov-
erb, “Look before you leap,” and the one to which it is opposed by the
proverb, “You can cross that bridge when you come to it.” When two
proverbs conflict in this way, it is proverbially true that there is some
truth in both of them, but rarely, if ever, can their common truth be
captured by a single pat proverb. One must indeed look before he
leaps, in so far as the looking is not unreasonably time-consuming and
otherwise expensive; but there are innumerable bridges one cannot
afford to cross, unless he happens to come to them.

Carried to its logical extreme, the “Look before you leap” principle
demands that one envisage every conceivable policy for the government
of his whole life (at least from now on) m its most minute details, in
the light of the vast number of unknown states of the world, and decide
here and now on one policy. This is utterly ridiculous, not—as some
might think—because there might later be cause for regret, if things
did not turn out as had been anticipated, but because the task implied
in making such a decision is not even remotely resembled by human
possibility. It is even utterly beyond our power to plan s picnie or to
play a game of chess in accordance with the principle, even when the
world of states and the set of available acts to be envisaged are artifi-
cially reduced to the narrowest reasonable limits.

Though the ““Look before you leap” principle is preposterous if car-
ried to extremes, I would none the less argue that it is the proper sub-
ject of our further discussion, because to cross one's bridges when one
comes to them means to attack relatively simple problems of decision
by artificially confining attention to so small a world that the “Look
before you leap” principle can be applied there. I am unable to formu-
late criteria for selecting these small worlds and indeed believe that
their selection may be a matter of judgment and experience about which
it is impossible to enunciate complete and sharply defined general prin-
ciples, though something more will be said in this connection in § 5.5.
On the other hand, it is an operation in which we all necessarily have
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much experience, and one in which there is in practice considerable
agreement,

In view of the “Look before vou leap™ principle, acts and decisions,
like events, are timeless. The person decides “now” once for all; there
18 nothing for him to wait for, because his one decision provides for all
contingencies. None the less, temporal modes of description, though
translatable into atemporal ones, are often suggestive. Thus, there
will be occasion to analyze and make frequent use of the idea of defer-
ring a decision until an observation relevant to it has been made.

6 The simple ordering of acts with respect to preference

Of two acts f and g, it is possible that the person prefers f to g.
Loosely speaking, this means that, if he were required to decide between
f and g, no other acts being available, he would decide on f.

This procedure for testing preference is not entirely adequate, if only
because it fails to take account of, or even define, the possibility that
the person may not really have any preference between f and g, re-
garding them as equivalent; in which case his choice of f should not be
regarded as significant. If the person really does regard f and g as
equivalent, that is, if he is indifferent between them, then, if f or g
were modified by attaching an arbitrarily small bonus to its conse-
quences in every state, the person's decision would presumably be for
whichever act was thus modified. This test for indifference does not
provide an altogether satisfactory definition, since it begs the question
to some extent by postulating in effect that the tester knows what con-
stitutes a small bonus. Another attempted solution would be to say
that the person knows by introspection whether he has decided hap-
hagardly or in response to a definite feeling of preference. This sort of
solution seems to me especially objectionable, because 1 think it of
great importance that preference, and indifference, between f and g be
determined, at least in principle, by decisions between acts and not by
response to introspective questions. In spite of the difficulty of dis-
tinguishing between preference and indifference, I think enough has
been said for us to proceed to a postulational treatment of them.

The very meaning of the relationship of preference that I have at-
tempted to establish in the preceding paragraph implies that the per-
son cannot simultaneously prefer f to g and g to f. In the postulational
treatment of the relationships of preference and indifference, it will be
technically convenient to work with the relation “is not preferred to”
rather than directly with its complementary relation “is preferred to.”
Thus, rather than say that it i3 impossible that both f is preferred to
g and g to f, I might say that, of any two acts f and g, f is not preferred
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to g or g is not preferred to f, possibly both. Again, the definition of
preference suggests that, if f is not preferred to g, and g is not preferred
to h, then it is impossible that f should be preferred to h.

The two assumptions just made about the relation “is not preferred
to"" is sometimes expressed in ordinary mathematical usage by saying
that the relation is a simple ordering among acts. Formally, a relation
<+ among a set of elements z, y, z - -+, is called a simple ordering, in
this book, if and only if for every z, y, and z:

1. Eitherz <-y, ory <- 7.
2, Ifx < -y, andy <-z, then z <- 2

Borrowing from arithmetic the suggestive abbreviation < for the re-
lation “‘is not preferred to,” the assumption that < is a simple order-
ing can be expressed formally by a postulate, thus:

Pl The relation < is a simple ordering among acts.

It i# noteworthy that P1 makes no explicit reference to states of the
world. Except possibly for mathematical refinements, T it seems to me
that no additional postulates can be formulated without making such
reference—at any rate none will be in this book.

P1 by itself is not very rich in consequences, but one easily proved
theorem following from it may be mentioned.

TrEOREM 1 If Fis a finite set of acts, there exist f and h in F such

that forallgin F
f<g<h

Theorem 1 is especially relevant to application of the theory of de-
cision, because I interpret the theory to imply that, if F is finite, the
person will decide on an act h in F to which no other act in F iz pre-
ferred, the existence of at least one such h being guaranteed by the
theorem.

It is often appropriate to consider infinite sets of available acts, In
economic contexts, for example, it is generally an inappropriate com-
plication to take explicit account of the possibility that all transactions
must be in integral numbers of pennies. If infinite sets of available acts
are set up and interpreted without some mathematical tact, unrealistic
eonclusions are likely to follow. BSuppose, for example, that vou were
free to choose any income, provided it be definitely less than 100,000
per year. Precisely which income would you choose, abstracting from
the indivisibility of pennies?

 For example, such topological assumptions about the space with neighborhoods
defined in terms of < as connectedness, local compactnesss, or density.
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It is sometimes convenient to supplement the relation < by other
relations derived from it in accordance with the definitions in Table 1,
analogous definitions being applicable to any simple ordering. The as-
sumption of simple ordering, P1, has several implications for the de-
rived relations >, <, >, and =. These are generally strongly sug-
gested by the properties of the corresponding relations in arithmetie.

Tasre 1. TABLE OF RELATIONS DERIVED FROM <

New Relation Definition
f>¢g g<t
f < g, ie., g is preferred to f, It is false that g < f.
f>g g <f.
f=g ie, fisequivalentto (or f< g andg=<T{.
indifferent with respect to) g.
g is between f and h. f<g<hoh<g<t

A few such implications of P1 are listed below, with no intention of
completeness, as exercises for those who may not already be familiar
with the elementary properties of simple ordering.

Exercises

1. The relation > is also a simple ordering.

2. All the relations <, >, <, >, and = are transitive, that is, they
can be validly substituted for < in the second part of the definition of
simple ordering.

3. Between any pair of acts f, g, one and only one of the three rela-
tions <, =, and > holds.

4. Iif<g andg="h, thenf <h

5 Iif =g theng = f.

6 ¥oranvi f =f

7. At least one of three acts f, g, h is between the other two. When
can there be more than one such?

Two very different sorts of interpretations can be made of Pl and
the other postulates to be adduced later, First, P1 can be regarded as
a prediction about the behavior of people, or animals, in decision situa-
tions. Second, it can be regarded as a logie-like eriterion of eonsist-
ency in decision situations. For us, the second interpretation is the
only one of direct relevance, but it may be fruitful to discuss both,
calling the first empirical and the second normative.
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Logic itself admits an empirical as well as a normative interpreta-
tion. Thus, if an experimental subject believes certain propositions,
it is to be expected that he will also believe their logical consequences
and disbelieve the negations of these consequences. This theory of hu-
man psychology has some validity and is of great practical utility in our
everyday dealings with other people, though it is very erude and ap-
proximate. For one thing, people often do make elementary mistakes
in logic; more refined theories would attribute these mistakes to such
things as accident or subconscious motivation. For another, if any-
one who believed the axioms of mathematics also believed all that they
imply and nothing that they contradict, mathematical study would be
superfluous for him; such a person would, as has been explained, be
able to state the ten-thousandth or any other term in the decimal ex-
pansion of » on demand. To summarize, logic can be interpreted as a
erude but sometimes handy empirical psychological theory.,

The principal value of logic, however, is in connection with its norma-
tive interpretation, that is, as a set of eriteria by which to detect, with
sufficient trouble, any inconsistencies there may be among our beliefs,
and to derive from the beliefs we already hold such new ones as con-
sistency demands. It does not seem appropriate here to attempt an
analysis of why and in what contexts we wish to be consistent; it is
sufficient to allude to the fact that we often do wish to be so.

Analogously, P1 together with the postulates to be adduced later can
be interpreted as a crude and shallow empirical theory predicting the
behavior of people making decisions. This theory is practical in suitably
limited domains, and everyone in fact makes use of at least some as-
pects of it in predicting the behavior of others. At the same time, the
behavior of people is often at variance with the theory. The departure
is sometimes flagrant, in which case our attitude toward it is much like
that we hold toward a slip in logie, calling the departure a mistake and
attributing it to such things as accident and subconscious motivation.
Or, the departure may be detectable only by a long chain of argument
or caleulation, the possibilities becoming increasingly complicated as
new postulates are brought to stand beside P1.

Pursuing the analogy with logic, the main use I would make of P1
and its successors is normative, to police my own decisions for consist-
ency and, where possible, to make complicated decisions depend on
simpler ones,

Here it is more pertinent than it was in connection with logic that
something be said of why and when consistency is a desideratum, though
I cannot say much. Suppose someone says to me, “] am a rational
person, that is to say, | seldom, if ever, make mistakes in logie. But I
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behave in flagrant dizsagreement with your postulates, because they vio-
late my personal taste, and it seems to me more sensible to cater to my
taste than to a theory arbitranly concocted by vou.” 1 don't see how
I eould really controvert him, but I would be inclined to mateh his in-
trospection with some of my own. [ would, in particular, tell him that,
when it is explicitly brought to my attention that I have shown a pref-
erence for f as compared with g, for g as compared with h, and for h as
compared with f, I feel uncomfortable in much the same wayv that I do
when it iz brought to my attention that some of my beliefs are logically
contradictory. Whenever | examine such a triple of preferences on my
own part, [ find that it is not at all difficult to reverse one of them. In
fact, I find on contemplating the three alleged preferences side by side
that at least one among them is not a preference at all, at anv rate not
any more,

There is some temptation to explore the possibilities of analvzing
preference among acts as a partial ordering, that is, in effect to replace
part I of the definition of simple ordering by the very weak proposition
f < f admitting that some pairs of acts are incomparable. This would
seem to give expression to introspective sensations of indecision or vaeil-
lation, which we may be reluetant to identify with indifference. My
own conjecture is that it would prove a blind alley losing much in power
and advaneing little, if at all, in realism; but only an enthusiastic ex-
ploration could shed real light on the question.

7 The sure-thing principle

A businessman contemplates buying a certain piece of property. He
considers the outeome of the next presidential election relevant to the
attractiveness of the purchase. So, to elanfy the matter for himself,
he asks whether he would buy if he knew that the Republican candidate
were going to win, and decides that he would do so, Similarly, he con-
siders whether he would buy if he knew that the Democratic candidate
were going to win, and again finds that he would do s0, Beeing that he
would buy n either event, he decides that he should buy, even though
he does not know which event obtains, or will obtain, as we would ordi-
narily say. It is all too seldom that a decision can be arrived at on the
basis of the principle used by this businessman, but, except possibly
for the assumption of simple ordermmg, I know of no other extralogieal
principle governing decisions that finds such ready acceptance.

Having suggested what I shall tentatively ecall the sure-thing prin-
ciple, let me give it relatively formal statement thus: If the person
would not prefer f to g, either knowing that the event B obtained, or
knowing that the event ~B obtained, then he does not prefer f to g.



22 PRELIMINARY CONSIDERATIONS ON DECISION 2.7

Moreover (provided he does not regard B as virtually impossible) if he
would definitely prefer g to f, knowing that B obtained, and, if he would
not prefer f to g, knowing that B did not obtain, then he definitely pre-
fers g to f.

The sure-thing principle eannot appropriately be accepted as a postu-
late in the sense that P1 is, because it would introduce new undefined
technical terms referring to knowledge and pessibility that would ren-
der it mathematically useless without still more postulates governing
these terms. It will be preferable to regard the principle as a loose one
that suggests certain formal postulates well articulated with P1.

What technieal interpretation can be attached to the idea that f
would be preferred to g, if B were known to obtain? Under any rea-
sonable interpretation, the matter would seem not to depend on the
values f and g assume at states outside of B. There is, then, no loss
of generality in supposing that f and g agree with each other except in
B, that is, that f(s) = g(a) for all s e ~B. Under this unrestrictive as-
sumption, f and g are surely to be regarded as equivalent given ~5B;
that is, they would be considered equivalent, if it were known that B
did not obtain. The first part of the sure-thing principle ean now be
interpreted thus: If, after being modified so as to agree with one an-
other outside of B, f is not preferred to g; then f would not be preferred
to g, if B were known. The notion will be expressed formally by say-
ing that f < g given B.*

It is implicit in the argument that has just led to the definition of
f < g given B that, if two acts f and g are so modified in ~B as to agree
with each other, then the order of preference obtaining between the
modified acts will not depend on which of the permitted modifications
was actually carried out. Equivalently, if f and g are two acts that do
agree with each other in ~B, and f < g; then, if f and g are modified
in ~B in any way such that the modified acts f' and g’ continue to
agree with each other in ~B, it will also be so that ' < g'. This as-
sumption i8 made formally in the postulate P2 below and illustrated
schematically in Figure 1, a kind of diagram I find suggestive in many
such contexts.

In Figure 1, the set S of all states s and the set F of all consequences
f are represented by horizontal and vertical intervals respectively. In
any such diagram an act f, being a function attaching a value f(s) ¢ F
to each s 2.8 is represented by a graph. This particular diagram graphs
two acts f and g that agree with each other in ~B, and two other acts
f and g’ that also agree with each other in ~B and arise by modifying
f and g respectively only in ~B, that is, acts agreeing with f and g
respectively in B.

+ In this edition, the eorresponding definition D1 on the end papers has
been slightly strengthened to eompensate an inadvertent weakneas in the end
paper version of P2, pointed ont to me by Peter Fishhurn.
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flag) =glsg)

Figure 1

P2 If f, g, and f', g’ are such that:
1. in ~B, f agrees with g, and ' agrees with g’,
2. in B, f agrees with f', and g agrees with g’,
3.1<g;

then ' < g’

Each of the relations “< given B" is now easily seen to be a simple
ordering, and the relations “>, <, >, = given B"” are to be defined
mutatis mutandis. It is noteworthy though obvious that, if f(s) = g(s)
for all & ¢ B, then f = g given B.

It is now possible and instructive to give an atemporal analysis of
the following temporally deseribed decision situation: The person must
decide between f and g after he finds out, that is, observes, whether B
obtains; what will his decision be if he finds out that B does in fact
obtain?

Atemporally, the person can submit himself to the consequences of
f or else of g for all s ¢ B, and, independently, he can submit himself to
the consequences of f or else of g for all § ¢ ~B; which alternative will
he decide upon for the &'s in B?

Finally, deseribing the situation not only atemporally but also quite
formally, the person must decide among four acts defined thus:

hoo agrees with f on B and with f on ~B,
hy; agrees with f on B and with g on ~8B,
h;o agrees with g on B and with f on ~B,
hy, agrees with g on B and with g on ~B.

The question at issue now takes this form. Supposing that none of
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the four funetions is preferred to the particular one hy;, is 1 = 0, or is
1 = 1; that is, does h;; agree with f on B or with g on B?

It is not hard to see that 1 can be 1, if and only if f < g given B. In-
deed, if 1 = 1, hy; < h;;, which means that f < g given B. Arguing in
the opposite direction, if f < g given B; then hgy < hyg, and hy; < hy,.
Suppose now, for definiteness, hy;y < hy;, then none of the four possi-
bilities is preferred to hy;; this proves the point in question.

It may fairly be said that the person considers B virtually impossible,
or that B is null; if and only if, for all f and g, f < g given B, Indeed,
if B is null in this sense, the values acts take on elements of B are irrele-
vant to all decisions.

Several trivial conclusions about null events are listed as a compound
theorem, all components but the last of which have immediate intuitive
interpretations.

TaeoneM 1

1. The vacuous event, 0, is null.

B is null, if and only if, for every f and g, f = g given B.
If B isnull, and B 2 ('; then C is null.

IH~Binull;f <ggiven B, if and only if f < g.

. f < ggiven S, if and only if f < g.

If S is null, f = g for every f and g.

& o g 22 0

Component 6 of Theorem 1 requires comment, because it corresponds
to a pathologieal situation. In ease S is null, it is not really intuitive
to say that 8 (and therefore every event) i virtually impossible, The
interpretation is rather that the person simply doesn’t care what hap-
pens to him. This is imaginable, especially under a suitably restricted
interpretation of F, but it is uninteresting and will accordingly be ruled
out by a later postulate, P5.

A finite set of events B, is a partition of B; if B; N B; = 0, for ¢ # j,
and U,- B; = B. With this definition, it is easily proved by arithmetic
induection that

THEOREM 2 If B;is a partition of B, and f < g given B, for each 1,
then f < g given B. If, in addition, f < g given B; for at least one j,
then f < g given B.

COROLLARY 1 The union of any finite number of null events is null.

There are still other interesting consequences of Theorem 2, which
may be most conveniently mentioned informally. If, in Theorem 2,
B = 8 (or, more generally, if ~B is null), it is superfluous to say “given
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B" in the conclusions of the theorem. If f = g given B; for each 1,
then f = g given B. So much for the consequences of P2,

Acts that are constant, that is, acts whose consequences are inde-
pendent of the state of the world, are of special interest. In particilar,
they lead to a natural definition of preference among consequences in
terms of preference among acts. Following ordinary mathematical us-
age, f = g will mean that f is identically g, that is, for every s, f(3) = g.
A formal defmition of preference among consequences can now con-
veniently be expressed thus. For any consequences g and ¢', g < ¢';
if and only if, whenf = gand f’' =¢', f < 1.

In the same spirit, meaning can be assigned to such expressions as
f <g g <fgven B, ete., and 1 will freely use such expressions without
defining them explicitly, In particular, f < gy given B has a natural
meaning, but one that is rendered superfluous by the next postulate,
P3.

Incidentally, it is now evident how awkward for us it would be to
use f(s) for f; because f(s) < gis) is a statement about the consequences
fis) and g(s), whereas f < g is a statement about acts, and we will
have frequent need for both sorts of statements,

Buppose that f = g, and f = g¢’, and that g < ¢, is it reasonable to
admit that, for some B, f > f' given B? That depends largely on the
interpretation we choose to make of our technical terms, as an example
helps to bring out.+

Before going on a picniec with friends, a person decides to buy a
bathing suit or a tennis racket, not having at the moment enough money
for both. If we eall possession of the tennis racket and possession of
the bathing suit consequences, then we must say that the consequences
of his decision will be independent of where the picnic is actually held.
If the person prefers the bathing suit, this decision would presumably
be reversed, if he learned that the picnic were not going to be held
near water. Thus the question whether it can happen that f > f
given B would be answered in the affirmative. But, under the interpre-
tation of “act” and “consequence’ I am trying to formulate, this is
not the correct analysis of the situation. The possession of the tennis
racket and the possession of the bathing suit are to be regarded as acts,
not consequences. (It would be equivalent and more in accordance
with ordinary discourse to say that the coming into possession, or the
buying, of them are acts.) The consequences relevant to the decision
are such as these: a refreshing swim with friends, sitting on a shadeless
beach twiddling a brand-new tennis racket while one's friends swim,
ete. It seems clear that, if this analvsis is carried to its limit, the ques-
tion at issue must be answered in the negative; and I therefore propose

+ The role of sneh freedom throughout seience is brilliantly discussed hy
Quine (1851).
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to assume the negative answer as a postulate. The postulate is so
couched as not only to assert that knowledge of an event cannot estab-
lish & new preference among consequences or reverse an old one, but
also to assert that, if the event is not null, no preference among conse-
quences can be reduced to indifference by knowledge of an event.

P3 Iff=g f =y, and B is not null; then f < f' given B, if and
onlyv if g < g'.

Applying Theorem 2, it is obvious that

TaHEOREM 3 If B; is a partition of B; and if (for all ¢ and &) f; < g,
f(8) = f;, and g(s) = g; when s ¢« B;; then f < g given B. If, in addi-
tion, f; < g; for some j for which B; is not null, then f < g given B,

Theorem 3 is logically equivalent to P3 in the presence of P1 and P2,
and Theorem 3 can as easily be given an intuitive basis as the postulate
P3. Therefore the assumption of P3 as a postulate instead of Theorem
3 is only a matter of taste.

Theorem 3 has been widely accepted by the British-American School
of statisticians, special emphasis having been given to it, in connection
with his notion of admissibility, by the late Abraham Wald. 1 believe,
as will be more fully explained later, that much of its particular sig-
nificance for that school stems from the implication that, if several
different people agree in their preferences among consequences, then
they must also agree in their preferences among certain acts.

This brings the present chapter to a natural conclusion, since the
further postulates to be proposed can be more conveniently introduced
in connection with the uses to which they are put in later chapters.



CHAPTER 3

Personal Probability

1 Introduction

I personally consider it more probable that a Republican president
will be elected in 1996 than that it will snow in Chicago sometime in the
month of May, 1994. But even this late spring snow seems to me more
probable than that Adolf Hitler is still alive. Many, after careful con-
sideration, are convinced that such statements about probability to a
person mean precisely nothing, or at any rate that they mean nothing
precisely. At the opposite extreme, others hold the meaning to be so
self-evident as to be unanalyzable. An intermediate position is taken
in this chapter, where a particular interpretation of probability to a
person is given in terms of the theory of eonsistent decision in the face
of uncertainty, the exposition of which was begun in the last chapter,
Much as I hope that the notion of probability defined here is consistent
with ordinary usage, it should be judged by the contribution it makes
to the theory of decision, not by the accuracy with which it analyzes
ordinary usage.

Perhaps the first way that suggests itself to find out which of two
events a person considers more probable is simply to ask him. It might
even be argued, though I think fallaciously, that, since the question
conecerns what is inside the person’s head, there can be no other method,
just as we have little, if any, access to a person’s dreams execept through
his verbal report. Attempts to define the relative probability of & pair
of events in terms of the answers people give to direet interrogation
has justifiably met with antipathy from most statistical theorists. In
the first place, many doubt that the concept “more probable to me
than” is an intuitive one, open to no ambiguity and yet admitting no
further analysis. Even if the concept were so completely intuitive,
which might justify direct interrogation as a subject worthy of some
psychological study, what could such interrogation have to do with the
behavior of a person in the face of uncertainty, except of course for his
verbal behavior under interrogation? If the state of mind in question
i# not eapable of manifesting itself in some sort of extraverbal behavior,

7
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it is extraneous to our main interest. If, on the other hand, it does
manifest itself through more material behavior, that should, at least
in principle, imply the possibility of testing whether a person holds
one event to be more probable than another, by some behavior express-
ing, and giving meaning to, his judgment. It would, in short, be pref-
erable, at least in principle, to interrogate the person, not literally
through his verbal answer to verbal questions, but rather in a figurative
sense somewhat reminiscent of that in which a scientific experiment is
sometimes spoken of as an interrogation of nature, Several schemes of
behavioral, as opposed to direct, interrogation have been proposed.
The one introduced below was suggested to me by a passage of de Fi-
netti's (on pp. 5-6 of [D2]), though the passage itself does not empha-
size behavioral interrogation.

To illustrate the scheme, our idealized person has just taken two
eggs from his icebox and holds them unbroken in his hand. We wonder
whether he thinks it more probable that the brown one is good than
that the white one is. Our curiosity being real, we are prepared to
pay, if necessary, to have it satisfied. We therefore address him thus:
“We see that you are about to open those eggs. If you will be so co-
operative as to guess that one or the other egg is good, we will pay yon
a dollar, should vour guess prove correct. If incorrect, vou and we
are quits, except that we will in any event exchange your two eggs for
two of guaranteed goodness.” If under these circumstances the person
stakes his chance for the dollar on the brown egg, it seems to me to
correspond well with ordinary usage to say that it is more probable to
him that the brown one is good than that the white one is. Though,
of course, I hope for your agreement on this analysis of ordinary usage,
I repeat that it is not really fundamental to the subsequent argument,
as indeed no such lexicographical point could be; for the utility of a
construct or definition depends only secondarily on the aptness of the
expression in terms of which it is couched.

There is a mode of interrogation intermediate between what I have
called the behavioral and the direct. One ean, namely, ask the person,
not how he feels, but what he would do in such and such a situation.
In =0 far as the theory of decision under development is regarded as
an empirical one, the intermediate mode is a compromise between eeon-
omy and rigor. But, in the theory’s more important normative inter-
pretation as a set of criteria of consistency for us to apply to our own
decisions, the intermediate mode seems to me to be just the right
O,

Though it entails digression from the main theme, some readers may
be interested in a few words about actual experimentation on strictly
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empirical behavioral interrogation. Some key references bearing on
the subject are [M4], [R3], and [WS].

In the first place, a little reflection shows that an experiment in which
humsan subjeets are required to decide among actual acts may be very
expensive in time, money, and effort, especially if the consequences en-
visaged are expensive to provide, a point discussed in detail in [WS].
Questions of morality, and even of legality, toward the subject may
further complicate the investigation. For example, Mosteller and No-
gee, as deseribed in Section 3B of [M4], made certain that every sub-
ject in one experiment of theirs would be financially benefited, though
they kept this security secret from the subjects.

There is also a difficulty in principle. Suppose that 1 wish to dis-
cover a person's preferences among several acts—three acts f, g, and h
are sufficient to bring out the difficulty. If 1 in good faith offer him the
opportunity to decide among all three, and he decides on f; then there
is no further possibility of discovering what his preference was hetween
g and h. Suppose, for example, that a hot man actually prefers a swim,
a shower, and a glass of beer, in that order. Once he decides on, and
thereby becomes entitled to, the swim, he can no longer appropriately
be asked to decide between shower and beer. A naive attempt to do so
would result in his decdding between a swim and shower on the one
hand, and a swim and beer on the other—an altogether different situa-
tion from the one intended.

The difficulty can sometimes be met by special devices. For example,
the investigator might wait for a different but “similar” occasion. But
W. Allen Wallis has mentioned to me an interesting and very general
device, which will now be described, with his permission.t

Suppose that the hot man is instructed to rank the three acts in
order, subject to the consideration that two of them will be drawn at
random (e.g., by eard drawing or dice rolling), and that he is then to
have whichever of these two acts he has assigned the lower rank. He
is thus called on to select one of six acts, that is, one of the six possible
rankings. If he does, for example, select the ranking {swim, shower,
beer}, it follows easily from the theory of deecision thus far developed
that for him swim > shower > beer, barring the farfetched possibility
that he regards one or more of the three drawings as virtually impossi-
ble and provided that his preference among the three acts swim, shower,
beer given any of the three drawings is the same as his original prefer-
ence. The imvestigator could in practice design the drawing in such a

t I have since soen this same device used by M. Allais.



30 PERSONAL PROBABILITY [3.2

way as to be well satisfied that the required “‘irrelevance” obtained, ex-
cept for very “superstitious” people. This ends the present digression on
actual behavioral interrogation.

The purpose of this chapter is to explore the concept of personal
probability  that was indicated in the example about the two eggs.
The concept will be put on a formal basis in § 2 by introducing two new
postulates, P4 and P5, to be used in conjunction with P1-3. This will
lead to a formal analysis of the notion that one event is no more prob-
able than another. Several deductions about this notion reminiscent
of mathematical properties ordinarily attributed to probability will be
made; but only in § 3, after adjunction of still another postulate, P8,
can the notion be connected quantitatively with what mathematicians
ordinarily call mathematical probability. Section 4 is devoted to some
mathematically technical ecriticisms of the notion of personal proba-
bility, which can safely be skipped or skimmed by those not interested
in such matters. Section 5 discusses conditional personal probability;
6, the approach to certainty through a long sequence of conditionally
independent relevant observations; and 7, an extension of the concept
of a sequence of independent events, particularly interesting from the
viewpoint of personal probability.

2 Qualitative personal probability

When I spoke in the introductory section of offering the person a
dollar if his guess about the egg proved correct, it was tacitly assumed
that his guess would not be affected by the amount of the prize offered.
That seems to me correct in principle. It would, for example, seem un-
reasonable for the person with the two eggs to reverse his decision if
the prize were reduced from a dollar to a penny. He might reverse
himself in going from a penny to a dollar, because he might not have
found it worth his trouble to give careful consideration for too small a
prize. 1 think the anomaly can best be met by deliberately pretending
that consideration costs the person nothing, though that is far from the
truth in actual complicated situations. It might, on the other hand,
be stimulating, and it is certainly more realistic, to think of considera-
tion or caleulation as itself an aect on which the person must decide.
Though I have not explored the latter possibility carefully, I suspect
that any attempt to do so formally leads to fruitless and endless re-

gression.

t The term “‘personal probability” was suggested to me orally by Thornton C.
Fry. Bome other terms suggested for the same concept are “subjective probability,"”
“pesychological probability,” and “degree of conviction.”
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To offer a prize in case A obtains means to make available to the per-
son an act f4 such that

fa(s) =f forse A,

(1)
fals) = [ for s £ ~A,

where f” < f. The assumption that on which of two events the person
will choose to stake a given prize does not depend on the prize itself
is expressed by the following postulate, which looks formidable only
because it contains four definitions like (1). The reader may find it
helpful to graph an instance of the postulate in the spirit of Figure
2.7.1.

P4 Iif,f, 9, ¢ A, B;14, 5, g4, g5 are such that:

L </ ¢ <o
2a. Jals) = J, gals) = g forseA,
fa(e) =f, ga(s) =g  forse~A;
2b. Jal(e) = f, gu(s) = ¢ for & ¢ B,
fa(s) = f', ge(s) =g  forse~B;
3. fa < 15;
then g4 < gs.

In the light of P4, it will be said that A is not more probable than
B, abbreviated A < B; if and only if when f* < f and f4, f5 are such
that

fa{a) =f forzseA, fa(s)=J forse~A4,

fo(s) =f forseB, fa(s) = f forses~H;

then f4 < fg.

The assumption that there is at least one worth-while prize is in-
nocuous; for, though a context failing to satisfy it might arise, such a
econtext would be too trivial to merit study. I therefore propose the
following postulate.

P5 There is at least one pair of consequences f, f' such that /" < f.

All the implications to be deduced from P1-5 for some time to come
are themselves implications of the three easily established conclusions,
which are introduced by the following definition and theorem.
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A relation <- between events is a qualitative probability; if and only
if, for all events B, C, D,

1. <-is a simple ordering,

2 B<-C, if and only if BUD <-CU D, provided BN D =
CND=0,

3. 0<:-B,0<-8.

It may be helpful to remark that the second part of the above defini-
tion says, in effect, that it will not affect the person’s guess to offer
him a consolation prize in case neither B nor € obtains, but D happens
to,

TaEOREM 1 The relation < as applied to events is a qualitative
probability,

You will have no difficulty in proving that Theorem 1 follows from
P1-5. Theorem 1 has many consequences of the sort one would expect
if < meant “not more probable than"” in any sense baving the mathe-
matical properties ordinarily attributed to numerieal probability. This
1 illustrated by the following list of exercises, which should not only
be proved formally, but also interpreted intuitively. One easy exercvise
not included in the list below, because it is not strictly a consequence
of Theorem 1 alone, is to show that B = 0, if and only if B is a null
event.

Exercises

. B C,then0 < B<(C <8

20. HBND=CND=0;then B<C, if and only if BU D <
C U D.

b f0<C,and BN C =0;then B < B U (.

3. If B <C, then ~C < ~8; and conversely. Hint: Draw a Venn
diagram of the fourfold partition BN C, ~B N €, BN ~C, ~B N
~(,

d4a. fB<C,andCND=0then BUD<CUD,

g4b. fB<0;then BU C =, and B = 0,

4e. HS<B;thenBNC =C,and B = 8§,

. TBUD<CUD and BN D = 0; then B < C.

Sa. If B, <€y, B <0, and O, N Cs =0; then B, U B, <C; U
(2. Hint: Exhibit B; and €y in the form B, = By U Q,C, =C," U @
with B, ('}, Q disjoint. Justify the following calculation, step by step.

BI. U Bgr E Lll U ng = c1" U Bg E C:L'r U Cg,
whence B, U B; < €, U €.
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50 f ByUB;<CyUC; and B; N By =0; then B, <C; or
By < Cs.

6. If B< ~B and C > ~C, then B < C; equality holding in the
conclusion, if and only if it holds in both parts of the hypothesis.

3 Quantitative personal probability

As T have said, the exercises terminating the preceding section sug-
gest a close mathematical parallelism between personal probability and
the mathematieal properties ordinarily attributed to probability, though
the postulates assumed thus far do not (as could easily be demonstrated)
make it possible to deduce from this parallelismm the unambiguous as-
signment of & numerical probability to each event. But, if, for example
(following de Finetti [D2]), 8 new postulate asserting that S can be
partitioned into an arbitrarily large number of equivalent subsets were
assumed, it is pretty clear (and de Finetti explicitly shows in [D2])
that numerical probabilities could be =0 assigned. It might fairly be
objected that such a postulate would be flagrantly ad hoc. On the
other hand, such a postulate could be made relatively acceptable by
observing that it will obtain if, for example, in all the world there is a
coin that the person is firmly convinced is fair, that is, a coin such that
any finite sequence of heads and tails is for him no more probable than
any other sequence of the same length; though such a coin is, to be sure,
a considerable idealization.

After some general and abstract discussion of the mathematical con-
nection between qualitative and quantitative probability, a postulate,
P6, will be proposed, which, though logieally actually stronger than the
assumption that there are partitions of § into equivalent events, seems
to me even easier to accept. Once P6 is accepted, there will scarcely
again be any need to refer directly to qualitative probability.

To begin with, let me say precisely what 18 meant, in the present
context, by a probability measure, this being the standard term for
what I would here otherwise prefer to call a quantitative probability,
and what it means for a probability measure to be in agreement with
a qualitative probability.

A probability measure on a set S is a function P{B) attaching to
each B € S a real number such that:

1. P(B) > 0 for every B.
2IBNC=0 FP(BUC)=P(B) + P(C).
3. P(S) = 1.

This definition, or something very like it, is at the root of all ordinary
mathematical work in probability.
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If S carries a probability measure P and a qualitative probability
<+ such that, for every B, C, P(B) < P(C), if and only if B <«C;
then P (strictly) agrees with <. If B <.C implies P(B) < P((),
then P almost agrees with <., This terminology is obviously con-
sistent in that, if P agrees, that is, strictly agrees, with <., P also al-
most agrees with <. It is also easily seen that, if P agrees with <.,
then knowledge of P implies knowledge of <. But, if P only almost
agrees with <., it may happen, as examples in § 4 show, that P(B) =
P(C}, though B <- C, so that knowledge of P may imply only imperfect
knowledge of <.

The rest of this section is mainly a study of qualitative probabilities
generally, with a view to discovering interesting conditions under which
there is a probability measure that agrees, either strictly or almost,
with & given qualitative probability, These conditions suggest a new
postulate governing the special qualitative probability <. The work
i# necessarily rather tedious and burdened with detail. It will, there-
fore, be wise for most readers to skim over the material, omitting the
proofs but noticing the more obvious logical connections among the
theorems and definitions. Some may then find themselves sufficiently
interested in the details to return and read or supply the proofs, as the
case may require. Others may safely go forward. Here, as elsewhere,
technical terms of interest for the moment only are introduced with
italics rather than boldface.

An n-fold almost uniform partition of B is an n-fold partition of B
such that the union of no r elements of the partition is more probable
than that of any r 4+ 1 elements,

TaEoREM 1 If there exist n-fold almost uniform partitions of B for
arbitrarily large values of n, then there exist m-fold almost uniform par-
titions for every positive integer m,

Proor. Let By, ¢ =1, --+, n, be an n-fold almost uniform partition
(of B) with n > m*. Using the euclidean algorithm, let n be written
n = am + b, where a and b are integers such that m < aand 0 < b <
m. Now let Cy, j =1, +-+, m, be any m-fold partition such that each
C; is the union of @ or @ + 1 of the B/s. The union of any r of the C;'s,
r < m, is the union of from ar to {a 4 1)r of the B,s and the union of
r + 1 of the C,'s is that of from a(r 4+ 1) to (a + 1}(r + 1) of the B,'s.
Since r<m=<a, @+ 1ljr=ar+r<ar+a=alr+1). &

THEOREM 2 If there exist n-fold almost uniform partitions of S for
arbitrarily large values of n, then there is one and only one probability
measure P that almost agrees with <-. Furthermore, for any p, 0 < p
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<1, any B C S, and the unique P just defined, there exists C C B
such that P(C) = pP(B).%

Proor. The proof is broken into a sequence of easy steps, left, for
the most part, to the reader. These steps are grouped in blocks, only
the last step in each being needed in the proof of later steps.

1. There exist n-fold almost uniform partitions of S for every posi-
tive n.

2a. If py, -+, pu are real numbers such that 0 < p; < p2 <+ < Pa,
and Zp; = 1; then

(1) Sp<r/n, r=1 - n
%b. If further
] n
ez X o forr=1,-,n—1;
then l e
(2) 2pm=(r=1/n and 2 pi<(r+1)/n
1 1 —r41

2¢. The sum of any r of the p,'s lies between (r — 1)/n and (r + 1)/n.

2d. If P almost agrees with <., and C(r, n) denotes here and later
in this proof any union of r elements of any n-fold almost uniform par-
tition (not necessarily the same from one context to another), then

(3) (r— 1)/n < P(C(r,n)) < (r+ 1}/n.

3. Let k(B, n) denote the largest integer r (possibly zero) such that
some C(r, n) i#8 not more probable than B. The function k(B, n) is
well-defined, and 0 < k(B, n) < n.

4a. For any P that almost agrees with <-,

(4) (k(B, n} — 1}/n < P(B) < (k(B, n) + 2)/n.

4b. At most one P can almost agree with <-

5a. If B; and C; are n-fold partitions (not necessarily almost uniform)
so indexed that By <. By <+ .-+ <. B, and Oy 2.0y 2+ -+ >+
then

n m
[E] UBEE‘UCi. T=n,”',ﬂ.—l.
n—r Fi=—r
t Technical note: The mathematical essence of the terminal conclusion of this
theorem, and other conclusions related to it, are given by Sobesyk and Hammer
(815]. It might be conjectured, in analogy with countably additive measures, that
this conclusion means only that P is non-atomie, but that conjecture is false [N5).+
+ A key reference for further information on the strueture of finitely addi-
~tive measures is (Dubins 1969). Sustained use of finitely additive probability
i illustrated in (Dobins and SBavage 1965).
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3b. If in addition the two partitions are almost uniform, then

r r+2
(6) Ua<-UB, r=1--,n-2
| 1
r432 n n F
(Proof. U B:>2-UB:iz-UcC:>2-U €
1 =T LT 1

He. The union of any r elements of one almost uniform n-fold parti-
tion is not more probable than the union of any » 4+ 2 elements of an-
other.

Sd. If BN C = 0, then
(7Y k(B,n) + kC,n) —2< kBUC, n) <k(B,n)+ k(C,n) + 1.
6a. If a C(r, m) is not more probable than a C(s, n}, then

® () =)+

(Consider an mn-fold almost uniform partition, and use the easily es-
tablished fact that the union of any { + 2 elements of an almost uni-
form partition is actually more probable than that of any ¢ elements.)

‘ kB,m) kB,m | _3 3 I
&b. - <t =
m n | m n mn
Be. It is meaningful to define P(B) by
. k(B, n)
(9) P(B) =p; Iim -
A — m n

that is, the himit exists.

7. P(B), as just defined, is a probability measure, and the only one
that almost agrees with <.

Ba. There exist two infinite sequences of sets ', and D, contained
in B such that:

1. Cy N Dy =0,

2. Cn - Cu-l-h Eﬂd ﬂ-n. o D-.__q_l,
3. P(Cys) 2 pP(B) — ﬂ'_l!

4. P(Da) 2 (1 — p)P(B) — n™".

8b. P(UxCu) = pP(B), P(IUx Dy = (1 — p)P(B), and (|J. C) N
(Ux D) = 0.
8c. P(UxC,) = pP(B). @

A few technical terms of localized interest only are now introduced.
If and only if, for every B >- 0, there is a partition of 5, no element of
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which is as probable as B; <- is fine.* B and € are almost equiva-
lent, written B =+ € if and only if for all non-null & and H such that
BNG=CNH=0BUGZ>-Cand CUH >-B. It is obvious
that equivalent events are also almost equivalent. Finally, if and only
if every pair of almost equivalent events are equivalent, <- is Gight.

THEOREM 3
Hrye. <. 18 fine.

CoxcL. I. If B>-0, and (" >+ 0; there exists D C C such that
0<-D <8

2 If B>, C=H, and BN C=GNH=0; then BUC
=.G U H.

3.3 B C,GeH BUCe.GUH,and BN C =GN H = 0;
then B =. (.

4. Any partition of § into almost equivalent events is an almost uni-
form partition.

5. Any event can be partitioned into two almost equivalent events.

fi. Any event can be partitioned into 2* almost equivalent events,
for any non-negative integer n.

7. There existz one and only one P that almost agrees with <-.
For any B, p (0 < p < 1), and the unique P just defined, there ex-
ista O C B such that P(C) = pP(B). If B >-0, P(B) > 0. Finally,
B =-C, if and only if P(B) = P(C).

Proor. The parts of the conclusion are so arranged that each is easy
to prove in the light of its predecessors, but proofs for Parts 3 and 5
are given below. It may be remarked that all parts are trivial conse-
quences of the last one and have therefore relatively little importance in
themselves.

Part 3. BSuppose, for example, BUE <-G, BN E =10, and
E >:0; and consider two cases;

(a) If BUC <8, it may be assumed without loss of generality
that C (1 E = 0, whence (B U C) U E >.G U H. Therefore, C >« H,

Let E be partitioned into two non-null events £, and E,; then (since
it is absurd to suppose that the part of & outside of C' is null, which
would imply € >+ >- B U E) there is in ¢ an E’ such that C N E’
m=< B <-E;, Now CUFE >HUE 2-G>.(BUE,;) UE,,
whence C >- B U E,, which is absurd.

(b) If B U =5, it can (setting aside the easy special case €' N ¢
#.() be shown successively that: H UG =.8; O <-B U E <+,
where E>-0and ECCNG, (BN HYUE<-(GNCH, (CNH)
<«(G N B); and H U E <- G, which establishes a contradietion.

+ In the first edition, this definition was a trifle too weak, as pointed ont hy
Maleolm Pike.
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Part 5. There exists a sequence of threefold partitions of B, say
Cy, Dy, and &, such that:

1. C, UG, 2D, and D, U G, 2+,

2. cn—i—l = U,., Dn+; = Dl} and G,|+1 - G",

8. ~Gpy1 N G, 2+ Gpyy; whence G,. contains two disjoint events
each at least as probable as (7, ;.

For any H >-0, (¢, <+ H for sufficiently large n, as may be seen by
considering some m-fold partition no element of which is more probable
than H, and letting n be such that 2°~! > m. If G, were more probable
than H and therefore more probable than each element of the partition,
it would follow that the union of all elements of the partition, namely
S, is less probable than (7;, which would be absurd.

The two events B; = [Ju Ca, Bz = (U= Da) U ([« Gs) partition B
in the required fashion. @

CoroLLARY | If <+ is both fine and tight; the only probability
measure that almost agrees with <. strictly agrees with it, and there
exist partitions of 8 into arbitrarily many equivalent events.

TrEOREM 4 <+ is both fine and tight, if and only if, for every B <-C,
there exists a partition of S the union of each element of which with B
i less probable than C,

The proof of this theorem is easy.

In the light of Theorems 3 and 4, I tentatively propose the following

postulate, P6’, governing the relation < among events, and thereby
the relation < among acts.

P6’ If B < C, there exists a partition of 8§ the union of each ele-
ment of which with B is less probable than C.

It seems to me rather easier to justify the assumption of P§’, which
says in effect that < is both fine and tight, than to justify the assump-
tion, which was made by de Finetti [D2] and by Koopman [K9], [K10],
[K11] in closely related contexts, that there exist partitions of § into
arbitrarily many equivalent events, though logically P’ implies that
assumption and somewhat more. Suppose, for example, that you your-
self consider B < (U, that is, that you would definitely rather stake a
gain in your fortune on C than on B. Consider the partition of your
own world into 2" events each of which corresponds to a particular
sequence of n heads and tails, thrown by yourself, with a coin of your
own choosing. It seems to me that you could easily choose such a
coin and choose n sufficiently large so that you would continue to pre-
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fer to stake your gain on C, rather than on the union of B and any par-
ticular sequence of n heads and tails. For you to be able to do so, you
need by no means consider every sequence of heads and tails equally
probable.

It would, however, be disingenuous not to mention that some who
have worked on a closely related concept of probability, notably Keynes
[K4] and Koopman [K9], [K10], [K11], would object to P86’ precisely
because it implies that the agreement between numerical probability
and qualitative probability is strict. Koopman, for example, holds
that, if A © B and A » B, then 4 is necessarily more probable than
B, though the numerical probability of 4 may well be the same as that
of B. Thus, if a8 marksman shoots at a wall, it is logically contradictory
that his bullet should fall nowhere at all, but it is logically consistent
that a prescribed mathematically ideal point on the bullet should strike
a prescribed mathematically ideal line on the wall. Since the event of
the prescribed point hitting a preseribed line is logically possible, Koop-
man would insist that the event is more probable than the vacuous
event, namely that the bullet goes nowhere, though the numerical proba-
bility of both events is zero. I do not take direct issue with Koopman,
because he is presumably talking about a somewhat different concept
of probability from the particular relation <; but I do not think it
appropriate to suppose that the person would distinetly rather stake a
gain on the line than on the null set. The issue is not really either an
empirical or & normative one, because the point and line in question
are mathematical idealizations. If the point and line are replaced by a
dot and a band, respectively, then, of course, no matter how small the
dot and band may be, the probability of the one hitting the other is
greater than that of the vacuous event. But it seems to me entirely
a matter of taste, conditioned by mathematical experience, to decide
what idealization to make if the dot and band are replaced by their ideal-
ized limits. So much for hair splitting.

As far as the theory of probability per se is concerned, postulate P6’
is all that need be assumed, but in Chapter 5 a slightly stronger assump-
tion will be needed that bears on acts generally, not only on those very
special acts by which probability is defined. Therefore, I am about to
propose a postulate, PG, that obviously implies P6' and will therefore
supersede it. This stronger postulate seems to me acceptable for the
same reason that P68’ itself does.

P6 Ifg <h, and f is any consequence; then there exists a parti-
tion of 8 such that, if g or h is so modified on any one element of the
partition as to take the value f at every s there, other values being un-
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disturbed; then the modified g remains less than h, or g remains less
than the modified h, as the case may require.

4 Some mathematical details

Are there qualitative probabilities that are both fine and tight, that
are fine but not tight, that are tight but not fine, that are neither fine
nor tight but do have one and only one almost agreeing probability
measure’ Examples answering all these guestions in the affirmative
will be exhibited in this section.

To indicate a different topic that will also be treated here, those of
you who have had more than elementary experience with mathematical
treatments of probability know that it is not usual to suppose, as has
been done here, that all sets have a numencal probability, but rather
that a sufficiently rich class of sets do so, the remainder being consid-
ered unmeasurable. Again, it is usual to suppose that, if each of an
infinite sequence of disjoint sets is measurable, the probability of their
union is the sum of their probabilities, that is, probability measures
are generally assumed to be countably additive. But the theory being
developed here does assume that probability is defined for all events,
that is, for all sets of states, and it does not imply countable additivity,
but only finite additivity. The present section not only answers the
questions raised in the preceding paragraph, but also discusses the re-
lation of the notions of limited domam of defimtion and of countable
additivity to the theory of probability developed here. The general
conclusions of this discussion are: First, there is no technical obstacle
to working with a limited domain of definition, and, except for exposi-
tory complications, it might have been mildly preferable to have done
so throughout. Becond, it s a little better not to assume eountable
additivity as a postulate, but rather as a special hypothesis in certain
contexts. A different and much more extensive treatment of these
questions has been given by de Finetti [D4].

Finally, before entering upon the main technical work of this sec-
tion, one easy question about the relation between qualitative and
quantitative probability will be answered and several as vet unanswered
ones will be raised.

Are there qualitative probabilities without any strietly agreeing meas-
ure? Yes, because any qualitative probability that is fine but not
tight is easily shown to provide an example. It is, however, an open
question, stressed by de Finetti [D5], whether a qualitative probability
on a finite S always has a strictly agreeing measure. It would also be
technically interesting to know about the existence of almost agreeing
measures in the same context.*

+ Even this has since been answered in the negative by Kraft, Pratt, and
Reidenberg (1959). See also (Fishbarn 1970, pp. 216-211).
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The matters to be treated in the rest of this section are rather tech-
nical mathematically, and, though I would not delete them altogether,
it does not seem justifiable to lay the necessary groundwork for pre-
senting them in an elementary fashion. Some may, therefore, find it
necessary to skip the rest of this section altogether, or to skim it rather
hightly.

It is well known that there does not exist a eountably additive proba-
bility measure defined for every subset of the unit interval, agreeing
with Lebesgue measure on those sets where Lebesgue measure is de-
fined, and assigning the same measure to each pair of congruent sets+
(Problem {(b), p. 276 of [H2]}. On the other hand, there do exist finitely
additive probability measures agreeing with Lebesgue measure on those
sete for which Lebesgue measure is defined, and assigning the same
measure to each of any pairs of congruent sets; ¢f. p. 32 of [B4]. The
existence of such measures shows, among other things, that a finitely
additive measure need not be countably additive. Again, calling such
a finitely additive extension of Lebesgue measure P and defining B <.
to mean P(B) < P(C), we see an example of a qualitative probability
that is both fine and tight.

An example of & qualitative probability that is tight but not fine may
be constructed by taking for S two unit intervals, S, and 8, in each
of which finitely additive extensions of Lebesgue measure, P, and P,
are defined. The generic set B in this example is therefore partitioned
into By = BN 8, and B; = B N 8, respectively. For this example,
let B <. ﬂ, ]..f,. and 'ﬂ'l]l}" if PI{BI} < Pl{cl), or else PIEBI} = P](cl:',
and Py(Bg) < Pa(Cs). This <- is not fine, because, for example, 8
cannot be partitioned into events none of which is more probable than
Sz. On the other hand, it is easily seen to be tight.

Next, take 8 to be the union of 8; and 8; with the measures of P,
and Py as defined in the preceding example, but modify the definition
of <., saying B <-(; if and only if P\(8,) + Pa(B;) < Py (Cy) +
FPy(Cyg), or else Py(B,) + Pi(B3) = Py{Ch) + P:(Ca), and Py(B)) <
Py(Cy). This is an example of a qualitative probability that is fine but
not tight.

Combining the ideas of the two preceding examples, it is easy to ex-
hibit & gualitative probability that is neither fine nor tight but is such
that S can be divided into arbitrarily many equally probable events,
Thus all the questions raised in the opening paragraph of this section
are answered in the affirmative.

+ 8. Ulam (1830) proves that any nonatomie, countahly additive probability
measure defined on all the suhsets of the unit interval is inconsistent with the
continunm hypothesis,
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To get a feeling for the question whether literally all sets should be
regarded as measurable, suppose that 8 is a cube of unit volume and
that the probability measure P that strictly agrees with < is such that
the probability of a parallelepiped is equal to its volume. It follows
that the probability of any set having Jordan content is its Jordan
content, but, if a set has not Jordan content, a continuum of possibili-
ties is still open. Though other possibilities are conceivable, it is not
unnatural to consider an idealized person for whom the numerical prob-
ahility attached to each Borel set, or even each Lebesgue measurable
set, is its Lebesgue measure. To go further and take seriously compari-
sons between sets that are not Lebesgue measurable, or even between
those that are not Borel measurable, seems to me to be without any
implication bearing on reality. I suppose it might be argued, on the
contrary, that there is no feature of reality that can properly be inter-
preted by postulating that the person is able to compare only sets from
a sufficiently narrow field, so that it is simpler and more elegant to ad-
mit all sets. The question seems to be one of taste, but the following
remark illustrates what I consider an awkwardness in supposing proba-
bility to be attached to all sets. It would seem, at first glance, that the
person should be able, if he is so constituted, to regard all pairs of geo-
metrically congruent sets for which he makes any comparison at all as
equivalent, but the famous Banach-Tarski paradox [B5] shows that
this cannot be done if all sets are regarded as measurable. I think ita
little more graceful to abstain from comparison between the more bi-
garre setz than to give up, or even much modify, my everyday notions
about the symmetry of such probability problems associated with
geometry.

If one is unwilling to insist on comparison between every pair of
setz, or events; then, in the same spirit, it is inappropriate to insist on
comparison between every pair of acts. All that has been, or is to be,
formally deduced in this book concerning preferences among sets, could
be modified, mutatis mutandis, so that the class of events would not
be the class of all subsets of S, but rather a Borel field, that is, a s-alge-
bra, on S; the set of all consequences would be a measurable space,
that is, a set with a particular e-algebra singled out; and an act would
be & measurable function from the measurable space of events to the
measurable space of consequences. Indeed, the whole thing could be
done for abstract s-algebras without reference to sets at all, and this
might have some actual advantage, since it would make possible the
identification of events with propositions in almost any formal language,
even one unable to formulate at all the complete descriptions I call
states.



3.5] CONDITIONAL PROBABILITY 43

It may seem peculiar to insist on c-algebras as opposed to finitely
additive algebras even in a context where finitely additive measures are
the central object, but countable unions do seem to be essential to some
of the theorems of § 3—for example, the terminal conclusions of Theo-
rem 3.2 and Part 5 of Theorem 3.3.

S0 much of the modern mathematical theory of probability depends
on the assumption that the probability measures at hand are countably
additive that one is strongly tempted to assume countable additivity,
or its logical equivalent, as a postulate to be adjoined to P1-6.* But I
am inclined to agree with de Finetti [D2], [D4] and Koopman [K8],
[K10], [K11] that, however convenient countable additivity may be,
it, like any other assumption, ought not be listed among the postulates
for a concept of personal probability unless we actually feel that its
violation deserves to be called inconsistent or unreasonable. I know of
no argument leading to the requirement of countable additivity, and
many of us have a strong intuitive tendency to regard as natural proba-
bility problems about the necessarily only finitely additive uniform
probability densities on the integers, on the line, and on the plane, It
therefore seems better not to assume countable additivity outright as a
postulate, but to recognize it as a speecial hypothesis yielding, where
applicable, a large class of useful theorems.

6 Conditional probability, qualitative and quantitative

Conditional preferences among acts in the light of a given event were
introduced in §2.7. Since the relation < among events has been de-
fined in terms of the corresponding relation among acts, we may well
expect to attach meaning to statements of the form B < € given D,
provided that D is not null. The natural way to do so is to take & pair
of acts f and g that test whether B < C (as prescribed by the definition
of < between acts in § 2) and say that B < C given D, if and only if
f < g given D. Since there is more than one pair of acts f, g by which
the proposition B < (' can be tested, it is at first sight coneceivable that
not all such pairs would be in the same order given D, which would frus-
trate the proposed definition of < given D. However, it is easily seen
that for any f, g testing B < C, f < g given D (D not null) is equiva-
lent to BN D <C N D. Thus it is seen not only that the proposed
definition is unambiguous, but also that it is expressible in terms of
probability comparisons among sets, without direct reference to acts
at all, and, still further, that the postulates P1-6 apply to the condi-
tional preference relation < given D among acts. This preamble suffi-
eiently motivates the following definition and easy theorem about quali-
tative probability relations generally.

¥ Carried out hy Villegas (1964},
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If <. is a qualitative probability, and 0 <- I); then B <-C given
D ifandonlyif BN D <-CN D.

TueorEM 1 If <+ is a qualitative probability, then so is <. given
D. If in addition <. is fine or tight, then <. given D is correspondingly
fine or tight.

If <+ is fine, then, for any D that is not null, there exists, in view of
Theorem 3.3, one and only one probability measure P(B | D), the
(conditional) probability of B given D, that almost agrees with <.,
But, just as one would expect from the traditional study of numerical
probability, and as may be easily verified, P(B N D)/P(D) considered
as a function of B for fixed D is a probability measure that almost
agrees with <- given ), Therefore,

(1) P(B| D) = P(B N D)/P(D).

As was explained in § 2.7, preference among acts given B ean sug-
gestively be expressed in temporal terms. Analogously, the eomparison
among events given B and, therefore, conditional probability given B
can be expressed temporally, Thus P(C | B) can be regarded as the
probability the person would assign to € after he had observed that B
obtains, It is conditional probability that gives expression in the theory
of personal probability to the phenomenon of learning by experience.

In accordance with established usage, a pair of events B, C are called
independent if P(B N () = P(B)P(C). More generally, a set of events
are called independent, if for every finite set of them, say By, -+, B,,

(2) P (N:By = 11 P(BY.

Obviously, if D is not null, B and D are independent; if and only if
P(B| D) = P(B), in which case D may f{airly be called irrelevant to B.

The notions of independence and irrelevance have, so far as I can
see, no analogues in qualitative probability; this is surprising and un-
fortunate, for these notions seem to evoke a strong intuitive response.
The absence of these analogues is traceable to the absence of a qualita-
tive analogue for propositions of the form P(B | () < P(G | H). Work-
ing under a rather different motivation from that which guides this
book, B. O. Koopman [K9], [K10], and [K11] has developed a system of
qualitative possibility in which it is meaningful to compare B given C
with & given H. It is true also that for gqualitative probability, even as
it is defined here, some interconditional comparisons might be natu-
rally defined. If, for example, B <- ~B given (' and ~& <. given
H, it would not be unreasonable to establish the convention that B
given (' <. given H. This sort of extension is not, however, highly
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pertinent to my purpose, for here I have little interest in qualitative
probabilities, except as a foundation for quantitative probability.
The following partition formula iz well known and easy to prove:

3) P(C) = E P(C | B)P(B)
where B; is a partition of § into non-null sets. If, further, € is not null,
it is also trivial to derive the celebrated Bayes’ rule (or theorem),
P(C | B,)P(B))
P(C)
P(C | B)P(B))
- ZPe[B)PB)

(4) P(B;,| () =

[llustrations of these formulas are found in all elementary texbooks on

probability, as well as in later sections of this book.
Finally, if neither B nor ' is null,

P(B|Cy P(C|B) PBNCO
P(B) P(C)  P(BP(C)

which may be given the suggestive reading: Knowledge of ¢ modifies
the probability of B by the same factor by which knowledge of B modi-
fies the probability of .

The concept of random variable enters into almost any discussion of
probability. Experts are fairly well agreed on the following definition.
A random wvariable is a function x attaching a value z(z) in some set
X to every s in a set 8§ on which a probability measure P is defined.{
Buch an 8 together with the measure P is called a probability space.

Real-valued random wvariahles are the most familiar, though in gen-
eral the values X can be things of any sort. If, for example, x and ¥,
with values in X and Y, respectively, are random variables on the
same measure space, a new random variable z = {x, y} is defined by
setting z(s) = |x{s), y(#)}. The values of z are thus elements of what
is called X 2 ¥ (read the cartesian product of X and Y}, the set of
ordered pairs with first element in X and second in ¥, The same sort
of thing can be done, of course, for ordered n-tuples and also for infinite
sequences of random variables,

()

t In many applications of the theory of probability, not all subsets of 8 or of X
are considered measurable. It is then required as part of the definition of random
variable that ¥ be measurable, i.e., that for every measursble ¥ < X, the set of
#'s such that z(s) « ¥ be measurable,
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Two random variables x and y defined on the same measure space 8
are called (statistically) independent; if and only if, for every Xo C X
and ¥y C Y, the two events (i.e., subsets of S) defined by the condi-
tions z(s) ¢ Xy and y(s) ¢ ¥y, respectively, are independent.t The
extension of this definition from pairs to any number of random variables
is obvious.

6 The approach to certainty through experience

In § 3, the theory of personal probability was, from the purely math-
ematical point of view, reduced to that of probability measures, a sub-
ject that has been elaborately studied, more or less explicitly, for cen-
turies. Any mathematical problem concerning personal probability is
necessarily a problem concerning probability measures—the study of
which is currently called by mathematicians mathematical probability
—and conversely. The particular outlook and interpretation implieit
in a personalistic concept of probability leads, however, to problems
that, though perfectly meaningful for mathematical probability, might
not otherwise have been emphasized. This section and the succeeding
one each briefly discuss one such problem. These two problems are
selected from among many possibilities for the insight they provide
into the concept of personal probability.

Before studying these problems, it is necessary to be conversant with
the material in Appendixes 1 and 2, which is used in the immediate
sequel and often throughout the rest of this book.

As was brought out in § 5, the person learns by experience. The
purpose of the present section is to explore with a moderate degree of
generality how he typically becomes almost certain of the truth, when
the amount of his experience increases indefinitely. To be specific,
suppose that the person is about to observe a large number of random
variables, all of which are independent given B; for each i, where the
B; are a partition of S. It is to be expected intuitively, and will soon
be shown, that under general conditions the person is very sure that
after making the observation he will attach a probability of nearly 1 to
whichever element of the partition actually obtains,

To describe the situation formally, let B; be a partition of 8§ with
P(B;) = p(i). Letx,, r = 1,2, ---, be a sequence of random variables,
each taking on only a finite number of values (which can without loss
of generality be thought of as integers). The restriction to a finite set
of values could be removed, but to do so would raise problems of mathe-
matical technique that, however interesting, are rather beside the point

t Where not all sets are measurable, X and ¥y must, of course, be required to
be measurable.
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of this book. Let x denote the first n of the random variables x,. It is
to be borne in mind that x depends on n, so, strictly speaking, it should
be written x(n). The assumption that, given B, the x,’s all have the
same distribution is expressed by

{1} P[Ir{'l) = Iy I HI} = iz, | 1),

where £(z, | 1) is defined by the context. Combining (1) with the as-
sumption that the x,'s are independent given B;,

(20 P(x|B) =ps P(x(s) = {x1, -, 2} | B) = [] &z | 9),

=l

where a conventional symbol has been used for equal by definition.
These hypotheses having been laid down, it follows from Bayes' rule
and the partition formula (5.3) and (5.2), that

P(z| B)P(B))

(3) P(B;| 1) = @)

B(z) H E(z, | 1y
- P(z)
(4) P(z) = 22 8(i) IT &= | 1)

In connection with (3), it may be observed in passing that, if the a priori
probability, 8(i), of B; is 0, then, no matter what value r is observed,
the a posteriori probability of B; P(B;|z), is also 0. This is an ex-
ample of the general principle that, if some event is regarded as vir-
tually impossible, then no evidence whatsoever can lend it credibility,
Similarly, (3) implies the equally common-sense principle that, if an
observation r is virtually impossible on the hypothesis (i.e., given)
B;, and z is observed, then B; becomes virtually impossible a posteriori.

It is particularly interesting to compare the probability of two ele-
ments of the partition, say B, and B; for definiteness, in the light of .

P(By|z) p0) i1
P(Bz|z)  8(2) 7 &= |2)

(3)
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where self-explanatory abbreviations have been introduced. Equation
(5) is meaningless, if both the numerator and denominator of its left-
hand side vanish. If the denominator alone vanishes, the fraction may
properly be regarded as infinite. This will happen: if and only if B; is
null, and B, is not null given z. That is, it will happen if and only if
8(1) # 0, 8(2) = 0, or if (1) # 0, and R(z) = «=.

In modern statistical usage, R'(x,) and R(z) are the likelihood ratios
of By to By given z, and x, respectively, quantities of importance in
many theoretical eontexts.

If a person contemplates making the observation x, that is, finding
out the value of x(s) for the # that is the true state of the world, it may
properly be asked how probable he considers it that R will turn out to
have a particular value. It will be shown, barring two banal excep-
tions, that, for n sufficiently large, the probability, given B, that R is
greater than any preassigned number is almost 1. The possibility
P(B,) = 0 is to be excepted, for then the conditional probability in
question i= meaningless. The other exception oceurs when 5(:,! 1) =
t(z, | 2) for every z,, that is, when the common distribution of x, given
B, is the same as it is given Bs; for then observation of x, is simply
irrelevant in distinguishing B, from B, or, a little more technically, x,
15 irrelevant to B, given B, U B, and

(6) P(R'(z)) = 1| By) = 1.

Formally, it is to be demonstrated that, unless P(B,) = 0, or (6)
holds,

(7) lim P(R(z) > p|B) =1 for0<p < .
The problem is quite simple when account is taken of the fact that
R(x) is the product of n random variables, R'(x,), that are independent
given B,. In attacking the problem, two cases are to be distinguished,
according as there are or are not values of z that have positive proba-
bility given B, but zero probability given Bs.

It i= in practice rather fortunate to find instances of the first case,
for then (7) applies with a vengeance. Indeed, suppose that

®) P(R'(z) <»|B) =89, ¢<I.
Then
(%) P(R=w|B) =1—¢"

which obviously approaches 1 with increasing n.
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The second case, namely ¢ = 1, is more interesting. Since much is
known about sums of identically distributed independent random varia-
bles, it is natural to investigate

(10) log R(z) = 2_ log R'(x,),

thereby replacing a product by a sum. It is easily seen from the defi-
nition of R'(z,) that P(R'(z,) > 0| By) = 1, so, in the case now at
hand, the functions log R'(x,) are independent real bounded random
variables,

Letting
(11) I = E(log R'(z,) | By),
the weak law of large numbers 1 implies that, for any ¢« > 0,
(12) lim P(log R(z) 2 n(I ~ ¢) | By) = 1,
equivalently, T
(13) lim P(R(z) > ¢"Y~9| By) = 1.

Al =+ &

The objective will therefore be achieved, if it is demonstrated that
I > 0 unless (6) holds. But

(14) I = E(log R'(z,) | B)
> —log E(R"Y(z,) | B)
= —~logl =0,

as may be argued thus: The inequality in the above calculation is as-
signed as Exercise 8 in Appendix 2, together with the fact that equality
can hold in (14) if and only if B'~'(x,) is constant with probability
one given B;. But the expected value of B ~'(x,) given B, is equal to
1, as (14) asserts and as may be easily verified from the definition of
R'7'(x,). Bo, barring the exceptions provided for, I > 0, and the
demonstration of (7) is complete.

Before the observation, the probability that the probability given z
of whichever element of the partition actually obtains will be greater
than « is

(15) 2 BE)P(P(B;| z) > a| By,
-1

where summation is confined to those i's for which 8(1) # 0. Applica-
tion of (14) (extended to arbitrary pairs of 1's) shows that the coefficients

t For the definition of this law, see, if necessary, p. 191 of Feller's book [F1).
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of each 8(i) in the quantity (15), and therefore the quantity itself, ap-
proaches 1 as n increases; provided only that no two functions &#(x, | t)
and £(x, | i) are the same, if 8(1) and 8(1") are both different from zero.

To summarize informally, it has now been shown that, with the ob-
servation of an abundance of relevant data, the person is almost cer-
tain to become highly convinced of the truth, and it has also been shown
that he himself knows this to be the case.

It may be remarked, for those familiar with certain theorems, that
many refinements of (7) and its consequences could be worked out by
application of the strong law of large numbers, the central limit theo-
rem, and the law of the iterated logarithm to R'(x,).

The quantity I is coming to be called the information of the distn-
bution of x, given B, with respect to the distribution of x, given B,.
More generally, if P and @ are probability measures, confined (for sim-
plicity) to a finite set X with elements z; the information of P with
respect to ¢ is defined by

P(z)

)l :
(16) E P(a) log o
This usage stems from work of Claude Shannon in communication en-
gineering, a good account of which is given in [511]; and also from inde-
pendent work of Norbert Wiener in a related context [W10]. The ideas
of Shannon and of Wiener, though concerned with probability, seem
rather far from statistics. It is, therefore, something of an accident
that the term “information’ ecoined by them should be not altogether
inappropriate in statistics. The situation is =till further confused, be-
cause, as long ago as 1925, R. A. Fisher emphasized an important no-
tion, which he called “information,” in connection with the theory of
estimation (Paper 11, Theory of statistical esttmation in [F6]). At first
glance, Fisher's notion seems quite different from that of Shannon and
Wiener, but, as a maiter of fact, his is & limiting form of theirs. A
useful but rather technical exposition relating the several senses of “in-
formation™ is given by Kullback and Leibler [K15], and I return to the
topic in § 15.6.+

7 Symmetric sequences of events

A problem often posed by statisticians is to estimate from a sequence
of observations the unknown probability p that repeated trials of some
sort are successful. On an objectivistic view, this problem is natural
and important, for on such a view the probability that a coin falls heads,
for example, is a property of the coin that can be determined by ex-
perimentation with the coin and in no other way. But on a personalistic

U Bee alan { Knllhaek 1961 ).
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view of probability, strictly interpreted, no probability is unknown to
the person concerned, or, at any rate, he can determine a probability
only by interrogating himself, not by reference to the external world.

This situation has been interpreted to imply that the personalistic
view is wrong, or at any rate inadequate, because it apparently cannot
even express oné of the most natural and typical problems of statistics.
Thus far in this book, I have not argued against the possibility of de-
fining some useful notion of objective probability, but have contented
myself with presenting & particular notion of personal probability,
Therefore, at this point it might be tempting to seek a dualistic theory
admitting both objective and personal probabilities in some kind of ar-
ticulation with one another. De Finetti [D3] has shown, however,
that it is not necessary to do o, that the notion of a coin with unknown
probability p can be reinterpreted in terms of personal probability
alone.

The present section is devoted to outlining this development due to
de Finetti. In the organization of the book as a whaole, it plays no logi-
cally essential part; it is, rather, & digression intended to give a clearer
understanding of the notion of personal probability, especially in rela-
tion to objectivistic views. The ideas presented here are but a frag-
ment of those on the same subject in [D2].

Let x, be a sequence of random variables taking only the values 0
and 1. The x,'s are, to all intents and purposes, & sequence of events,
the rth of which is the event that z,.(s) = 1. To say that these events
are independent, each occurring with probability p, is to say that the
probability of any finite pattern, »;, -, 7., initiating the sequence
z.() is given by the formula

(1) Pl (s) =z;r=1,,n|p) =p*(1 — p)" 7,

where y is the number of 1’s among the /s forr =1, ««. n
Mixtures, in 4 certain sense, of sequences of random wvariables are
often of interest, as they already have been in the preceding section.
Suppose, to be explicit, that the world is partitioned by B; and that,
given By, the x,’s are independent with P(z,(s) = 1| B,) having some
fixed value p{i). Then the unconditional probability of a particular
initial sequence is a mixture of the probabilities given by (1) thus:

(2) Plzs) =25r=1---,n) = Z p(}*(1 — p(i))" ¥ P(B,).
It is natural to generalize (2) formally thus:

@) Pas) =zir=1, -, n) = f p(1 — p)* dM(p),
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where M is a probability measure on the real numbers in the interval
[0, 1].

It is noteworthy that equation (3), understood to apply for every n,
is equivalent to the condition that the probability that every n of each
prescribed set of n of the x.'s takes the value 1 is

(@) f " dM (D).

This follows by arithmetic induetion from the obvious formula
(5) Plzds) =zp;r=1, -, n)
= Pa,(s) = 27 = 1, -+, 1; Zaa(s) = 0)
+ Pz (s) = zp;r =1, -+, n; Tap1(8) = 1),

which applies to any sequence of random variables taking on only the
values 0 and 1.

Equation (3) can very well have an interpretation in such terms that
the measure M is not merely an abstract probability measure, but is
actually a personal probability. Thus, if p is a random variable that
is (for a given person) distributed according to M, and, if for each p
the conditional distribution of the x,'s given p is independent, with
P(x,(8) = 1) = p; then (3) obtains. Strictly speaking, the notion of
conditional probability as it occurs in the preceding sentence is used in
s somewhat wider sense than has been defined m this book, for the
probability of any particular p will typically be zero. At least for
countably additive measures, the necessary extension of conditional
probability and conditional expectation is presented by Kolmogoroff in
[K7]; it is a concept of the greatest value in advanced mathematical
statistics and in probability generally.

However, in most contexts where objectivists speak of an unknown
probability p, there is, so far as an exclusively personalistic view of
probability is concerned, no unknown parameter that can play the role
of p in (3).

Examination of situations in which “unknown’ probability is ap-
pealed to, whether justifiably or not, shows that, from the personalistic
standpoint, they always refer to symmetric sequences of events in the
sense of the following definition. The sequence of random wvariables
x,, taking only the values 0 and 1, is & symmefric 1 seguence, if and only
if the probability that any b of the z.(s)'s equal 1 and any ¢ other
z.(2)'s equal 0 depends only on the integers b and e

t De Finetti uses the Prench word for “equivalent.”+

+ He and others now prefer “exchangeahle.” The concept seems to have heen
first suggeated hy Jules Haag (1928).
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It is easy to verify that any mixture of independent sequences in the
sense of (3) is & symmetric sequence. De Finetti has discovered that
the converse 18 also true. These coneclusions can be formally summanrized
thus;

TaEOREM 1 A sequence of random wvariables x,, taking only the
values 0 and 1, is symmetric, if and only if there exists a probability
measure M on the interval [0, 1] such that the probability that any pre-
seribed n of the r.(s)'s equal 1 is given by (4). Two such measures, M
and M’, must be essentially the same,t in the sense that, if B is a sub-
interval of [0, 1], then M(B) = M'(B).

Considering that de Finetti has published a proof of Theorem 1 in
[D2] based on the Fourier integral, that any proof of it must be rather
technical, and that the theorem is not the basis of any formal inference
later in this book, it seems best not to prove it here.

It is Theorem 1 that makes it possible to express propositions re-
ferring to unknown probabilities in purely personalistic terms. If, for
example, a statistician were to say, “I do not know the p of this coin,
but I am sure it is at most one half,” that would mean in personalistic
terms, “I regard the sequence of tosses of this coin as a symmetric se-
quence, the measure M of which assigns unit measure to the interval
[0, 3].” This condition on M mesans in turn that for every n the (per-
sonal) probability of n consecutive heads is at most 27", as is easily
verified. I do not insist that propositions couched in terms of a ficti-
tious unknown probability are bad, if understood as suggestive abbrevi-
ations, but only that the meaningfulness of such propositions does not
constitute an inadequacy of the personalistic view of probability.,

The mathematical concept of probability measure or, a trifle more
generally, bounded measure is fundamental to mathematics generally.
Probability measures, often under other names, are, therefore, em-
ployed in many parts of pure and applied mathematics completely un-
related to probability proper. For example, the distribution of mass
in & not necessarily rigid body is expressed by a bounded measure that
tells how much of the body is in each region of space. We must, there-
fore, not be surprised if, even in studying probability itself, we come
across some probability measures used not to measure probability

t Technical note: If “probability measure” were here understood to mean a count-
ably additive probability measure on the Borel sets of [0, 1], the thearem would re-
main true, and the essential uniqueness of M would become true uniqueness.

i Technical note: Theorem 1 can be proved very quickly and naturally by apply-
ing the theory of the Hausdorff moment problem {(pp. 89 of [B13]} to M, but this
method does not seem to generalize readily.

+ New and general methods are in Hewitt and Savage (1955) and Ryll-
Nardzewski (1957). For related work see Bithlmann (1960), Freedman (1962,
1663 ), Milier-Gruzewska (1949, 1950}, and Rényi and Révész (1963).
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proper but only for auxiliary purposes. In the event that p is not ae-
tually an unknown parameter, the measure M presented by Theorem 1
seems at first sight to be such a purely auxiliary measure, but, as a matter
of fact, M does measure certain interesting probabilities, at least ap-
proximately. For example, letting

(6) I = 1 E Lry
nog
it can be shown that
(7) lim P(2.(s) < &) = M(p < 3).

P o=

In words, the person considers the average of any large number of fu-
ture nbaerva.tmna to be distributed approximately the way p is dis-
tributed by M. This is an extension of the ordinary weak law of large
numbers, proved in [D2)] along with a eorresponding extension of the
strong law.

If the first n terms of & symmetric sequence are observed, how does
the rest of the sequence appear to the person in the light of this obser-
vation? In the first place, it also is a symmetric sequence but generally
of a structure different from that of the original sequence, as may be
shown thus: Let

{E} T(H:n_y] HDIP(IF{I} =X, ' = 1: “".l“’]':
as one may for a symmetric sequence. Then

(0) Plzols) =zg;q=n+1,-,n+m|z(s) =z,r =1, -, m)
Plzg(s) = zp,p=1, -+, n + m)
- Pz, (8) = 2,, v =1, -+, m)
=) +m—2)
=y, n — V)
where z is the number of 1’s among the =8, g =n+ 1, ---, n 4+ m.

Equation (9) shows that the sequence x;, ¢ > n, given that z,(s) = z,,
r=1, ---, i, i8 & new symmetric sequence characterized by
ry+z -y +m—2)

'{y: n= F}

The measure M’ associated with the new sequence is, according to
Theorem 1, essentially determined by the condition that

(10) w2, m — z) =i
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(1) [ are) = <m0
_wm+y,n—y)
r(y, n — y)

f (1 — p)™ dM(p)

f{ﬂ', n-— I-*}
1 — p)»—*

- [ p*(1 — p) aM ().
(y, n — y)

Equation (11) makes it plausible that, except for the slight ambiguity
permitted by Theorem 1, M’ is defined (for Borel setzs B) by

(12)  MYB) =z, n —y) j; (1 — p)™ dM(p),

and this can in fact be demonstrated with some appeal to slightly ad-
vanced methods pertaining to the Hausdorfli moment problem (pp. 8-9
of [S13]).

It is noteworthy that, if M(B) = 0, then M'(8) = 0 also. In the
event that p really is an unknown parameter, this means that, if the
person is virtually certain that the true p is not in B, no amount of
evidence can alter that opinion.

Equation (12) shows that M’ is generally different from M. Indeed,
for fixed n = 1, M’ is clearly the same as M for every y for which
w(y, n — y) > 0, if and only if M assigns the measure 1 to some one
value of p. That is, the person regards evidence drawn from a sym-
metric sequence as irrelevant to the future behavior of the sequence, if
and only if at the outset he regards the sequence not merely as sym-
metrie but also as independent.

It can be shown that the person regards it as highly probable that,
if he observes a sufficiently long segment of a symmetric sequence, the
continuation of the sequence will then be one for which the conditional
variance of p,

(13) [ aarp) - { IE d.u'u:}]z,

will be small. In the event that p is really an unknown parameter, this
implies that the person is very sure that after a long sequence of obser-
vations he will assign nearly unit probability to the immediate neigh-
borhood of the value of p that actually obtains—a parallel to the ap-
proach to certainty discussed in § 6.



CHAPTER 4

Cntical Comments

on Personal Probability

1 Introduction

It is my tentative view that the concept of personal probability in-
troduced and illustrated in the preceding chapter is, except possibly
for slight modifications, the only probability concept essential to sei-
ence and other activities that call upon probability. I propose in this
chapter to discuss the shortcomings I see in that particular personal-
istie view of probability, which, for brevity, shall here be called simply
“the personalistic view'’; to point out briefly the relationships between
it and other views: to eriticize other views in the light of it; and to dis-
cuss the criticisms holders of other views have raised, or may be ex-
pected to raise, against it.

From the standpoint of strict logical organization such eritical re-
marks are somewhat premature, because the personalistic view itself
insists that probability is concerned with consistent action in the face
of uncertainty. Consequently, until the theory of such action has been
completely outlined in later chapters, the view to be criticized cannot
even be considered to have been wholly presented. Practically, how-
ever, it seems wise not to confine critical comments to the one part of
the text that logic may suggest as appropriate, but rather to touch on
eriticism from time to time, even at the cost of some repetition. Thus,
some of what is to be said here has already been zaid in the introductory
chapter and elsewhere, and some of it will be said again.

Views other than the personalistic view are to be discussed here, but
it cannot be too distinetly emphasized that the account given of them
will be very superficial.t One function of discussing other views is to
provide the reader with at least some orientation in the large and di-
versified body of ideas pertaining to the foundation of statistics that

t Much more extensive comparative material is given by Keynes [K4], by Nagel
IN1], and by Carnap [C1]. Koopman [K12] should also be mentioned in this con-
nection.
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have been accumulated. A less obvicus, but I think no less important
and legitimate, function is to cast new light on the personalistic view,
especially for those who already hold, or tend to hold, other views.

2 Some shortcomings of the personalistic view

I can answer, to my own satisfaction, some criticisms of the personal-
istic view that have been brought to my attention. These points are
discussed later in the chapter, but in this section I state and discuss
as clearly as I can those that I find more difficult and confusing to
ANSWET,

According to the personalistic view, the role of the mathematical
theory of probability is to enable the person using it to detect incon-
sistencies in his own real or envisaged behavior. It is also understood
that, having detected an inconsistency, he will remove it. An incon-
sistency is typically removable in many different ways, among which
the theory gives no guidance for choosing. Silence on this point does
not seem altogether appropriate, so there may be room to improve the
theory here. Consider an example: The person finds on interrogating
himself about the possible cutcome of tossing a particular coin five
times that he considers each of the thirty-two possibilities equally
probable, so each has for him the numerical probability 1/32, He also
finds that he considers it more probable that there will be four or five
heads in the five tosses than that the first two tosses will both be heads.
Now, reference to the mathematical theory of probability scon shows
the person that, if the probability of each of the thirty-two possibilities
is 1/32, then the probability of four or five heads out of five is 6/32,
and the probability that the first two tosses will be heads is 8/32, so
the person has caught himself in an inconsistency. The theory does not
tell him how to resolve the inconsistency; there are literally an infinite
number of possibilities among which he must cheose.

In this particular example, the choice that first comes to my mind,
and I imagine to yours, is to hold fast to the position that all thirty-two
possibilities are equally likely and to accept the implications of that
position, including the implication that four or five heads out of five
18 less probable than two heads out of two. I do not think that there is
any justification for that choice implicit in the example as formally
stated, but rather that in the sort of actual situation of which the ex-
ample i5 a erude schematization there generally are considerations not
incorporated in the example that do justify, or at any rate elicit, the
choice.

To approach the matter in a somewhat different way, there seem to
be some probability relations about which we feel relatively “sure” as
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compared with others. When our opinions, as reflected in real or en-
visaged action, are inconsistent, we sacrifice the unsure opinions to the
sure ones. The notion of “sure” and “unsure” introduced here is vague,
and my complaint is precisely that neither the theory of personal proba-
bility, as it is developed in this book, nor any other device known to me
renders the notion less vague+ There is some temptation to introduce
probabilities of a second order so that the person would find himself
saying such things as “the probability that B is more probable than €
is greater than the probability that F is more probable than G.” But
such a program zeems to meet insurmountable difficulties,

The first of these—pointed out to me by Max Woodbury—is this.
If the primary probability of an event B were a random wvariable b
with respect to secondary probability, then B would have a “composite™
probability, by which I mean the (secondary) expectation of b. Com-
posite probability would then play the allegedly villainous role that
secondary probability was intended to obviate, and nothing would have
been accomplished.

Again, once second order probabilities are introduced, the introdue-
tion of an endless hierarchy seems inescapable. Such a hierarchy seems
very difficult to interpret, and it seems at best to make the theory less
realistic, not more,

Finally, the objection concerning composite probability would seem
to apply, even if an endless hierarchy of higher order probabilities were
introduced. The composite probability of B would here be the limit
of a sequence of numbers, E.(Ey_;(--- Eg(Py(B))+++)), a limit that
could scarcely be postulated not to exist in any interpretable theory of
this sort. The reader may wish to evaluate for himself the arguments
in favor of such a hierarchy put forward by Reichenbach (Chapter 8,
[R2]), taking proper sccount of the differences between Reichenbach’s
overall view, and his mathematical theory, of probability on one hand
and, on the other, the personalistic view and measure-theoretic mathe-
matical theory that are the basis of my eritique of higher order proba-
hilities.

The interplay between the “sure” and “unsure” is interestingly ex-
pressed by de Finetti (p. 60, [D2]} thus: “The fact that a direct estimate
of a probability is not always possible is just the reason that the logi-
cal rules of probability are useful. The practical object of these rules
is simply to reduce an evaluation, scarcely accessible directly, to others
by means of which the determination is rendered essier and more
pmi‘ﬁ‘?l

It may be clarifying, especially for some readers under the sway of
the objectivistic tradition, to mention that, if a person is “sure” that

+ One tempting representation of the unsure is to replace the person’s single
probahility measure P by a set of such measures, especially a convex set. Some
explorations of this are Dempster (1968), Good (1962), and Bmith (1061).
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the probability of heads on the first toss of a certain penny is 4, it does
not at all follow that he considers the coin fair. He might, to take an
extreme example, be convinced that the penny is a trick one that al-
ways falls heads or always falls tails.

Logie, to which the theory of personal probability ean be closely par-
alleled, is similarly incomplete. Thus, if my beliefs are inconsistent
with each other, logic insists that I amend them, without telling me how
to do so. This is not a derogatory criticism of logic but simply a part
of the truism that logic alone is not a complete guide to life. Since the
theory of personal probability is more complete than logie in some re-
spects, it may be somewhat disappointing to find that it represents no
improvement in the particular direction now in question.

A second diffieulty, perhaps closely associated with the first one,
stems from the vagueness associated with judgments of the magnitude
of personal probability. The postulates of personal probability imply
that I can determine, to any degree of accuracy whatsoever, the proba-
bility (for me) that the next president will be a Demoecrat. Now, it is
manifest that I cannot really determine that number with great aecu-
racy, but only roughly. Since, as is widely recognized, all the interest-
ing and useful theories of modern science, for example, geometry, rela-
tivity, quantum mechanics, Mendelism, and the theory of perfect com-
petition, are inexact; it may not at first sight seem disquieting that the
theory of personal probability should also be somewhat inexact. As
will immediately be explained, however, the theory of personal proba-
bility cannot safely be compared with ordinary scientific theories in
this respect.

I am not familiar with any serious analysis of the notion that a theory
is only slightly inexact or is almost true, though philosophers of science
have perhaps presented some. Even if valid analyses of the notion
have been made, or are made in the future, for the ordinary theories of
science, it is not to be expected that those analyses will be immediately
applicable to the theory of personal probability, normatively inter-
preted ; because that theory is a code of consistency for the person ap-
plying it, not a system of predictions about the world around him.

The difficulty experienced in § 2.6 with defining indifference seems
closely associated with the difficulty about vagueness raised here,

Another difficulty with the theory of personal probability (or, more
properly, with that larger theory of the behavior of & person in the
face of uncertainty, of which the theory of personal probability is a
part) is that the statement of the theory is not yvet necessarily complete,
Thus we shall in the next chapter come upon another proposition that
demands acceptance as a postulate, and, since even this leaves the per-
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son a great deal of freedom, there is no telling when someone will come
upon still another postulate that clamors to be adjoined to the others.
Strictly speaking, this is not so much an objection to the theory as a
warning about what to expect of its future development.

3 Connection with other views

All views of probability are rather intimately connected with one an-
other. For example, any necessary view can be regarded as an extreme
personalistie view in which so many eriteria of consistency have been
invoked that there is no role left for the person’s individual judgment.
Again, objectivistic views can be regarded as personalistic views ac-
cording to which comparisons of probability can be made only for very
special pairs of events, and then only according to such eriteria that all
(right-minded) people agree in their comparisons,

From a different standpoint, personalistic views lie not between, but
beside, necessary and objectivistic views; for both necessary and objee-
tivistic views may, in contrast to personalistic views, be ealled objective
in that they do not concern individual judgment.

4 Criticism of other views

It will throw some light on the personalistic view to say briefly how
some other views seem to compare unfavorably with it.

It is one of my fundamental tenets that any satisfactory account of
probability must deal with the problem of action in the face of uncer-
tainty. Indeed, almost everyone who seriously eonsiders probability,
especially if he has practical experience with statistics, does sooner or
later deal with that problem, though often only tacitly. Even some
personalistic views seem to me too remote from the problem of action,
or decision. For example, de Finetti in [D2] gives two approaches to
personal probability. Of these, one 18 almost exactly like the view
sponsored here, except only that the notion “more probable than" is
supposed to be intuitively evident to the person, without reference to
any problem of decision. The other is more satisfactory in this re-
spect, being couched in terms of betting behavior, but it seems to me
a somewhat less satisfactory approach than the one sponsored here, be-
cause it must assume either that the bets are for infinitesimal sums or—
anticipating the language of the next chapter—that the utility of money
is linear. The theory expressed by Koopman in [K9], [K10], and [K11]
and that expressed by Good in [G2] are both personalistie views that
tend to ignore decision, or at any rate keep it out of the foreground;
but the personalistic view expressed by Ramsey in [R1], like the one
sponsored here, takes decision as fundamental. If any necessary view
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can be formulated at all, it might well be possible to formulate it in
terms of decision, but, 8o far as [ know, the notion of deecision has not
appeared fundamental to the holders of any necessary view. It seems
fair to say that objectivistic views, by their very nature, must in prin-
ciple regard decision as secondary to probability, if relevant at all.
Yet, the objectivist A. Wald has done more than anyone else to popu-
larize the notion of decision.

As has already been indicated, from the position of the personalistic
view, there is no fundamental objection to the possibility of construct-
ing a necessary view, but it s my impression that that possibility has
not yet been realized, and, though unable to verbalize reasons, I eon-
jecture that the possibility iz not real. Two of the most prominent en-
thusiasts of necessary views are Keynes, represented by [K4], and Car-
nap, who has begun in {C1] to state what he hopes will prove a satis-
factory necessary (or nearly necessary) view of probability. Keynes
indicated in the closing pages of [K4] that he was not fully satisfied
that he had solved his problem and even suggested that some element
of objectivistic views might have to be accepted to achieve a satisfac-
tory theory, and Carnap regards [C1] as only a step toward the estab-
lishment of a satisfactory necessary view, in the existence of which he
declares confidence. That these men express any doubt at all about the
possibility of narrowing a personalistic view to the point where it be-
comes & necessary one, after such extensive and careful labor directed
toward proving this possibility, speaks loudly for their integrity; at the
same time it indicates that the task they have set themselves, if possi-
ble at all, is not a light one.

Keynes, writing in 1921 of what are here called objectivistic views,
complained, “The absence of a recent exposition of the logical basis of
the frequency theory by any of its adherents has been a great disadvan-
tage to me in criticizing it.” (Chap. VIII, Sec. 17, of [K4]). I believe
that his complaint applies as aptly to my position today as to his then,
though I cannot pretend to have combed the intervening literature
with anything like the thoroughness Keynes himself would have em-
ployed. Reichenbach, to be sure, presents in great detail an interest-
ing view that must be classified as objectivistic [R2], but it seems far
removed from those that dominate modern statistical theory and form
the main subject of the following discussion. Whatever objectivistic
views may be, they seem, to holders of necessary and personalistic
views alike, subject to two major lines of eriticism. In the first place,
objectivistic views typiecally attach probability only to very special
events. Thus, on no ordinary objectivistic view would it be meaning-
ful, let alone true, to say that on the basis of the available evidence it
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is very improbable, though not impoesible, that France will become &
monarchy within the next decade. Many who hold objectivistic views
admit that such everyday statements may have a meaning, but they
insist, depending on the extremity of their positions, that that meaning
iz not relevant to mathematical concepts of probability or even to sci-
ence generally. The personalistic view claims, however, to analyze
such statements in terms of mathematical probability, and it considers
them important in science and other human activities.

Secondly, objectivistic views are, and I think fairly, charged with
circularity. They are generally predicated on the existence in nature
of processes that may, to a sufficient degree of approximation, be rep-
resented by a purely mathematical object, namely an infinite sequence
of independent events. This idealization is said, by the objectivists
who rely on it, to be analogous to the treatment of the vague and ex-
tended mark of a carpenter’s pencil as a geometrical point, which is so
fruitful in certain contexts. When it is pointed out to the objectivist
that he uses the very theory of probability in determining the quality
of the approximation to which he refers, he retorts that the applied
geometer—a fictitious character whose reputation for solidity in science
is unquestioned—likewise uses geometry in determining the quality of
his approximations. Let the geometer then be challenged, and he re-
plies with a threefold reference to experience, saying, “It is & common
experience that with sufficient experience one develops good judgment
im the use of geometry and thenceforth generally experiences success in
the predictions he bases on it.” “Now,” says the objectivist, “the
geometer’s answer is my answer.” But it seems to eritics of objectivistie
views that, though the geometer may be entitled to make as many allu-
sions to experience as he pleases, the probabilist is not free to do so,
precisely because it is the business of the probabilist to analyze the con-
cept of experience. He, therefore, cannot properly support his position
by alluding to experience until he has analyzed that concept, though
he can, of course, allude to as many experiences as he wishes.

Two sorts of mixed views call for special comment here.

First, some (among them Carnap [Cl]; Koopman [K9], [K10], and
[K11]; and Nagel [N1]) hold that two probability concepts play a role
in inference, an objectivistic one and a personalistic or a necessary one.
This dualism is typically justified as necessary to the analysis of such
s concept as that of a coin with unknown probability of falling heads,
But, as § 3.7 explains, de Finetti has provided a satisfactory analysis
on the basis of personal probability alone,

Second, others—for example, van Dantzig [V1] and Féraud [F2]—
finding the conventional objectivistic views circular for the reasons 1
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have cited, try to break the circle by relatively isolated use of subjec-
tive ideas. Very crudely, it seems to be their position that in any one
eontext it i3 allowable for a person to act as though some one event of
sufficiently small (objective) probability, chosen at his discretion, were
impossible. Quite apart from the relatively technical question of
whether any consistent mixed view of this kind can be constructed,
holders of personalistic and necessary views alike criticize them as un-
necessarily timid, for they embrace subjective ideas, but only gingerly.

6 The role of symmetry in probability

An important and highly eontroversial question in the foundations
of probability is whether and, if so, how symmetry considerations can
determine the probabilities of at least some events,

Symmetry considerations have always been important in the study
of probability. Indeed, early work in probability was dominated by
the notion of symmetry, for it was usually either coneerned with, or di-
rectly inspired by, symmetrical gambling apparatus such as dice or
eards. To illustrate those classical problems, suppose that a gambler is
offered several bets concerning the possible outcome of rolling three
dice, where it is to be understood that refraining from any bets at all
may be among the available “bets.”” Which of the available bets
should the gambler choose? Perhaps I distort history somewhat in in-
sisting that early problems were framed in terms of choice among bets,
for many, if not most, of them were framed in terms of equity, that is,
they asked which of two players, if either, would have the advantage
in a hypothetical bet. But, especially from the point of view of the
earlier probabilists, such a question of equity is tantamount to a ques-
tion of choice among bets, for to ask which of two “equal” betters has
the advantage is to ask which of them has the preferable alternative,
as was pointed out quite explicitly by D. Bernoulli in [B10].

In effect, the classical workers recommended the following solution
to the problem of three dice, with corresponding solutions to other
gambling problems:

1. Attach equal mathematical probabilities to each of the 216 (=6%)
possible outcomes of rolling the three dice. (There are 6* possibilities,
because the first, second, and third dice can each show any of six scores,
all combinations being possible.)

2, Under the mathematical probability established in Step 1, com-
pute the expected winnings (possibly negative) of the gambler for each
available bet.

3. Choose a bet that has the largest expected winnings among those
available.
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At present it is appropriate to refrain from criticisms of the use
made of expected winnings until the next chapter and to concentrate
discussion on the notion that the 216 possibilities should be considered
equally probable, which can conveniently be done by drastically reduc-
ing the class of bets considered to be available. Bay, for definiteness,
that the only bets to be considered are simply even-money bets of one
dollar, that the triple of scores falls in a preassigned subset of the 216
possibilities. When attention is focused on this restricted class of bets,
the total recommendation is seen to imply that the probability measure
defined in the first step of the recommendation be adopted as the per-
sonal probability of the gambler. To put it differently, a gambler who
adopts the recommendation will hold the 216 possible outcomes equally
probable not only in some abstract sense, but also in the sense of per-
sonal probability as defined in § 3.2,

The notion that the 216 possibilities should be regarded as equally
probable is familiar to everyone; for it is taken for granted wherever
gentlemen gamble as well as in the standard high-school algebra courses,
where it serves to illustrate the theory of combinations and permutations.

Traditionally, the equality of the probabilities was supposed to be
established by what was called the principle of insufficient reason,{
thus: Suppose that there is an argument leading to the conclusion that
one of the possible combinations of ordered scores, say {1, 2, 3}, is
more probable than some other, say {6, 3, 4]. Then the information
on which that hypothetical argument is based has such symmetry as
to permit a completely parallel, and therefore equally valid, argument
leading to the conclusion that |6, 3, 4} is more probable than {1, 2, 3].
Therefore, it was asserted, the probabilities of all combinations must
be equal.

The principle of insufficient reason has been and, I think, will con-
tinue to be a most fertile idea in the theory of probability; but it is not
so simple as it may appear at first sight, and criticism has frequently
and justly been brought against it. Holders of necessary views typi-
cally attempt to put the principle on a rigorous basis by modifying it
in such & way as to take account of such criticism. Holders of personal-
istic and objectivistic views typically regard the eriticism as not alto-
gether refutable, so they do not attempt to establish a formal postulate
corresponding to the principle but content themselves—as I shall here
—with exhibiting an element of truth in it.

Ome of the first criticisms is that the principle is not strictly applicable
for a person who has had any experience with the apparatus in ques-

t Perhaps what [ here eall the principle of insufficient resson should be called the
prineciple of cogent reason. See Section 3 of [B15] for the distinetion involved.
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tion, or even with similar apparatus. Thus, attempts to use the prin-
ciple, as I have stated it, to prove that there is no such thing as a run
of luck at dice, as actually played, are invalid. The person may have
had relevant experience, directly or vicariously, not only with gambling
apparatus itself, but also with people who make and handle it, including
cheaters.

It is not always obvious what the symmetry of the information is in
a situation in which one wishes to invoke the principle of insufficient
reason. For example, d'Alembert, an otherwise great eighteenth-cen-
tury mathematician, is supposed to have argued seriously that the prob-
ability of obtaining at least one head in two tosses of a fair coin is 2/3
rather than 3/4. (Cf, (T3], Art. 464.) Heads, as he said, might appear
on the first toss, or, failing that, it might appear on the second, or,
finally, might not appear on either. D’Alembert considered the three
possibilities equally likely.

It seems reasonsable to suppose that, if the principle of insufficient
reason were formulated and applied with sufficient care, the conclusion
of d’Alembert would appear simply as a mistake. There are, however,
more serious examples. Suppose, to take a famous one, that it is known
of an urn only that it contains either two white balls, two black balls,
or & white ball and & black ball. The principle of insufficient reason has
been invoked to conclude that the three possibilities are equally proba-
ble, so that in particular the probability of one white and one black
ball i# concluded to be 1/3. But the principle has also been applied to
conclude that there are four equally probable possibilities, namely, that
the first ball is white and the second also, that the first is white and the
second black, ete. On that basis, the probability of one white and one
black ball is, of course, 1/2. Personally, I do not try to arbitrate be-
tween the two conclusions but consider that the existence of the pair
of them reflects doubt on the notion that a person’s knowledge relevant
to any matter admits any full and precise description in terms of
propositions he knows to be true and others about which he knows
nothing.

Most holders of personalistic views do not find the principle of in-
sufficient reason compelling, because they envisage the possibility that
a person may consider one event more probable than another without
having any compelling argument for his attitude. Viewed practically,
this position is closely associated with the first criticism of the principle
of insufficient reason, for the holder of a personalistic view typically
supposes that the person is under the influence of experience, and pos-
sibly even biologically determined inheritance, that expresses itself in
his opinions, though not necessarily through compelling argument.
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Holders of personalistic views do see some truth in the principle of
insufficient reason, because they recognize that there are frequently par-
titions of the world, associated with symmetrieal-looking gambling ap-
paratus and the like, that many and diverse people all consider (very
nearly) uniform partitions. As was illustrated in the preceding sec-
tion, we often feel more “sure"” about probabilities derived from the
judgment that such partitions are uniform than we do about others.
Such partitions are, moreover, very important in that they provide
some events the probability of which to diverse people is in agreement.
Though the events concerned are often of no importance in themselves,
agreement about them can, through the statistical invention of ran-
domization, contribute to agreement about all sorts of issues open to
empirical investigation. Widespread though the agreement about the
near uniformity of some partitions is, holders of personalistic views
typically do not find the contexts in which such agreement obtains
sufficiently definable to admit of expression in a postulate.

Holders of purely objectivistic views see no sense at all in the original
formulation of the principle of insufficient reason, for it uses “proba-
bility"” in a manner they consider meaningless. But they too see an
element of truth in the principle, which they consider to be established
as a part of empirical physiecs. Thus, for example, they regard it as an
experimental fact, admitting some explanation in terms of theoretical
physics, that three dice manufactured with reasonable symmetry will
exhibit each of the 216 possible patterns with nearly equal frequency,
if repeatedly rolled with sufficient violence on a suitable surface.

Holders of personalistic views agree that experiments or, more gen-
erally, experiences determine to a large extent when people employ the
idea of insufficient reason. Thus, though experiments with gambling
apparatus, quite apart from gambling itself, have a fascination that
perhaps exceeds their real interest, such experiments are not altogether
worthless. On the one hand, they provide strong evidence that a per-
son cannot expect to maintain a symmetrieal attitude toward any piece
of apparatus with which he has had long experience, unless he is vir-
tually convinced at the outset that the possible states of the apparatus
are equally probable and independent from trial to trial. To say it in
the more familiar and sometimes more congenial language of objective
probability, long experiments with ecoins, dice, cards, and the like have
always shown some bias, and often some dependence from trial to trial.
On the other hand (and this has the utmost practical importance), it
has been shown that, with skill and experience, gambling apparatus, or
its statistical equivalent, can be manufactured in which the bias and
the dependence from trial to trial are extremely small. This implies
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that groups of very diverse people can be brought to agree that repeated
trials with certain apparatus are nearly uniform and nearly independent.
Thus certain methods of obtaining random numbers and other outcomes
of uniform and independent trials, which are vital to many sorts of
experimentation, have justifiably found acceptance with the scientific
public. A stimulating account of practical methods of obtaining ran-
dom numbers, and random samples generally, is given by Kendall in
Chapter 8 (Vol. I) of [K2].

6 How can science use a personalistic view of probability?

It is often argued by holders of necessary and objectivistic views alike
that that ill-defined activity known as science or scientific method con-
sists largely, if not exclusively, in finding out what is probably true,
by eriteria on which all reasonable men agree. The theory of proba-
bility relevant to science, they therefore argue, ought to be a codifica-
tion of universally acceptable eriteria. Holders of necessary views say
that, just as there is no room for dispute as to whether one proposition
ig logically implied by others, there can be no dispute as to the extent
to which one proposition is partially implied by others that are thought
of as evidence bearing on it, for the exponents of necessary views re-
gard probability as a generalization of implication. Holders of objee-
tivistic views say that, after appropriate observations, two reasonable
people can no more disagree about the probability with which trials
in & sequence of coin tosses are heads than they can disagree about the
length of a stick after measuring it by suitable methods, for they con-
sider probability an objective property of certain physical systems in
the same sense that length is generally considered an objective property
of other physical systems, small errors of measurement being contem-
plated in both contexts. Neither the necessary nor the objectivistic
outlook leaves any room for personsl differences; both, therefore, look
on any personalistic view of probability as, at best, an attempt to pre-
diet some of the behavior of abnormal, or at any rate unscientific,
people.

I would reply that the personalistic view incorporates all the univer-
sally acceptable criteria for reasonableness in judgment known to me
and that, when any criteria that may have been overlooked are brought
forward, they will be welcomed into the personalistic view. The eri-
teria incorporated in the personalistic view do not guarantee agreement
on all questions among all honest and freely communicating people,
even in principle. That incompleteness, if one will call it such, does not
distress me, for 1 think that at least some of the disagreement we see
around us is due neither to dishonesty, to errors in reasoning, nor to
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friction in communication, though the harmful effects of the latter are
almost ineapable of exaggeration.

As was mentioned in connection with symmetry, there are partitions
that diverse people all consider nearly uniform, though not compelled
to that agreement by any postulate of the theory of personal proba-
bility. As has also been mentioned and as will be explained later (es-
pecially in § 14.8), through the statistical invention of randomization,
agreement about partitions pertaining to gambling apparatus of no im-
portance in itself can be made to contribute to agreement in every
part of empirical science.

Another mechanism that brings people having some, but not all,
opinions in eommon into more complete agreement was illustrated in
§§ 3.6-7. Indeed, it was there shown that in certain contexts any two
opinions, provided that neither is extreme in a technical sense, are al-
most sure to be brought very close to one another by a sufficiently
large body of evidence.

It has been countered;” I believe, that, if experience systematically
leads people with opinions originally different to hold a common opinion,
then that common opinion, and it only, is the proper subject of scien-
tific probability theory. There are two inaccuracies in this argument.,
In the first place, the conclusion of the personalistic view is not that
evidence brings holders of different opinions to the same opinions, but
rather to similar opinions. In the second place, it is typically true of
any observational program, however extensive but preseribed in ad-
vance, that there exist pairs of opinions, neither of which can be called
extreme in any precisely defined sense, but which eannot be expected,
either by their holders or any other person, to be brought into close
agreement after the observational program.

I have, at least once, heard it objected against the personalistic view
of probability that, according to that view, two people might be of
different opinions, according as one is pessimistic and the other opti-
mistic. I am not sure what position I would take in abstract discussion
of whether that alleged property of personalistic views would be oh-
jectionable, but I think it is clear from the formal definition of gualita-
tive probability that the particular personalistic view sponsored here
does not leave room for optimism and pessimism, however these traits
be interpreted, to play any role in the person’s judgment of probabilities,

+ See (Fisher 1034), p. 287.



CHAPTER 5

Uti]ity
1 Introduction

The postulates P4-6, introduced in Chapter 3, have already led to
simplification of the relation < in so far as it applies to acts of a special
but important form. Indeed, through the introduction of numerieal
probability, those special comparisons have been reduced to ordinary
arithmetic comparison of numbers in such a way that many relations
among acts are deducible by simple and systematic arithmetic calenla-
tion. In this chapter it will be shown that the arithmetization of com-
parison among acts can, with the introduction of one mild new postu-
late, be extended to virtually all pairs of acts.

This far-reaching arithmetization of comparison among acts is
achieved by attaching a number U(f) to each consequence f in such a
way that f < g if and only if the expected value of U(f} is numerically
less than or equal to that of U{g), provided only that the real-valued
funetions U(f) and U(g) are essentially bounded. The provision can
fail to be met only if there exist acts that are, so to speak, distinetly
preferable to any fixed reward or distinetly worse than any fixed punish-
ment.

A function U that thus arithmetizes the relation of preference among
acts will be called a utility. It will be shown that the multiplicity of
utilities is not complicated, every utility being simply related to every
other. I have chosen to use the name “utility” in preference to any
other, in spite of some unfortunate connotations this name has in con-
nection with economic theory, because it was adopted by von Neumann
and Morgenstern when in [V4] they revived the concept to which it re-
fers, in a most stimulating way. Their treatment has been of such wide-
spread interest that the introduction of a name other than “utility” at
the present time would cause more confusion than it could alleviate.

The next three sections are concerned with the technical exploration
of the utility concept. I think readers interested in the details will find
it best to read these sections twice as a unit, in the fashion 1 have been
recommending for other material in which definitions and propositions

69
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are interlarded with proofs; others will be content with a cursory read-
ing, omitting proofs.

Taking advantage of the simplicity afforded by the introduction of
utility, I try in § 5 to make some progress with the problem, pointed
out in § 2.5, of specifying criteria for the construction of “small worlds.”

Finally, § 6 briefly reports the history of the utility idea. A separate
critical section i2 not necessary, because the criticisms of the theory of
utility known to me are incorporated conveniently into the historical
section.

2 Gambles

Before discussing utility, it is expedient to establish certain facts,
the first being that at least among a rather rich class of acts, namely
acts confined with probability one to a finite number of consequences,
preference depends only on the probability distribution of the conse-
quences of the acts.

THEOREM 1
Hye. 1. fi, ==+, fa are n elements of F, n > 1.
2. p1, ***, pn are numbers such that Zp; = 1.

3. g and h are acts such that

Plg(s) = fi) = P(h(s) = fi) = p;, di=1,---,m.
Coxcr. g = h

Proor. The theorem is obvious for n = 1. It will be proved by in-
duction, supposing henceforth that n > 1.

Let B denote the intersection of the two events that g(s) = f, and
h(sg) # f,, and let C denote the intersection of the two events that
his) = f, and g(s) = f,. It is easy to see that P(B) = P(C). C can
be partitioned into Cy, Cy, -+, Ca_y, where g is & null event and C,,
f=1, »++, n — 1, is the intersection of C' with the event that g(s) = J,.
By repeated application of Conclusion 7 of Theorem 3.3.3, B can be
partitioned into events B,, B,, ---, B,_; such that P(B;) = P((;),
t=0---,n-=1

Let gy = g, and define g; ., step by step fori = 0, -+, n — 2 thus:

(1) gi+1(8) = fu for s e Cyy,y,
= fi+: for & e B:‘+1.
= g(s) elsewhere.

It is easily seen from the facts of conditional probability that gig, =
g: given B; ., U C;4,, and it is even more obvious that g;,, = g: given
~(B;i41 U Ciyy). Therefore giyy = g, 50 ga— = g Furthermore,
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P(gisa(8) = f;) = P(gi(s) = f;) = pj, 80 Plgn—1(8) =Jf;) =05, j = 1,
=+ f. Thus gs—; is not only equivalent to g but aleo satisfies the hy-
pothesis of the theorem relative to h, so it will suffice to prove the theo-
rem for g.—: and h in place of g and h.

Now gs—1 has been constructed to equal fy in €, except on a null set.
Therefore g,—; = h given C U D, where D is the subset of ~C on
which g,—; = h = f,.

It remains only to show that g,_; = hgiven ~(C U D). If ~(C' U D)
is null, that is true automatically; henceforth concentrate on the less
trivial situation. If ~(C U D) is not null, then < given ~(C U D)
satisfies all the postulates assumed thus far, and therefore the conse-
quences fy, -« -, fa—y; the numbers p;’ = p;/(1 — pg), ¢ =1, <+, m — 1;
the acts g,—; and h; and the relation < given ~(C U D) satisfy the
hypothesis of the theorem for a case in which it is supposed already to
have been proved. ¢

In this chapter the notation Zp.f; will denote the class of all acts f-
for which there exist partitions B; of 8 such that P(B;) = p; and f(s) =
J; for 8 e B;, Here the f/s are a finite sequence of consequences (not
necessarily distinct), and the p/s a corresponding sequence of non-
negative real numbers such that Zp; = 1. In view of Conclusion 7 of
Theorem 3.3.3, such a class of acts, which will in this chapter be re-
ferred to as a gamble and denoted by f, g, b, or the like, always has at
least one element. Theorem 1 says, in effect, that the person regards
all elements of any gamble as equivalent. To put it differently, if the
events B; of a partition have the probabilities p;, and if the act f is
such that the consequence f; will befall the person in case B; ocours,
then the value of f is independent of how the partition B, is chosen.

Gambles can be mixed, in a sense, o make new gambles, thus: Let
f; be a finite sequence of gambles,

(2) f; = Z piifis

and ¢; a corresponding sequence of non-negative real numbers such
that Ze; = 1. The mizture of the f’s with weights ¢;, denoted Zo,f;, is
defined by

(3) Zaify = 2 o {Z pﬁf-’f}

§
= 2 (ospiilfiir
I

which is meaningful, the f;;'s being consequences and the (o;p;)’s being
numbers such that Z(ejp;) = 1. Such mixtures are exemplified by an
insurance policy in which the benefit is an annuity payable during the
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life of the beneficiary, and by a lottery in which the prizes are tickets
in other lotteries.

In view of Theorem 1, it is natural to say that f < g means that, for
every act f in the class of acts corresponding to §, f < g. Corresponding
definitions are to be understood for f < g, f < g, f € g, ete.

THEOREM 2 If f g, and h are gambles, and 0 < p < 1; then pf +
(1 —p)h < pg+ (1 — p)h, if and only if F < g.

Proor. Let f, g; fi, g;; and B;, C; be acts, consequences, and parti-
tions such that f and g are among the acts represented by f and g, re-
spectively, with f(s) = f; for & ¢ B; and g(s) = g; for 5 ¢ C,;.

Construet Dy € B; N C; such that P(Dy) = pP(B; N C;), and let
BE)U Di;. Then P(D) = p, P(B;| D) = P(B)), and P(C;| D) =
P(C)).

What is to be proved is, in effect, that f < g given D, if and only if
f < g In view of Theorem 1 it is clear that whether that is so or not
for f and g does not depend on the particular choice of D; so, with an
obvious temporary extension of terminology, it is to be proved thatf < g
given p, if and only if f < g.

If f=g given a for every 0 < a < 1, there i nothing to prove.
Otherwise it can be assumed without loss of generality that, for some
ag, | < g given ay.

In view of Theorem 272, f a4+ 8 <1, f > g given o, and f > g
given §; then f > g given (a + 8), and similarly f > g given /2.

Making use of P6 and Theorem 2.7.2, it can easily be shown that, for
any o sufficiently close to ag, f < g given a.

The preceding three paragraphs imply that, in the case at hand,
f<ggivenaforeverya, 0 <a<1. &

TaeoREM 3 If f<g and 0 <e<p=<1, then pf + (1 — p)g <
o+ (1 — o)g.

Proor. In view of the immediately verifiable identities,
pf+ (1 —plg=p—o)f+[1l —(p—a)] X

o (1 = p) ]
f ;
{l—{p—a] TG -aF

(4)

of+(l-—ag=(p—ag+[l—(p—0a]X
{ 4 (1 — p)
1_

f »
-0 T1-G-9"
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this theorem is a special case of Theorem 2; unless p = 1, and ¢ = 0,
in which case it is trivial. @

TrEOREM 4 If fy <# and £ < g < f,, then there is one and only
one p such that of; + (1 — p)fs = g

Proor. It follows immediately from Theorem 3 and the principle of
the Dedekind cut t that there i3 one and only one py such that

eh +(1—eo)fh<g i o>p

(5) .
afi + {1 — )by > g, if & < py.

According to (5), no number, except possibly pg, can satisfy the equiv-
alence demanded by the theorem.

Finally, using (5) and P6 (much as it was used in the proof of Theo-
rem 2), it follows that py does indeed satisly the equivalence, %

3 WUtiility, and preference among gambles

The idea of utility can most conveniently be introduced in connee-
tion with gambles or, equivalently, acts that with probability one are
confined to & finite number of consequences, thus: A utility is a funetion
U associating real numbers with consequences in such a way that, if
f = Zp;f;and g = Zajg;; then f < g, if and only if Zp,U(fy) < 23U (gy).
Writing U[f] for Zp;U(f;), the condition takes the form U{f] < Ulgl.
Similarly, it is convenient to understand that, for an act f,

(1) Ulf] = E(U(®)).

In this notation the following obvious theorem gives a slightly different
characterization of utility.

TaEOREM 1 A real-valued function of consequences, U, is a utility;
if and only if f < g is equivalent to Ulf] £ Ulgl, provided f and g are
both with probability one confined to a finite set of consequences,

Do the postulates thus far assumed guarantee that any utilities exist
at all? Can Theorem 1 be extended to an even wider class of acts?
Does a great diversity of utilities exist, or does the relation < practi-
cally determine the funetion U? These questions, here mentioned in
the order in which they most naturally arise, are manifestly of great
importance in understanding utility. For technieal reasons, they will

t Ci., if necessary, any introduction to the theory of the real numbers for explans-
tion of this prineiple, e.g., Chapter 11 of [(G3].
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be answered in & different order—the third followed by the first in this
section, and the second in the next section.

If there is a utility at all, there is surely more than one, because a
utility plus a eonstant and a utility times a positive constant are also
obviously utilities; thus:

Tueorem 2 If U is a utility, and p, ¢ are real numbers with » > 0;
then U’ = pU + # is also a utility.

Cororrary 1 If there exists a utility, and if f < g; then there ex-
ists a utility U for which U{f) and U(g) are any preassigned pair of
numbers, provided U(f) < Ulg).

Theorem 2 says that any increasing linear function of a utility is a
utility. The next theorem says that, conversely, any two utilities are
necessarily increasing linear functions of one another,

TaHEOREM 3 If U and U’ are utilities, there exist numbers p and ¢
guch that U' = pU + o, p > 0.

Proor. The first step of the proof will be to demonstrate the fol-
lowing identity for the two utilities U and U’ and for any three conse-
quences f, g, h.

i 1 1

(2) Uiy Ulg Ul |=0.
uvr) Ulg) U'h)

If any two of the consequences f, ¢, h are equivalent, two columns of
the determinant in question are equal, and therefore the determinant
vanishes. It can be assumed, then, that no two of f, g, and A are equiv-
alent; and there is no loss in generality, as may be seen by permuting
columns, in assuming f < g < hA. Theorem 2.4 now permits the con-
clusion that there is a p such that of 4+ (1 — p)h = g. Therefore,

1=pl + (1 —p)
(3) Ulg) = oU(f) + (1 — p)U(K)
U'lg) = oU'(f) + (1 — p)U'(R).

Thus the middle column of the determinant is linearly dependent on
the other two, so the determinant vanishes, as was asserted.

Now let ¢ and h be any fixed pair of consequences such that g < k,
the existence of such a pair being assured by P5. Equation (2) can be
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successively rewritten, where f is an arbitrary consequence, thus:
(4) HU@U'h) — URU (@] — UNIU'R) — U'lg)]

+ U'(N)IUR) — Ulg)] = 0,

vl - U@, U@U® - UHU)
5 U{f) = U{f) — '
@ VO =Tn e T T tw-vw

which proves the theorem; for U’(h) — U’(g) and U(h) — Ulg) are
both positive. @

Cororrary 2  If U and U’ are utilities such that, for some g < A,
Ulg) = U'(g) and U(k) = U'(h); then U and U’ are the same, that is,
for every f, U(f) = U'(f).

To summarize, if there is a utility at all, there are an infinite number,
but the array of utilities is not complicated; for all can be generated
from any one by increasing linear transformations.

Turn now to the question of existence.
THEOREM 4 There exists a utility.

Proor. Von Neumann and Morgenstern prove essentially this theo-
rem, a5 well as the preceding one, in the appendix of [V4]. The following
proof is theirs, expressed, as the teacher used to say, in my own words.

For this proof only, certain special nomenclature is infroduced. A
set of gambles F is convex; if and only if, for every £, geFand 5, 0 < p
<1, of+ (1 — p)g ¢ F. An interval I of gambles is the set of all gam-
bles f such that, for some fixed g and & (which determine the interval),
g < f<h A hyper-utility V on a convex set F is a real-valued fune-
tion of the gambles of F, such that f < g, if and only if V{f) < Vi(g),
and such that V(ef + (1 — p)g) = pV(F) + (1 — p)V(g).

The following remarks about this special nomenclature are obvious
and will be repeatedly used in the proof, without explicit reference.
The set of all gambles is convex, The intersection of two convex sets
is convex. Every interval is convex. There i8 an interval containing
any finite set of gambles, If there is a hyper-utility on the set of all
gambles, it is a utility when confined to eonsequences.

By the same method that led to the proofs of Theorems 2 and 3,
if there is a hyper-utility on F containing g and h, with g < h, then there
is one and only one hyper-utility V on F such that V(g) = 0 and V{h)
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If I is the interval determined by g < h, then, according to Theorem
2.4, there is for every f in | 4 unique number, call it V(f), such that

(6) f=(1—-V(hg+ V(hHa
By repeated use of Theorem 2.2, it follows for any £, ¥ ¢ I that
()  of+ (1= p)f =p[(1 — V(g + V(OA|
+ (1 = p){(1 = V(F)g + V(F)h)
= {1l = V(A + A - ) V(F)llg
+ V() + (1 = p)V(F)IA,

so V is a hyper-utility on the convex set I

From here on in this proof, let g, h be a fixed pair of consequences with
g < h. Making use of the preceding two paragraphs, there is a unique
hyper-utility assigning the values 0 and 1 to ¢ and A, respectively, on
any one interval containing g and A. The intersection of two such in-
tervals 18 a convex set containing g and h, and on the intersection the
hyper-utilities associated with the two intervals are both hyper-utilities
attaching 00 and 1 to g and A, respectively; they must, therefore, be
equal to one another on the intersection.

Any gamble f is an element of some interval containing ¢ and h,
Let V(f) be the common value assigned to f by all the hyper-utilities
that are defined on intervals containing f, g, and & and that assign the
values 0 and 1 to g and A, respectively. Since there is always at least
one such interval for any gamble f, the function V is defined for all

gambles,
The proof will be complete when it is shown that V is a hyper-utility

for the convex set of all gambles. Let f and  be any two gambles and
p & number, 0 € p £ 1. There is an interval containing f, ¥, g, h, and
of + (1 — p)f. In that interval the function V is a hyper-utility.
Therefore V(pf 4 (1 — p)F) = pV(F) + (1 — p)V(F) and V(f) < V(F),
Handonlyif F< F. @

4 The extension of utility to more general acts

The requirement that an act have only a finite number of conse-
quences may seem, from a practical point of view, almost no require-
ment at all. To illustrate, the number of time intervals that might
possibly be the duration of a hwnan life can be regarded as finite, if
you agree that the duration may as well be rounded to the nearest
minute, or second, or microsecond, and that there is almost no possi-
bility of its exceeding a thousand years. More generally, it is plausible



54] THE EXTENSION OF UTILITY TO MORE GENERAL ACTS TV

that, no matter what set of consequences is envisaged, each conse-
quence can be practically identified with some element of a suitably
chosen finite, though possibly enormous, subset. It might therefore
seem of little or no importance to extend the concept of utility to acts
having an infinite number of consequences. If that argument were
valid, it could easily be extended to reach the conclusion that infinite
sets are irrelevant to all practical affairs, and therefore to all parts of
applied mathematics. But it is one of the most profound lessons of
mathematical experience that infinite sets, tactfully handled, can lead
to great simplifieation of situations that could, in principle, but only
with enormous difficulty, be treated in terms of finite sets. How diffi-
eult it would be to study geometry if one made at the outset the “sim-
plifying assumption” that to all intents and purposes at most 10'9%
points in space can be diseriminated from one another! Again, it is
generally more convenient and fruitful to think of the annual cash m-
come of an individual or firm as a continuous variable with an infinite
number of possible values than as a discrete variable confined to some
large finite number of values, even if it is known that the income must
be some integral number of cents less, say, than 10'°,

One way to extend the concept of utility to acts with an infinite
number of consequences would be to postulate: If Ulf] and Ulg] both
exist (the values 4o and —o being regarded as possible); f < g, if
and only if U[f] < Ulgl. I see no serious objection to making this as-
sumption outright, though it might be complained that the assumption
is motivated more by general mathematical intuition and experience
than by intuitive standards of consistency among decisions, which I
have tried to take as my sole guide thus far. A statement almost as
strong as the one in question can, however, be derived on adjoining a
new postulate, P7, more in the spirit of P1-6. That rather technical
program will be carried out in the next several paragraphs. Those not
interested can safely skip to the paragraph following Corollary 1 on
page 80.

Suppose that every possible consequence of the act g is at least as
attractive to the person as the act f considered as a whole; then it seems
to me within the spirit of the sure-thing principle to conclude that
f < g; the same might as fairly have been said for the relations >, and
also for the two relations < given B and > given B. This idea is for-
malized in the following postulate, which, according to the conven-
tions of mathematical double-talk, is to be interpreted as two proposi-
tions—one having < and the other > throughout,

P7 Iff < (2)g(s) given B for every 2 ¢ B, then f < (2) g given B,
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Attention has been called to the mathematically useful fact that, if
P1-6 apply to a relation <, then they also apply to any relation <
given B, provided B is not null. It is obvious that the same is true for
P1-7, a fact that will be used often. It is also noteworthy that P1-7
obviously imply the propositions that arise if in them every instance
of the sign < is replaced by > and every instance of > is replaced by
<. Therefore in any deduction from P1-7 every instance of the signs
< and > can be reversed to produce a deduction that may be called
the symmetric dual of the original deduction. This remark, a legitimate
child of the principle of insufficient reason, has not been important
heretofore, because almost all deduetions thus far made have been their
own symmetrie duals. Since that will not be so of some of the lemmas
in the present section, much needless writing and thinking can be saved
by agreeing at the outset that, once a result is proved, it and its sym-
metric dual may be used as if both had been explicitly proved.

Before going to work with P7, some may wish to see an example of
a mathematieal structure satisfying P1-6 but not satisfying P7, More-
over, understanding of such an example will do much to clarify the uses
to be made of P7. To construet the example, begin by letting S be a
set carrying a finitely additive probability measure P under which S
ean be partitioned into subsets of arbitrarily small probability. Let
the set of consequences be the half-open interval of numbers 0 < f < 1.
Let U(f) = f, Ulf] = E(f), and

(1) Vif] = l'_u:nuPU{#] 21— ¢f.

Since the probability in (1) decreases with ¢, there is no guestion about
the existence of the limit. Now let WIf] = Ulf] + V[f], and define
f < g to mean that W[f] < Wlg]. Checking postulates P1-6, it will
be found that the < thus defined satisfies them all, and that what has
here been called U(f) is indeed a utility for <. But if, for example,
there is an f such that Ulf] = V[f] = §, PT7 is violated, as can be
by comparing f to the act that, for each s, takes as value the maximum
of 2 and f(s). Whether there can be such an f, may, so far as I know,
depend on the choice of S and P. But, if the positive integers are taken
as S, and P is so chosen that though the probability of any one integer
is 0 the probability of the set of even integers is 1/2, a possibility as-
sured by the note to Seetion 3 of Chapter II on p. 231 of [B4], the fune-
tion equal to 0 at the odd integers and equal to (1 — 1/n) at each even
n is such an f. Finite, as opposed to countable, additivity seems to be
essential to this example; perhaps, if the theory were worked out in a
countably additive spirit from the start, little or no counterpart of P7
would be necessary.*

+ Fishburn (1070, Exercise 21, p. 213) has suggested an appropriate weak-
ening of P7,



54] THE EXTENEION OF UTILITY TO MORE GENERAL ACTs 70

Several lemmas depending on P7 are now to be proved preparatory
to proving that U[f] governs preference for a very large elass of acts.
It is to be understood throughout the section that U is any fixed utility.
The truth of each lemma is intuitively clear, in the sense that each could
justifiably be accepted as a postulate if need be. Sinee they are also
easy to prove and of secondary interest, condensed proofs will suffice,

LEesaa 1 If, for every consequence h, f < A, andg < A;thenf = g.

Proor. Consider in the light of P7 that f < g{s) and g < f(s) for
every s. &

Lmmma 2 If there exists a consequence fy such that f < f;, and if
U(f(s)) € Up for every s, then there exists a gamble g such that f < g
and Ulg] < Us.

Proor. If U(fy) < Uy, then g can be taken to consist of f; alone.
Otherwise, let f; be any consequence such that U(f)) < U, and let g
be the unique mixture of fp and f; such that U(g) = Uy. #

LEvmsa 3

Hyp, 1. The B/s, i = 1, :++, n, are & partition, and the U,s are
corresponding numbers.

2. f iz an act such that U(f(s)) < U, for s s B,

3. fis a gamble such that f < f.

Proor. If the lemma were false, it would be false even for some f < f.
Then it may be assumed, modifying f if need be by means of PG and
Lemma 1, that there exists for each 1 an f; such that f < f; given B,.
Now, in view of Lemma 2, there exists for each ¢ a g; such that f < g,
given B; and Ulg;] < U;. Let g = ZP({B;}g;, and observe that f <
f < g. Thereiore, Ulf] < Ulg] = ZP(B)U(g:) < ZP(BAU:. ®

An act will be called bounded if its utility is, according to ordinary
mathematical usage, an essentially bounded random wvariable; the no-
tion is put in & more formal and self-contained way as follows: A bounded
act is an act f such that, for some two numbers Uy and Uy, P{U,; <
U{f(s)) < Ui} = 1. The definition iz clearly not dependent on the
choice of U.

TeEEOREM 1 If f and g are bounded, then f < g, if and only if
Ulf] < Ulgl.

Proor. If there exist ¢ and A such that ¢ < f < h, then there is,
by Theorem 2.4, a mixture f of g and A such that f = f. The null event
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on which U(f(s)) is not between Uy and U; may as well be disregarded;
the rest can be partitioned into n + 1 events B; defined by the condition
that seB; if and only f V; < U(fls)) <V, i=1, -+, n+1,
where

@) V,--{(l—-t Uﬂ+1U,}- i=0 - n+ 1
il T

Applying Lemma 3 and its symmetric dual,

(3) ZViaP(By) < Ulf] < ZV.P(B,).

Similarly, according to Exercise 3 of Appendix 1,

(4) ZVi P(B;) < Ulf] < ZViP(B)).

Therefore

) | Ul - Ulf)| < (Vi = Vi)PB) = (Us — Ug)/n,

whence [7(f) = U(f).

To consider the remaining case, suppose that the bounded act f ex-
ceeds (is exceeded by) every consequence; call it for the moment big
(little). According to Lemma 1, all big (and, dually, all little) acts are
equivalent to one another. Furthermore, it is, for example, easily seen
that, if an act is big, then for ¢ > 0,

(8) P{U(f(s)) > sup U(f) — ef =1

(SBome may be more familiar with the notation “LUB"” and “GLB,”
read “least upper bound” and “greatest lower bound,” than with the
corresponding “sup” and “inf,” read “supremum’ and “infimum.” If
even these older terms are not familiar, see Exercise 4 of Appendix 2.)
Therefore, if there are big (little) acts, they all have the same expected
utility, namely sup U(f) (inf U'{(])).

Suppose now that f < g. It is possible that f and g are both little;
that f is little, and g is equivalent to some gamble; that f is little and
g big; that f and g are each equivalent to some gamble; that f is equiva-
lent to some gamble, and g is big; or, finally, that they are both big.
In each of these cases, a simple argument shows that U[f] < Ulgl.
The converse arguments are similar. 4

CoroLLARY 1 If f and g are bounded, and P(B) > 0, then f < g
given B, if and only if E(U(f) — U(g) | B) < 0.
It would be possible to explore unbounded acts for which expected

utility exists to see whether expected utility governs preferences among
even such acts under postulates P1-7 or under some extension of them:*

+ Peter Fishburn (1970, pp. 194, 208-207) and I have since diseovered to
my surprise that these postulates imply bounded utility, which puts the next
several paragraphs in a new light.
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1 do not think, however, that the question 1z sufficiently interesting to
warrant attention here, especially since there is some reason, first stated
by Gabriel Cramer in a letter partially reprodueed in [B10], to postulate
that there are upper and lower bounds to utility, in which case all acts
would necessarily be bounded.

Even without P7, the postulates imply, in the following sense, that
no gamble has infinite or minus infinite utility.

An act f has infinite (minus infinite) ubality; if and only if, for some
g < (>)h and for every ¢ > (), there is a B with P(B) < e and such
that the act equal to f on B and to g on ~B exveeds (is exceeded hy) A,
A gamble or a consequence would be said to have infinite (minus in-
finite) wtility, if one of the acts corresponding to i1t had infinite {minus
infinite) utility.

Indeed, Theorem 2.4, a deduction from P1-6, obviously implies that
there are no infinite or minus infinite gambles or consequences. [t
may, however, be mentioned that Pascal held that, in just the sense
at hand, salvation is an infinite consequence ([P2], pp. 189-191). Again,
it is often said, in effect, that the utility to a person of immediate death
is a consequence of minus imfinite utility, but casual observation shows
that this is not true of anyone—at least not of anyone who would eross
the street to greet a friend. In the same vein, medicine often gives lip
service to the idea that the death of a patient is of minus infinite utility,
and, of course, doctors do go to great lengths to keep their patients
alive; but a doctor who took the idea too seriously would make a nui-
sance of himself and soon find himself with no patients to treasure.

If the utility of consequences is unbounded, say from above,f then,
even in the presence of P1-7, acts (though not gambles) of infinite
utility can easily be constructed. My personal feeling is that, theo-
logical questions aside, there are no acts of infinite or minus infinite
utility, and that one might reasonably so postulate, which would amount
to assuming utility to be bounded.

Justifiable though it might be, that assumption would entail a cer-
tain mathematical awkwardness in many practical contexts. For ex-
ample, as will be discussed at greater length in Chapter 15, it sometimes
seems reasonable to suppose that the penslty for acting as though a
particular unknown number were @ instead of its true value, g, is propor-
tional to 8® = (u — @)°. But, if the possible values of x are unbounded,
then so are the possible values of &, so utility is here taken to be un-
bounded. On close serutiny of such an example one always finds that

t That is, if, for every V, there is a consequence f such that V < U{f). Ths

manner of speaking is permissible; because in view of Theorem 3.3, if one utility is
bounded, all are.
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it is not really reasonable to assume the pensalty even roughly propor-
tional to 8° for large values of 8%, but rather that large values are so im-
probable that the error made in misappraising the penalty associated
with them is negligible compared to the saving in simplicity resulting
from the misappraisal. If the assumption of bounded utility were made
part of the theory of personal probability, then any example in which
unbounded utility is used for mathematical simplicity would be in con-
tradiction to the postulates. I propose, therefore, not to assume bounded
utility formally, but to remember that problems involving unbounded
utility are to be handled cautiously.

To take stock of the chapter thus far, utility having been established,
it is now superfluous to consider that consequences may be of all sorts,
gince the postulates imply that in virtually every context a consequence
is adequately characterized by its utility, some one utility funection
having been chosen from the linear family of possibilities. Therefore,
unless the contrary is clearly indicated, f, g, and h will henceforth mean
not exactly consequences in the sense used to date, but rather real
numbers measuring utility in units to be called utiles. Curreﬂ]:-uudm;l}r,
an act f will henceforth be understood to be & real-valued random varia-
ble. The entire theory of preference, at least for bounded acts, can
now be summarized by the following résumé:

R fﬂggi\renﬂ,ifn.ndq}nlyifP{H}=[},an{f—g|B]ED.

From now on, though not formulated as a postulate, it is to be assumed
without further quibbling that R holds, provided only that E(f) and
E(g) exist and are finite; no attempt will be made to compare acts for
which the expected value does not exist or is infinite.

If a person is free to decide among a set F of acts, he will presumably
choose one the expectation of which is »(F), where

(7) v(F) = sup E(f),
fe

provided that such a one exists. This provision must be mentioned,
even though a set F for which #(F) = « will, by convention, not be
considered to give rise to a valid decision problem; for, if F is infinite in
number, there may be no act in F with expectation quite as great as
v(F). Nonetheless, v(F) may, in a sense, be regarded as the value or
utility of the set of acts F, as is discussed in the penultimate paragraph
of § 6.5.

5 Small worlds

Allusion was made in the penultimate paragraph of § 2.5 to the prac-
tical necessity of confining attention to, or isolating, relatively simple



5.5] SMALL WORLDS 83

situations in almost all applications of the theory of decision developed
in this book. As was mentioned there, I find it difficult to say with
any completeness how such isolated situations are actually arrived at
and justified. The purpose of the present section is to take some steps
toward the solution of that problem or, at any rate, to set the problem
forth as clearly as I can. This section, though important for a eritical
evaluation of the thesis of this book, is not essential to & casual reading,

Making an extreme idealization, which has in prineiple guided the
whole argument of this book thus far, a person has only one decision
to make in his whole life. He must, namely, decide how to live, and
this he might in principle do once and for all. Though many, like my-
self, have found the concept of overall decision stimulating, it is cer-
tainly highly unrealistic and in many contexts unwieldy.t Any elaim
to realism made by this book—or indeed by almost any theory of per-
sonal decision of which I know—is predicated on the idea that some of
the individual decision situations into which actual people tend to sub-
divide the single grand decision do recapitulate in microcosm the mech-
anism of the idealized grand decision. One application of the theory
of utility to overall decisions has, however, been attempted by Milton
Friedman in [F11].

The problem of this section is to say as clearly as possible what con-
stitutes a satisfactory isolated decision situation. The general method
of attack I propose to follow, for want of a better one, is to talk in terms
of the grand situation—tongue in cheek—and in those terms to analyze
and dizcuss isolated decision situations. I hope you will be able to
agree, a3 the discussion proceeds, that I do not lean too heavily on the
concept of the grand decision situation.

Consider a simple example. Jones is faced with the decision whether
to buy a certain sedan for a thousand dollars, a certain convertible also
for a thousand dollars, or to buy neither and continue carless. The
simplest analysis, and the one generally assumed, is that Jones is de-
ciding between three definite and sure enjoyments, that of the sedan,
the convertible, or the thousand dollars. Chance and uncertainty are
considered to have nothing to do with the situation. This simple anal-
ysis may well be appropriate in some contexts; however, it is not diffi-
cult to recognize that Jones must in fact take account of many uncer-
tain future possibilities in actually making his choice. The relative

t Unrealistic though the concept is, it would be a mistake, arising out of elliptical
presentation, to suppose that the concept predicates the choice of a completa life-
long policy by new-bom babies. I & person ever reached such a level of maturity
a8 to be able to make a lifelong choice for his life from that time on, he would then
become a person to whom the concept could be literally applied.
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fragility of the convertible will be compensated only if Jones’s hope to
arrange & long vacation in & warm and scenic part of the ecountry ae-
tually materializes; Jones would not buy a car at all if he thought it
likely that he would immediately be faced by a financial emergency
arising out of the sickness of himself or of some member of his family;
he would be glad to put the money into a car, or almost any durable
goods, if he feared extensive inflation. This brings out the fact that
what are often thought of as consequences (that is, sure experiences of
the deciding person) in isolated decision situations typically are in re-
ality highly uncertain. Indeed, in the final analysis, a consequence is
an idealization that can perhaps never be well approximated. I there-
fore suggest that we must expect acts with actually uncertain conse-
quences to play the role of sure consequences in typiecal isolated decision
situations.

Suppose now, to elaborate the example, that Jones is presented with
a choice between tickets in several different lotteries such that, which-
ever he chooses and whatever tickets are drawn, he will win either
nothing, the sedan, the convertible, or a thousand dollars. None of
these four consequences—not even “nothing'—is actually a sure con-
sequence in the strict sense, as I think you will now understand. I
propose to analyze Jones's present decision situation in terms of a
“small world.” The more ecolloquial Greek word, microcosm, will be
reserved for a special kind of small world to be deseribed later. To de-
seribe the state of the small world is to say which prize is associated
with each of the tickets offered to Jones. The small-world acts actually
available to Jones are acceptance of one or another of the tickets.
The generic small-world act is an arbitrary function taking as its value
one of the four small-world consequences according to which small-
world state obtains.

It will be noticed that the small-world states are in fact events in
the grand world, that indeed they constitute a partition of the grand
world. If there are an infinite number of small-world states, as indeed
there must be, if the small world is to satisfy the postulates P1-7, then
the partitic.. in question becomes an infinite partition.f These con-
siderations lead to the following technical definitions,

Let the grand world 8 be, as always, a set with elements s, &', - -+
Thagrmdwﬁcmsmeuweﬂhemkenmbeabuundad

t Technical note: It is mathematically more general and elegant not to insist that
the emall world have states at all, but rather to speak of a special class of events as
small-world events. This class should be closed under complements and finite unions.
In short, the small-world events, and thereby the small world itself, constitute s
Boolean subalgebra of the Boolean algebra of the grand-world events.
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set of real numbers. The grand-world acts are then real-valued fune-

tions f, g, h, ---. The preference ordering between acts is determined
by the condition that f < g if and only if
(1) Ef —-g) <0,

where the expected value indicated in (1) is derived from a probability
measure P characteristic of the grand world or, to be more exact, of
the person’s attitude toward the grand world.

The construction of a small world S from the grand world S begins
with the partition of 8§ into subsets, or small-world slales 5, &, - - (not
necessarily finite in number). Throughout this technical diseussion, it
will be necessary to bear in mind certain double interpretations such
as that § is both an element of 8 and a subset of S. Strictly speaking, a
small-world event B in 8 is a collection of subsets of S and not itself a
subset of S. However, the union of all the elements of B, regarded as
subsets of S, is an event in S; eall it [B].

The small world, as I mean to define it, is determined not only by
the definition of a state, but salso by the definition of small-world con-
sequences. A small-world consequence is a grand-world act. A set P of
grand-world acts, regarded as small-world consequences, is thus part of
the definition of any given small world. It will be mathematically
simplest, and cost little if anything in insight, to suppose that the ele-
ments of F are finite in number. They will be denoted 7, 7, &, -+
and, when the small-world consequence [ is recognized as a grand-world
act, f(s) will denote the grand-world consequence of f at the grand-
world state s.

A small-world act f is, of course, a function from small-world states §
to small-world consequences /. In this isolated technical discussion, we
will hobble along with the notations f(§) for the small-world conse-
quence attached to # by f, and f(s; ) for the grand-world consequence
attached to s by f(5) recognized as a grand-world act. Each small-
world act f gives rise to & unique grand-world act f, defined thus:

(2) f(8) = e f(s; 3(s)),

where #(s) means that small-world state § of which the grand-world
state s is an element.

The distinction between f and f, like some other distinctions I have
thought it worth while to make in the present complicated context, is
perhaps pedantic. At any rate, it is to be understood as part of the
definition of a small world that ¥ < g if and only if # < g, that is, in
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view of (1), if and only if E(f) < E@§). In this connection, it is useful
to note that

(3) E®) = :Zr E}| J(3(s)) = E)P(J(3(s)) = K)
= g E(E| j(3(s)) = BPJ(() = B).

It may be advantageous to review (3), and thereby the whole techni-
cal definition of a small world, in terms of an example. A small-world
act, typified by the purchase of a lottery ticket, amounts to accepting
the consequences of one of several ordinary grand-world acts according
to which element of a partition does in fact obtain. For example, the
participant in & lottery may drive away a car, lead away a goat, face
a firing squad, or remain in the status quo, according to the terms of
the lottery and according to which ticket he has in fact drawn. Letting
the example of the lottery stand for the general situation, the expected
utility of a lottery ticket can be computed by the partition formula
(3.5.3) from the conditional expectation associated with each ticket,
which is what (3) does.

It may fairly be said that a lottery prize is not an act, but rather the
opportunity to choose from a number of acts. Thus a cash prize puts
its possessor in a position to choose among many purchases he could
not otherwise afford. I believe that analysis to be more nearly correct,
but it is more complicated; and, if one thinks of each set of acts made
available by a lottery prize as represented by a best act of that set,
the more complicated analysis seems superfluous, at least in a first
attack.,

A small world is completely satisfactory for the use to which I mean
to put it, if and only if it itself satisfies the seven postulates and leads
to—more technically, agrees with—a probability P such that

(4) P(B) = P((B])
for all B — § and has a utility U such that
(5) U(f) = E(J)

for all fe F. For the present context, call such a completely satisfac-
tory small world a microcosm; if the small world satisfies the postulates,
but does not necessarily admit P as its probability nor U as a utility,
call it a pseudo-microcosm,

To display the circumstances under which a small world is a pseudo-
microcosm, [ shall briefly comment on each of the postulates in the
form given on the end papers of this book, referring to them here as
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P1-7, as opposed to P1-7, to emphasize that they are here being con-
sidered with respect to 8 and F.

P1  Simple ordering.
Automatically satisfied. Indeed it is directly implied by P1.
P2 Conditional preference well defined.
Automatie.
P3  Conditional preference does not effect consequences,
Requires exactly that, for every [, § ¢ F, and B < 8, either:
8. f<ggiven[Bl, ifandonlyif f<§ or
b. h<kgven([B], foreveryh k«PF.

In these inequalities the elements of F are of course interpreted as
grand-world acts.

P4 Qualitative personal probability well defined.
Requires exactly that, if f < § and h5 < hz, where
hg(s) = § for & ¢ [B]

=] forse~{B]"

(6)
ha(s) =§  forse[()

=f forss~{C};

then &'z < h'z, where ¥’z and &'z are defined in terms of J, §, /' < &,
in analogy with (8).
This postulate is automatic in case F has at most two elements.

P5  The person has some definile preference.
Requires | < § for some J, ¢ F.
P6  Partition of worlds info tiny events.

It is clear that this postulate is not automatic, that is, it is not im-
plied by the validity of P1-7 for the grand world. It is not even im-
plied by P1-7 together with P1-5, though in the presence of all these
P6 could undoubtedly be weakened, There seems to be little to gain
in the present context by reducing P6 to such minimal terms, nor by
expressing it, as P1-5 have been expressed, in -world terms alone;
for P6 does not lend itself easily to such treatment, though it would be
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easy to decide in any instance whether P6 obtained without undue
reference to the grand world.

P7  Strong form of sure-thing principle.

Automatie, in view of the explicit assumption that F has only a
finite number of elements.

To summarize, a small world is a pseudo-microcosm, if and only if
it satisfies P3—6. The possibility of enlarging an arbitrary small world
in such a way as to satisfly those conditions has already been implicitly
discussed in connection with P3-6. To recall the arguments that were
adduced, one might review the example about the egg in §3.1, and
the further discussion of that example in the opening paragraph of
§3.2; the remark in § 3.2, introducing P5; and the example about the
coin following PG in § 3.3.

It is encouraging to possess the arguments just cited tending to show
that any small world can without overwhelming difficulty be embedded
in & somewhat larger small world that is a pseudo-microcosm. A pseudo-
mierocosm is, however, completely satisfactory, only if it is actually a
microcosm, that is, only if it leads to a probability measure and a
utility well articulated with those of the grand world, The problem of
deciding under what circumstances that oceurs i much facilitated by
the fact that the probability measure and a utility of a pseudo-miero-
cosm can be written down explicitly, as the next few paragraphs show.

To study the problem, suppose the small world is a pseudo-miero-
cosm. Then, in view of P5, let §, & be elements of F such that § < &,
and let

Eth-g|IB
™ QB = 2L 21

E(h = §)

P([B])

= E-\(f - §) f {h(s) — g(s)} dP(s).
[&]

By using P3 to check the positivity, it is easily verified that @ is a prob-
ability measure on 8. The probability measure @ agrees with the re-
lation < between small-world events, which is easily verified on re-
writing (3) for the special small-world act f5 that takes the value A
for 5 « B and § for § ¢ ~B thus:

(8) E#s) = E(k|[B)P(B)) + E@@| ~B)P(~(B])
= E(h — g| [BDP(B]) + E)
= E(h — $)Q(B) + E(g).
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Since § and & are essentially arbitrary, there are many ways to con-
struet a probability measure that agrees with the relation < between
small-world events, but, in the presence of P1-6, all of them must (in
view of Corollary 3.3.1) be the same as . That consideration leads to
the formula

(9) E(f — [ IB)P(IB)) = E(J — ")Q(B)

forall/, /"¢ F and B c 8.
Using (9) and recalling that U(f) has been defined as E(f), (3) can
be rewritten thus:

(10) Ed = E@ + ; Ek — g | JG(s) = BPJE@®) = k)
= .;E Uk)QUGE) = k).

The question whether a given pseudo-microcosm is really a miero-
cosm is the question whether Q(B) = P([B]) and whether U is a utility
for the pseudo-microcosm. The answer to the second part is immediate
and, I think, somewhat surprising, for (10) shows that for any pseudo-
microcosm U is indeed a utility.

Unfortunately, the condition Q(B) = P([B]) is not also automatic.
The possibility of its failing to be satisfied is illustrated by the following
simple mathematical example. Let S be the unit square 0 < z, y < 1,
and let

i 1
a1 E(f) = f f f(z, y) dz dy.
(1] 7]

It is of no real moment that the integral in (11), if understood in the
Lebesgue or Riemann sense, is not defined for all bounded funections.
Let the elements of S be the vertical line segments, * = constant.
Finally, suppose that the elements of F consist of the function zero and
any finite number of non-negative multiples of a fixed positive function

h = h. It is easy to verify that S as thus defined is a pseudo-microcosm
and that

(12) QB) = L 1) d
where \

[ he, vy
(13) g(z) = —s

f hiz, y) dx dy
I ]
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Unless q is 1 for every z’, which will not at all typieally be the case, 8
i8 not really a microcosm.

The general condition that a pseudo-microcosm be a microcosm—i.e.,
that Q(B) = P([B])—is evidently, in view of (8),

(14) EJ-7|I1B) = EG -7

for every f, /' ¢« F and every B for which P([B]) > 0. Incidentally,
that condition alone practically implies that & small world 5, not néces-
sarily assumed to be a pseudo-microcosm, is & real microcosm. More
exactly, it implies all the postulates P1-7, except P6; and it implies
that the probability measure P agrees with the relation < between
small-world events. Also, if a emall world is a pseudo-microcosm, it is
enough that (14) should hold for some pair of functions for which the
right-hand side of the equation does not vanish.

Equation (14) is, however, unsatisfactory in that it seems ineapable
of verification without taking the grand world much too serigusly,
Some consolation may derive from the fact that if f and J* sre constants
they automatically satisfy (14). Two such absolute, or grand-world,
consequences would suffice, for, as has just been remarked, it is suffi-
gient that (14) be satisfied for two materially different small-world
consequences, in the presence of P1-7 (which are verifiable without
any detailed knowledge of the grand world). It must, however, be ad-
mitted, as has already been mentioned, that the very idea of a grand-
world consequence takes the grand world pretty seriously—a point
foreed into my reluctant mind by a conversation with Francesco Bram-
billa.

I feel, if I may be allowed to say so, that the possibility of being taken
in by a pseudo-microcosm that is not a real microcosm is remote, but
the difficulty I find in defining an operationally applicable eriterion is,
to say the least, ground for caution.

There certainly seem to be cases in which one could confidently as-
sume (14), though thus far formal analysis of the source of such se-
curity escapes me. Consider, for example, a lottery in which numbered
tickets are drawn from a drum. It seems clear that for an ordinary
person the outcome of the lottery is utterly irrelevant to his life, except
through the rules of the lottery itself. In other terms equally loose,
the value of a thousand dollars, or of a car, to a person would not ordi-
narily depend at all on what numbers were drawn in a lottery, unless
the person himself (or perhaps some other person or organization with
whom he had some degree of contact) held tickets in the lottery. A
more precise formulation, which does indeed imply (14), is that the
events that represent the outcome of the lottery are all statistieally



5.8] HISTORICAL AND CRITICAL COMMENTS ON UTILITY a1~

independent of the grand-world acts, or functions, that typically enter
as prizes in a lottery. This suggests once more that it would be desir-
able, if possible, to find a simple qualitative personal description of in-
dependence between events. (Compare the first paragraph after
(3.5.2).)

6 Historical and critical comments on utility

A casual historical sketch of the concept of utility will perhaps have
some interest as history. At any rate, most of the critical ideas per-
taining to utility that I wish to discuss find their places in such a sketch
as conveniently as in any other organization I ean devise. Much more
detailed material on the history of utility, especially in so far as the
economics of risk bearing is concerned, is to be found in Arrow’s review
article [A6]. Stigler’s historical study [S318] emphasizes the history of
the now almost obsolete economic notion of utility in riskless situations,
a notion still sometimes confused with the one under discussion.

Az was mentioned in § 4.5, the earliest mathematical studies of prob-
ability were largely concerned with gambling, particularly with the
question of which of several available cash gambles is most advanta-
geous. Early probabilists advanced the maxim that the gamble with
the highest expected winnings is best or, in terms of utility, that wealth
measured in cash is a utility function. Some sense can be seen in that
maxim, which will here be called by its traditional though misleading
name, the principle of mathematical expectation. First, it has often been
argued that the principle follows for the long run from the weak law of
large numbers, applied to large numbers of independent bets, in each
of which only sums that the gambler considers small are to be won or
lost. Becond, Daniel Bernoulli, who, in [B10], was one of the first to
introduee a general idea of utility corresponding to that developed in
the preceding three sections, made the following analysis of the prinei-
ple, which justifies its application in limited but important contexts.
If the eonsequences [ to be considered are all quantities of cash, it is
reasonable to suppose that U(f) will change smoothly with changes in
J. Therefore, if a person’s present wealth is f;, and he contemplates
various gambles, none of which can greatly change his wealth, the
utility funection can, for his particular purpose, be approximated by its
tangent at fy, that is,

(1 U(f) = Ulfo) + (f — fdU'(Ju),

a linear function of f. Since a constant term is irrelevant to any com-
parison of expected values, the approximation amounts to regarding
utility as proportional to wealth, that is, to following the principle of
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mathematical expectation, Bo far as I know, the only other argument
for the principle that has ever been advanced is one concerning equity
between two players. As Bernoulli says, that argument is irrelevant at
best; and neither of the relevant arguments justifies categorial accept-
ance of the principle. None the less, the principle was at first so cate-
gorically accepted that it seemed paradoxical to mathematicians of the
early eighteenth century that presumably prudent individuals reject
the prineiple in certain real and hypothetical decision situations.

Daniel Bernoulli (1700-1782), in the paper [B10], seems to have
been the first to point out that the prineiple is at best a rule of thumb,
and he there suggested the maximization of expected utility as a more
valid prineiple. Daniel Bernoulli's paper reproduces portions of a let-
ter from Gabriel Cramer to Nicholas Bernoulli, which establishes
Cramer's chronological priority to the idea of utility and most of the
other main ideas of Bernoulli’s paper. But it is Bernoulli’s formulation
together with some of the ideas that were specifically his that became
popular and have had widespread influence to the present day. It is
therefore appropriate to review Bernoulli’s paper in some detail.

Being unable to read Latin, I follow the German edition [B11].

Bernoulli begins by reminding his readers that the principle of mathe-
matical expectation, though but weakly supported, had theretofore
dominated the theory of behavior in the face of uncertainty. He says
that, though many arguments had been given for the principle, they
were all based on the irrelevant idea of equity among players. It seems
hard to believe that he had never heard the argument justifying the
prineiple for the long run, even though the weak law of large numbers
was then only in its mathematical infancy. Ars Conjectandi [B12], then
a fairly up-to-date and most eminent treatise on probability, does seem
to give only the argument about equity, and that in countless forms.
This treatise by Daniel’s uncle, Jacob (= James) Bernoulli (1654-1705),
incidentally, contains the first mathematical advance toward the weak
law, proving it for the special case of repeated trials.

Many examples show that the principle of mathematical expecta-
tion is not universally applicable. Daniel Bernoulli promptly presents
one: “To justify these remarks, let us suppose a pauper happens to ae-
quire a lottery ticket by which he may with equal probability win
either nothing or 20,000 ducats. Will he have to evaluate the worth
of the ticket as 10,000 duecats; and would he be acting foolishly, if he
sold it for 9,000 ducats? ™

Other examples oceur later in the paper as illustrations of the use
of the utility coneept. Thus a prudent merchant may insure his ship
against loss at sea, though he understands perfectly well that he is
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thereby inecreasing the insurance company's expected wealth, and to
the same extent decreasing his own. Buch behavior is in flagrant vio-
lation of the principle of mathematical expectation, and to one who held
that principle categorically it would be as absurd to insure as to throw
money away outright. But the principle is neither obvious nor de-
duced from other principles regarded as obvious; o it may be challenged,
and must be, because everyone agrees that it is not really insane to
insure.

Bernoulli cites a third, now very famous, example illustrating that
men of prudence do not invariably obey the principle of mathematical
expectation. This example, known as the 8t, Petersburg paradox (be-
cause of the journal in which Bernoulli's paper was published) had ear-
lier been publicized by Nicholas Bernoulli,t and Daniel acknowledges
it as the stimulus that led to his investigation of utility. Suppose, to
state the St. Petersburg paradox succinctly, that a person eould choose
between an act leaving his wealth fixed at its present magnitude or one
that would change his wealth at random, increasing it by (2® — f) dol-
lars with probability 27" for every positive integer n. No matter how
large the admission fee f may be, the expected income of the random
act is infinite, as may easily be verified. Therefore, according to the
principle of mathematical expectation, the random act is to be pre-
ferred to the status quo. Numerical examples, however, soon convinee
any sincere person that he would prefer the status quo if f is at all
large. If f iz $128, for example, there is only 1 chance in 64 that a
person choosing the random act will so much as break even, and he
will otherwise lose at least $64, a jeopardy for which he can seek com-
pensation only in the prodigiously improbable winning of a prodigiously
high prize.

Appealing to intuition, Bernoulli says that the cash value of a per-
son’s wealth is not its true, or moral, worth to him. Thus, according to
Bernoulli, the dollar that might be precious to a pauper would be nearly
worthless to a millionaire—or, better, to the pauper himseli were he to
become a millionaire. Bernoulli then postulates that people do seek
to maximize the expected value of moral worth, or what has been called
moral expectation.

Operationally, the moral worth of a person’s wealth, so far as it con-
cerns behavior in the face of uncertainty, is just what I would call the
utility of the wealth, and moral expectation is expectation of utility.

t Daniel refers to this Nicholas Bernoulli as his uncle, but, in view of dates men-
tioned in the last section of Daniel's paper and the genealogy in Chapter B of [B9],
I think he must have meant his elder cousin (1687-1759), perhaps using “uncle' as
a terin of deference.
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It seems mystical, however, to talk about moral worth apart from
probability and, having done so, doubly mystical to postulate that this
undefined quantity serves as a utility. These obvious eriticisms have
naturally led many to discredit the very idea of utility, but §§ 24
show (following von Neumann and Morgenstern) that there is a more
cogent, though not altogether unobjectionable, path to that concept.
Bernoulli argued, elaborating the example of the pauper and the
millionaire, that & fixed increment of cash wealth typically results in
an ever smaller increment of moral wealth as the basic cash wealth to
which the increment applies is increased. He admitted the possibility
of examples in which this law of diminishing marginal utility, as it has
come to be called in the literature of economics, might fail. For ex-
ample, a relatively small sum might be precious to a wealthy prisoner
who required it to complete his ransom. But Bernoulli insisted that
such examples are unusual and that as a general rule the law may be
assumed. In mathematical terms, the law says that utility as a fune-
tion of money is a concave (i.e., the negative of a convex) function.f
It follows from the basic inequality concerning convex functions (Theo-
rem 1 of Appendix 2) that a person to whom the law of diminishing
marginal utility applies will always prefer the status quo to any fair
gamble, that is, to any random act for which the change in his expected
wealth is zero, and that he will always be willing to pay something in
addition to its actuarial, or expected, value for insurance against any
loss to himself. The law of diminishing marginal utility has been very
popular, and few who have considered utility since Bernoulli have dis-
carded it, or even realized that it was not necessarily part and parcel
of the utility idea. Of course, the law has been embraced eagerly and
uncritically by those who have a moral aversion to gambling.
Bernoulli went further than the law of diminishing marginal utility
and suggested that the slope of utility as a function of wealth might,
at least as a rule of thumb, be supposed, not only to decrease with, but
to be inversely proportional to, the cash value of wealth. This, he
pointed out, is equivalent to postulating that utility is equal to the
logarithm (to any base) of the cash value of wealth. To this day, no
other funection has been suggested as a better prototype for Everyman's
utility function. None the less, as Cramer pointed out in his aforemen-
tioned letter, the logarithm has a serious disadvantage; for, if the loga-
rithm were the utility of wealth, the St. Petersburg paradox could be

t Often the meanings of “convex™ and “concave’ as applied to functions are in-
terchanged. A function is here called convex if it appears convex, in the ordinary
sense of the word, when viewed from below. Buch a function is, of course, also con-
cave from above, whence the confusion. CIf. Appendix 2.
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amended to produce a random act with an infinite expected utility
(i.e., an infinite expected logarithm of income) that, again, no one would
really prefer to the status quo. To take a less elaborate example, sup-
pose that a man's total wealth, including an appraisal of his future
earning power, were a million dollars. If the logarithm of wealth were
actually his utility, he would as soon as not flip a coin to decide whether
his wealth should be changed to ten thousand dollars—roughly 8500
per year—or a hundred million dollars. This seems prepostercus to
me. At any rate, I am sure yvou can construct an example along the
same lines that will seem preposterous to you. Cramer therefors con-
cluded, and I think rightly, that the utility of cash must be bounded,
at least from above. It seems to me that a good argument ean also be
adduced for supposing utility to be bounded from below, for, however
wealth may be interpreted, we all subject our total wealth to slight
jeopardy daily for the sake of a large probability of avoiding more
moderate losses, But the logarithm is unbounded both from above
and from below; =0, though it might be a reasonable approximation to
a person’s utility in a moderate range of wealth, it cannot be taken
seriously over extreme ranges.

Bernoulli's ideas were accepted wholeheartedly by Laplace [L1], who
was very enthusiastic about the applications of probability to all sorts
of decision problems. It is my casual impression, however, that from
the time of Laplace until quite recently the idea of utility did not
strongly influence either mathematical or praetical probabilists,

For a long period economists accepted Bernoulli's idea of moral
wealth as the measurement of a person’s well-being apart from any
consideration of probability. Though “utility” rather than “moral
worth” has been the popular name for this concept among English-
speaking economists, it is my impression that Bernoulli’s paper is the
prineipal, if not the sole, source of the notion for all economists, though
the paper itself may often have been lost sight of. Economists were for
& time enthusastic about the principle of diminishing marginal utility,
and they saw what they believed to be reflections of it in many aspects
of everyday life. Why else, to paraphrase Alfred Marshall {pp. 19,
95 of [M2]), does a poor man walk in a rain that induces a rich man to
take a cab?

During the period when the probability-less idea of utility was popu-
lar with economists, they referred not only to the utility of money,
but also to the utility of other consequences such as commodities (and
services) and combinations (or, better, patterns of consumption) of com-
modities. The theory of choice among consequences was expressed by
the idea that, among the available consequences, a person prefers those
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that have the highest utility for him. Also, the idea of diminishing
marginal utility was extended from money to other commodities.

The probability-less idea of utility in economics has been completely
discredited in the eyes of almost all economists, the following argument
against it—originally advanced by Pareto in pp. 158-159 and the
Mathematical Appendix of [P1]—being widely accepted. If utility is
regarded as controlling only consequences, rather than acts, it is not
true—as it is when acts, or at least gambles, are considered and the
formal definition in § 3, is applied—that utility is determined except
for a linear transformation. Indeed, confining attention to conse-
quences, any strictly monotonically increasing funetion of one utility
is another utility. Under these circumstances there is little, if any,
value in talking about utility at all, unless, of course, special economie
considerations should render one utility, or say a linear family of utili-
ties, of particular interest. That possibility remains academic to date,
though one attempt to exploit it was made by Irving Fisher, as is briefly
discussed in the paragraph leading to Footnote 155 of [S818]. In par-
ticular, utility as a function of wealth can have any shape whatsoever
in the probability-less context, provided only that the function in ques-
tion is increasing with increasing wealth, the provision following from
the casual observation that almost nobody throws money away. The
history of probability-less utility has been thoroughly reported by Stig-
ler [S18].

What, then, becomes of the intuitive arguments that led to the no-
tion of diminishing marginal utility? To illustrate, consider the poor
man and the rich man in the rain. Those of us who consider diminish-
ing marginal utility nonsensical in this context think it sufficient to
say simply that it is a common observation that rich men spend money
freely to avoid moderate physical suffering whereas poor men suffer
freely rather than make corresponding expenditures of money; in other
terms, that the rate of exchange between circumstances producing phys-
ical discomfort and money depends on the wealth of the person involved.

In recent years there has been revived interest in Bernoulli's ideas
of utility in the technical sense of §§ 2-4, that is, as a function that, so
to speak, controls decisions among acts, or at least gambles. Ramsey's
essays in [R1], which in spirit closely resemble the first five chapters of
this book, present a relatively early example of this revival of interest.
Ramsey improves on Bernoulli in that he defines utility operationally
in terms of the behavior of a person constrained by certain postulates,
Ramsey’s essays, though now much appreciated, seem to have had
relatively little influence,

Between the time of Hamsey and that of von Neumann and Morgen-
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stern there was interest in breaking away from the idea of maximizing
expected utility, at least so far as economic theory was concerned (ef,
[T1a]}. This trend was supported by those who said that Bernoulli gives
no reason for supposing that preferences correspond to the expected
value of some funection, and that therefore much more general possi-
bilities must be considered. Why should not the range, the variance,
and the skewness, not to mention countless other features, of the dis-
tribution of some function join with the expected value in determining
preference? The guestion was answered by the construction of Ramsey
and again by that of von Neumann and Morgenstern, which has been
shghtly extended in §§ 2—4; it is simply a mathematical fact that, al-
most any theory of probability having been adopted and the sure-thing
principle having been suitably extended, the existence of a function
whose expected value controls choices can be deduced. That does not
mean that as a theory of actual economic behavior the theory of utility
is absolutely established and cannot be overthrown. Quite the c¢on-
trary, it is a theory that makes factual predictions many of which ean
easily be observed to be false, but the theory may have some value in
making economic predictions in certain contexts where the departures
from it happen not to be devastating. Moreover, as I have been argu-
ing, it may have value as a normative theory.

Von Neumann and Morgenstern initiated among economists and, to
a lesser extent, alzo among statisticians an intense revival of interest
in the technical utility concept by their treatment of utility, which ap-
pears as a digression in [V4].

The von Neumann-Morgenstern theory of utility has produced this
reaction, because it gives strong intuitive grounds for accepting the
Bernoullian utility hypothesis as a consequence of well-aceepted maxims
of behavior. To give readers of this book some idea of the von Neu-
mann-Morgenstern theory, I may repeat that the treatment of utility
as applied to gambles presented in §3 is virtually copied from their
book [V4]. Indeed, their ideas on this subject are responsible for almost
all of my own. Omne idea now held by me that I think von Neumann
and Morgenstern do not explicitly support, and that so far as I know
they might not wish to have attributed to them, is the normative in-
terpretation of the theory.

Of course, much of the new interest in utility takes the form of eriti-
cism and eontroversy. The greater part of this discussion that has come
to my attention has not yet been published, A list of references lead-
ing to most of that which has is [B7], [W14], [81], [C4], [F13], [AZ].

I shall successively discuss each of the recent major criticisms of the
modern theory of utility known to me. My method in each case will
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be first to state the criticism in a form resembling those in which it is
typically put forward, regardless of whether I consider that form well
chosen. I will then discuss the criticism, elaborating its meaning and
indicating its rebuttal, when there seems to me to be one.

(a) Modern economic theorists have rigorously shown that there is
no meaningful measure of utility. More specifically, if any function U
fulfills the role of a utility, then so does any strietly monotonieally in-
creasing function of U. It must, therefore, be an error to conclude that
every utility is a linear function of every other.

This argument has been advanced with a seriousness that is surpnis-
ing, considering that it econcedes little intelligence or learning to the
proponents of the utility theory under discussion and considering that
it results, as will immediately be explained, from the baldest sort of a
terminological confusion. To be fair, I must go on to say that I have
never known the argument to be defended long in the presence of the
explanation I am about to give.

In ordinary economic usage, especially prior to the work of von Neu-
mann and Morgenstern, a utility assoeiated with gambles would pre-
sumably be simply a funetion U associating numbers with gambles in
such a way that f < g, if and only if U(f) < U(g); though economic
discussion of utility was, prior to von Neumann and Morgenstern, al-
most exclusively confined to consequences rather than to gambles or
to acts. It is unequivocally true, as I have already brought out, that
any monotonie function of a utility in this wide classical sense is itself
a utility. What von Neumann and Morgenstern have shown, and
what has been recapitulated in § 3, is that, granting certain hypotheses,
there exists at least one classical utility V satisfying the very special
condition

(2) Vief + 8g) = aV(f) + 8V(g),

where f and g are any gambles and &, 8 are non-negative numbers such
that &« + 8 = 1. Furthermore, if I may for the moment call a classieal
utility satisfying (2) a von Neumann-Morgenstern utility, every von
Neumann-Morgenstern utility is an increasing linear function of every
other, To put the point differently, the essential conclusion of the von
Neumann-Morgenstern utility theory is that (2) can be satisfied by a
classical utility, but not by very many. The confusion arises only be-
cause von Neumann and Morgenstern use the already pre-empted word
“utility” for what I here call “von Neumann-Morgenstern utility.”
In retrospect, that seems to have been a mistake in tactics, but one of
no long-range importance.
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(b) The postulates leading to the von Neumann-Morgenstern con-
eept of utility are arbitrary and gratuitous.

Such a view can, of course, always be held without the slightest fear
of rigorous refutation, but a eritic holding it might perhaps be persuaded
away from it by a reformulation of the postulates that he might find
more appealing than the original set, or by illuminating examples. In
particular, P1-7 are quite different from, but imply, the postulates of
von Neumann and Morgenstern. Incidentally, the main funetion of
the von Neumann-Morgenstern postulates themselves is to put the es-
sential content of Daniel Bernoulli's “postulate” into a form that is
less gratuitous in appearance. At least one serious critic, who had at
first found the system of von Neumann and Morgenstern gratuitous,
changed hiz mind when the possibility of deriving certain aspects of
that system from the sure-thing prineiple was pointed out to him.

(¢) The sure-thing principle goes too far. For example, if two lot-
teries with cash prizes (not necessarily positive) are based on the same
set of lottery tickets and so arranged that the prize that will be assigned
to any ticket by the second lottery is at least as great as the prize as-
signed to that ticket by the first lottery, then there is no doubt that
virtually any person would find a ticket in the first lottery not prefer-
able to the same ticket in the second lottery. If, however, the prizes
in each lottery are themselves lottery tickets, such that the prize asso-
ciated with any ticket in the first lottery is not preferred by the person
under study to the prize associated with the same ticket by the second
lottery, the conclusion that the person will not prefer a ticket in the
first lottery to the same ticket in the second is no longer compelling.

This point resembles the preceding one in that the intuitive appeal
of an assumption can at most be indicated, not proved. I do think it
cogent, however, to stress in connection with this particular point that
a cash prize is to a large extent a lottery ticket in that the uncertainty
as to what will become of a person if he has a gift of a thousand dollars
18 not in principle different from the uncertainty about what will be-
come of him if he holds a lottery ticket of considerable actuarial value,

Perhaps an adherent to the eriticism in question would think it rele-
vant to reply thus: Though cash sums are indeed essentially lottery
tickets, a sum of money is worth at least as much to a person as a smaller
sum, in a peculiarly definite and objective sense, because money can,
if one desires, always be quickly and quietly thrown away, thereby
making any sum available to a person who already has a larger sum.
But I have never heard that reply made, nor do I here plead itz cogeney.
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(d) An actual systematic deviation from the sure-thing prineiple and,
with it, from the von Neumann-Morgenstern theory of utility, can be
exhibited. For example, a person might perfectly reasonably prefer to
subsist on a packet of Army K rations per meal than on two ounces of
the best caviar per meal. [t is then to be expected, according to the
sure-thing principle, that the person would prefer the K rations to a
lottery ticket yielding the K rations with probability 9/10 and the
caviar diet with probability 1/10. That expectation is no doubt ful-
filled, if the lottery is understood to determine the person’s vear-long
diet once and for all. But, if the person is able to have at each meal a
lottery ticket offering him the K rations or the caviar with the indicated
probabilities, it is not at all unlikely, granting that he likes caviar and
has some storage facilities, that he will prefer this “lottery diet.” This
coneclusion is in defiance of the principle that “the theory of consumer
demand is a static theory.” (Cf. [Wi14])

I admit that the theory of utility is not static in the indicated sense,
as the foregoing example conclusively shows. But there is not the
slightest reason to think of a lottery producing either a steady diet of
caviar or a steady diet of K rations as being the same lottery as one
having & multitude of different prizes almost all of which are mixed
chronological programs of caviar and K rations. The fact that a theory
of consumer behavior in riskless situations happens to be static in the
required (under certain special assumptions about storability and
the linearity of prices) is no argument at all that the theory of consumer
behavior in risky circumstances should be static in the same sense (as
I mention in a note appended to [W14]).

(e) If the von Neumann-Morgenstern theory of utility is not statie,
it is not subject to repeated empirical observation and is therefore
vacuous, (Cf. [W14].)

I think the discussion in § 3.1 of how to determine the preferences of
a hot man for a swim, a shower, and a glass of beer, and the discussion
in § 5 of the practicality of identifying pseudo-microcosms are steps
toward showing how the theory can be put to empirical test without
making repeated trials on any one person.

(f) Casual observation shows that real people frequently and fla-
grantly behave in disaccord with the utility theory, and that in fact be-
havior of that sort is not at all typically considered abnormal or ir-
rational.

Two different topics call for discussion under this heading. In the
first place, it is undoubtedly true that the behavior of people does often
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flagrantly depart from the theory. None the less, all the world knows
from the lessons of modern physics that a theory 18 not to be altogether
rejected because it is not absolutely true. It seems not unreasonable to
suppose, and examples could easily be cited to confirm, that in the ex-
tremely complicated subject of the behavior of people very erude theory
can play a useful role in certain contexts.

Second, many apparent exceptions to the theory can be so reinter-
preted as not to be exceptions at all. For example, a flier may be ob-
served doing a stunt that risks his life, apparently for nothing. That
seems to be in complete violation of the theory; but, if in addition it is
known that the flier has a real and practical need to convince certain
colleagues of his courage, then he is simply payving for advertising with
the risk of his life, which is not in itself in contradiction to the theory.
Or, suppose that it were known more or less objectively that the flier
has a need to demonstrate his own courage to himself. The theory
would again be rescued, but this time perhaps not so convincingly as
before. In general, the reinterpretation needed to reconcile various
sorts of behavior with the utility theory is sometimes quite acceptable
and sometimes so strained as to lay whoever proposes it open to the
charge of trying to save the theory by rendering it tautological. The
same sort of thing arises in connection with many theories, and I think
there is general agreement that no hard-and-fast rule can be laid down
as to when it becomes inappropriate to make the necessary reinterpre-
tation. For example, the law of the conservation of emergy (or its
atomic age variant, the law of the conservation of mass and energy)
owes its success largely to its being an expression of remarkable and
relinble facts of nature, but to some extent also to certain conventions
by which new sorts of energy are =0 defined as to keep the law true.
A stimulating diseussion of this delicate point in connection with the
theory of utility is given by Samuelson in [S1].

(g) Introspection about certain hypothetical decision situations sug-
gests that the sure-thing principle and, with it, the theory of utility
are normatively unsatisfactory. Consider an example based on two de-
cision situations each involving two gambles.

Situation 1. Choose between

Gamble 1. 8500,000 with probability 1; and

Gamble 2. $2,500,000 with probability 0.1,
8500,000 with probability 0.89,
status quo with probability 0.01.

# This particular example is due to Allais [A2]. Another interesting example was
presented somewhat earlier by Georges Morlat [C4].
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Situation 2. Choose between

Gamble 3. 8500,000 with probability 0.11,
status quo with probability 0.89; and

Gamble 4, $2,500,000 with probability 0.1,
status quo with probability 0.9.

Many people prefer Gamble 1 to Gamble 2, because, speaking quali-
tatively, they do not find the chance of winning a very large fortune in
place of receiving a large fortune outright adequate compensation for
even a small risk of being left in the status quo., Many of the same
people prefer Gamble 4 to Gamble 3; because, speaking qualitatively,
the chance of winning is nearly the same in both gambles, so the one
with the much larger prize seems preferable. But the intuitively ac-
ceptable pair of preferences, Gamble 1 preferred to Gamble 2 and Gam-
ble 4 to Gamble 3, is_not eompatible with the utility concept or, equiva~
lently, the sure-thing principle. Indeed that pair of preferences implies
the following inequalities for any hypothetical utility funection.

U ($500,000) > 0.1U (82,500,000) + 0.891 ($500,000) + 0.1 (80),
(3)
0.1U ($2,500,000) + 0.9U (80) > 0.11U (8500,000) + 0.89U ($0);

and these are obviously incompatible.

Examples 1 like the one cited do have a strong intuitive appeal; even
if you do not personally feel a tendency to prefer Gamble 1 to Gamble 2
and simultaneously Gamble 4 to Gamble 3, I think that a few trials
with other prizes and probabilities will provide you with an example
appropriate to yourself.

If, after thorough deliberation, anyone maintains a pair of distinet
preferences that are in conflict with the sure-thing principle, he must
abandon, or modify, the principle; for that kind of discrepancy seems
intolerable in a normative theory. Analogous eircumstances foreed
D, Bernoulli to abandon the theory of mathematical expectation for
that of utility [B10]. In general, a person who has tentatively accepted
a normative theory must conscientiously study situations in which the
theory seems to lead him astray; he must decide for each by reflection
—deduection will typically be of little relevance—whether to retain his
initial impression of the situation or to accept the implications of the
theory for it.

To illustrate, let me record my own reactions to the example with

% Allsis has announced (but not yet published) an empirical investigation of the
responses of prudent, educated people to such examples [A2].
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which this heading was introduced. When the two situations were
first presented, I immediately expressed preference for Gamble 1 as
opposed to Gamble 2 and for Gamble 4 as opposed to Gamble 3, and I
still feel an intuitive attraction to those preferences. But I have since
accepted the following way of looking at the two situations, which
amounts to repeated use of the sure-thing prineciple,

One way in which Gambles 1-4 could be realized is by a lottery with
a hundred numbered tickets and with prizes aceording to the schedule
shown in Table 1.

Tapre 1. Prizes 1x uxits or 8100,000 IN A LOTTERY REALIZING

GAMBLES 1-4
Ticket Number
1 2-11 12-100
) ) Gamble1 | 5 ] 5
Situation 1 {Gamb'le 2 |o 25 5
. . Gambled | & 1 0
Situation 29 bled | 0 25 0

Now, if one of the tickets numbered from 12 through 100 is drawn, it
will not matter, in either situation, which gamble I choose. I therefore
focus on the possibility that one of the tickets numbered from 1 through
11 will be drawn, in which case Situations 1 and 2 are exactly parallel.
The subsidiary decision depends in both situations on whether I would
sell an outright gift of #500,000 for a 10-to-1 chance to win #2,500,000—
a conclusion that I think has a claim to universality, or objectivity.
Finally, consulting my purely personal taste, [ find that I would prefer
the gift of 500,000 and, accordingly, that I prefer Gamble 1 to Gamble
2 and (contrary to my initial reaction) Gamble 3 to Gamble 4.

It seems to me that in reversing my preference between Gambles 3
and 4 I have corrected an error. There is, of course, an important sense
in which preferences, being entirely subjective, cannot be in error; but
in a different, more subtle sense they can be. Let me illustrate by a
simple example containing no reference to uncertainty. A man buying
a car for §2,134.56 is tempted to order it with a radio installed, which
will bring the total price to #2,228.41 feeling that the difference is
trifling. But, when he reflects that, if he already had the car, he cer-
tainly would not spend $83.85 for a radio for it, he realizes that he has
made an error.

One thing that should be mentioned before this chapter is closed is
that the law of diminishing marginal utility plays no fundamental role
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in the von Neumann-Morgenstern theory of utility, viewed either em-
pirically or normatively. Therefore the possibility 1s left open that
utility as a function of wealth may not be concave, at least in some in-
tervals of wealth. Some economic-theoretical consequences of recog-
nition of the possibility of non-concave segments of the utility function
have been worked out by Friedman and myself [F12], and by Friedman
alone [F11]. The work of Friedman and myself on this point is eriti-
cized by Markowitz [M1].+

+ See also Archibald (1950) and Hakansson (1970).



CHAPTER 6

Observation

1 Introduction

With the construction of utility, the theory of decision in the face
of uncertainty is, in a sense, complete. I have no further postulates
to propose, and those I have proposed have been shown to be equiva-
lent to the assumption that the person always decides in favor of an
act the expected utility of which is as large as possible, supposing for
simplicity that only a finite number of acts are open to him. At the
level of generality that has led to this conclusion there seems to be
little or nothing left to say. To go further now means to go into more
detail, to investigate special types of decision problems. One type of
decision problem of central importance is that in which the person is
called upon to make an observation and then to choose some act in the
light of the outcome of the observation.

The consideration of such observational decision problems is a step
toward those problems of great interest for statistics in which the per-
son must decide what observation to make, that is, of course, what to
look at, not what to see, They are the problems of designing experi-
ments and other observational programs,

Some remarks on observation were made in Chapter 3, but only now
that the theory of utility is established is it possible to give a relatively
complete analysis of the concept.

Observation is a concept essential to the study of statisties proper,
most of what has been said thus far being preliminary to, but not really
part of, statistics; even after this chapter and the next one, on obser-
vation, there will still remain a major transition. One important fea-
ture of much of what is ordinarily called statistics is, according to
my analysis, concerned with the behavior not of an isolated person, but
of a group of persons acting, for example, in concert. In later chapters
I will deal, so far as I am able, with the problem of group action, but
preliminary considerations bearing on it will be made and pointed out
from time to time in this chapter and the next.

Though the details of these two chapters may seem mathematically
forbidding, drastic simplifying assumptions are made in them to keep

105
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extraneous difficulties to & minimum. These typically take the form
of assuming that certain sets of acts, events, and values of random varia-
bles are finite. Even in elementary applications of the theory, these
simplifying assumptions seldom actually hold. In some contexts, it is
quite elementary to relax them sufficiently; in others, serious mathe-
matical effort has been required; and some are still at the frontier of
research. Relaxations of the assumptions will be touched on from time
to time, sometimes explicitly but sometimes only implicitly in the choice
of suggestive notation and nomenclature.

Beyond this introduction, the present chapter is divided into four
sections: § 2 analyzes informally and then formally the notion of a cost-
free observation; §§ 3 and 4 discuss certain obvious but important con-
ditions under which one observation, and similarly one set of acts, is
more valuable than another; § 5 abstractly discusses problems of de-
signing experiments or, perhaps more generally, observational programs,

2 What an observation is

To begin with an informal survey of observation, consider a decision
problem, that is, a person faced with a decision among several acts.
Calling it the basic decision problem and the acts associated with it
the basic acts, a new decision problem would arise, if the person were
informed before he made his decision that a particular event, say B,
obtained. The new decision problem is related to the basic decision
problem in a simple way; for the acts associated with it are also the
basic acts, and the decision is to be made by computing the expected
utility given B of the basic acts and deciding on one that maximizes
the conditional expected utility. The basic problem may be modified
in still another, though closely related, way. Let the person say in ad-
vance, for each possible B;, which of the basic acts he will decide on
when he is informed, as he is to be, which element B; of a given parti-
tion obtains. This will be called the derived deecision problem arising
from the basic decision problem and the observation of i, and its acts
will be called derived acts. Technically speaking, the derived acts are
determined by arbitrarily assigning one basie act to each element of
the partition. For any state s, the consequence of a derived act is the
consequence for & of the basic act associated with the particular B; in
which s lies. The terms informally introduced in this paragraph are
defined formally later in the section,

A derived decision problem is not necessarily different in kind from
the basic problem; indeed it is quite possible that the basie problem ean
itself be viewed as derived from some other basic problem and obeer-
vation.
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Formidable though the desecription of a derived problem may seem
at first reading, its solution is, in a sense, easy and has already almost
been given; for it is elear that, if P(B;) > 0, the person will decide to
associate with B; a basic act the expected utility of which given B; is
as high as possible, and, if P(B,;) = 0, it is immaterial to the person
which basic act is associated with B;.

It is almost obvious that the value of a derived problem cannot be
less, and typically is greater, than the value of the basic problem from
which it is derived. After all, any basic act is among the derived acts,
s0 that any expected utility that can be attained by deciding on a basic
act can be attained by deciding on the same basic act considered as a
derived act. In short, the person is free to ignore the observation.
That obvious fact is the theory's expression of the commonplace that
knowledge iz not disadvantageous.

It sometimes happens that a real person avoids finding something
out or that his friends feel duty bound to keep something from him,
saying that what he doesn't know can’t hurt him; the jealous spouse
and the hypochondriac are familiar tragic examples. Such apparent
exceptions to the principle that forewarned is forearmed call for anal-
ysis. At first sight, one might be inclined to say that the person who
refuses freely proffered information is behaving irrationally and in vio-
lation of the postulates. But perhaps it is better to admit that informa-
tion that seems free may prove expensive by doing psychological harm
to its recipient. Consider, for example, & sick person who is certain
that he has the best of medical care and is in a position to find out
whether his sickness is mortal. He may decide that his own personality
is such that, though he can continue with some cheer to live in the
fear that he may possibly die soon, what is left of his life would be
agony, if he knew that death were imminent. Under such circumstances,
far from calling him irrational, we might extol the person’s rationality,
if he abstained from the information. On the other hand, such an in-
terpretation may seem forced. (Cf. Criticism (f) of § 5.6.)

Examples of decisions based on observation are on every hand, but
it will be worth while to examine one in some detail before undertaking
an abstract mathematical analysis of such decisions. Any example
would have to be highly idealized for simplicity, because the complexity
of any real decision problem defies complete explicit description, but
particular simplicity is in order here.

The person in the example is considering whether to buy some of the
grapes he sees in a grocery store and, if so, in what quantity. To his
taste, the grapes may be of any of three qualities, poor, fair, and excel-
lent. Call the qualities Q generically and 1, 2, and 3 individually. From
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what the person knows at the moment, including of course the appear-
ance of the grapes, he cannot be certain of their quality, but he attaches
personal probability to each of the three possibilities according to
Table 1.

Tams 1. P(Q)

Q{uality) | i 2 3
P(robability) | 1/4 1/2 174

The person can decide to buy 0, 1, 2, or 3 pounds of grapes; these
are the basic acts of the example. Taking one consideration with an-
other, he finds the consequences of each act, measured in utiles, in
each of the three possible events to be those given in the body of Table
2. The expected utilities in the right margin of Table 2 follow, of
course, from Table 1 and the body of Table 2.

Tasre 2. Ururry f(Q) ror BacH f AND EACH @

Q
f 1 2 3 | EM
0 0 0 ] 0
1 -1 1 3 1
2 | -3 0 5 | 1/2
a3 -6 -3 i -1

The entries in Table 2 have not been chosen haphazardly, but with
an attempt at verisimilitude. Thus it is supposed that if the person
buys grapes of poor quality his dissatisfaction with the bargain will
accelerate rapidly with the amount bought, which seems reasonable,
especially if the keeping quality of poor grapes is low. He is, of course,
unaffected by the quality if he buys none. Again, buying a few fair
grapes may be mildly desirable, but overbuying is not. Finally, excel-
lent grapes are worth buying, even in large quantities, but the utility
of the purchase increases less than proportionally to the amount bought.

The correct solution of the basie decision problem is to buy 1 pound
of grapes; for that act has, according to the right margin of Table 2,
an expected utility of 1, which is the largest that can be attained.

Now, suppose the person is free to make an observation, that is, a
new observation in addition to those that may have contributed to the
determination of the probabilities in the basie problem. It may be, for
example, that the grocer invites him to eat a few of the grapes or that
the person is going to ask the woman beside him how they look to her.
Let there be five possible outcomes of his observation; call them z
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generically and 1, 2, 3, 4, and 5 individually. [ assume, though this
feature is rather incidental to the example, that low values of r tend
to be suggestive of low quality. The joint distribution of z and @, that
is, the probability that z and Q simultaneously have any given pair of
values, is of central technical importance. Those probabilities, each
mutltiplied by 128 for simplicity of presentation, are given in the body
of Table 3. The right-hand and bottom margins of the table give,

Tapre 3. 128P(z N Q)

Y

r 1 2 3 128P(x)
1 13 3 1 21
2 10 135 2 7
4 4 24 4 32
4 2 15 10 27
5 1 ] 15 21

32 64 32 128

128P(Q)

also multiplied by 128, the probability of each value of = and of each
value of Q. The marginal entries are, of course, obtained by adding
rows and columns. As indicated in the lower right-hand corner of the
table, the probabilities assumed do indeed add up to 1, and the bottom
margin recapitulates Table 1.

Conditional probabilities can easily be read from Table 3. Thus, for
example, the conditional probability that x is 2, given that @ 1s 3, s
2/32, and the conditions]l probability that @ is 2, given that = is 4, is
15/27. It will be seen in later sections that the distribution of z given
@ is, in a sense, even more fundamental than the joint distribution of
z and Q.

There are 4° = 1,024 derived acts, since one of the four basic acts
can be assigned arbitrarily to each of the five possible cutcomes of the
observation. It is an easy exercise, using Tables 2 and 3, to verify
Table 4, which shows the eonditional expectation of the utility of each

Tasie 4. E(f|z)

£
i 1 2 3 4 5
0 0/21 0/27 0/32  0/2T /21
1| =7/2 11/#7  82/32  43/27  49/2
2 | —40/21 —20/27 8/32 44/27  T2/2
3 | —94/21 -T8/21 —48/32 18/2T 74/%
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basic act given each possible gutcome of the observation. For each z,
the highest expected utility, given that value of z, has been italicized.
Thus, for example, only if z is 1 will the person refrain from buying
grapes altogether, and only if z is 5 will he risk buying 3 pounds. In
full, the best derived act, call it g, is to buy 0, 1, 1, 2, or 3 pounds, if =
ig 1, 2, 3, 4, or 5, respectively. The value of the derived problem is the
expected value of g, which is computed thus:

(1) E(g) = ) E(g| z)P(z)

= (0 + 11 + 32 + 44 + 74)/128
= 161,128 ~~ 1.26 utiles.

Since the value of the basic problem is 1 utile, the envisaged observa-
tion is worth 0.26 utile; that is, the person would if necessary pay up
to 0.26 utile for the observation.

Exercise

1. Buppose that the person could directly observe the quality of the
grapes. Show that his best derived act would then yield 2 utiles, and
show that it could not possibly lead him to buy 2 pounds of the grapes,

The notion of a decision problem based on an observation will now be
formally deseribed, with special reference to mathematical notation and
other technical details.

1. There is a set of basic acts, F with elements f, ¥, ete.

In the example of the grapes F consisted of the four envisaged acts
of buying 0, 1, 2, or 3 pounds of grapes.

The convention laid down at the end of § 5.4, requiring that the con-
sequences of acts be measured in utiles, will be adhered to, and it will
be supposed that v(F) is finite.

2. The observation is a (not necessarily real}] random variable x
associating with each state s an observed value »(s) in some set X of
possible observed values z, 2/, ete.

In the example of the grapes, the states & (of which the postulates
require that there be an infinite number) were never fully deseribed,
and consequently the random wvariable x was not fully described either,
In the same sense it may be said that the basic acts, which are also
really random wvariables, were not fully described either. All that is
really important, however, is to know the simultaneous distribution of
the consequences of the acts in F and of the values of x. In the example
of the grapes that information was implieit in Tables 2 and 3.
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For mathematical simplicity in the formal work to follow, it will
generally be assumed that X has only a finite number of elements,
though the assumption can and must be relaxed in many practical
situations. When X is assumed finite, the random variable x is, for
all purposes of the present context, simply a partition of 5, namely,
the partition into the sets on which x is constant. Indeed, earlier in
this section, the notion of observation was desecribed in terms of a par-
tition, but the description in terms of a random variable is more familiar
in statistics and may have technical advantages, especially when the
restriction that X be finite is relaxed.

3. The set of strategy functions is the set of all functions associating
an element of F with each element z of X. Let the values of the generie
strategy function be denoted by f(z) and the function itself by f(x).

The notion of strategy function was not introduced in the informal
deseription of observation, nor in the example of the grapes, because
it is but a mathematical intermediary to the definition of derived acts
and did not seem to call for explicit expression in the less formal con-
texts,

4. To each strategy function f(x) corresponds a derived act g, in the
set of all derived acts F(x), defined by

(2) g(e) = f(s; z(s)) for all g ¢ 8.

It was explained that in the example of the grapes there are 45 de-
rived acts. In the same way, it can be seen in general that if X has ¢
and F has & elements there are ¢f derived acts.

5. The value of F given z,

(3) o(F | z) =y sup E(f| z).

This is the function of = indicated, for the example of the grapes,
by italies in Table 4,

3 Multiple observations, and extensions of observations and of sets
of acts

If several random variables x;, ---, X,, associating elements of 8
with elements of sets X;, ---, X, are simultaneously under discussion,
it is natural to form the new random variable, denoted x = [x;, - - -,
X.), that associates with each element of S an ordered n-tuple of ele-
ments of X;, --+, X,, respectively. If the context is such that x,, -- -,
x, are thought of as observations, then x can also be thought of as an
observation and will sometimes be called a multiple observation—to
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emphasize the manner of its formation. To illustrate, any item such
as profession or body temperature that might be entered on a patient's
history can be thought of as an observation; but the whole history, or
a filing cabinet of histories, can also be thought of as an observation,
the history being a multiple observation of items, and the ecabinet a
multiple observation of histories.

Consider two observations x and y. It is an interesting possibility
that x and y are so related to each other that knowledge of the value
of x would (almost certainly) imply (almost eertain) knowledge of y.
In that case, observation of x implies essentially the observation of v
and generally something besides, which suggests the following three
definitions.

If and only if x and y are observations such that, for all s and &' in
some B of probability one, z(s) = z(s") implies y(s) = y(s"); then x iz an
extension of y, and y is a contraction of x. If x is an extension of ¥,
and y is an extension of x, then x and y are equivalent.

Strictly speaking, one should say not that x and y are equivalent,
but rather that they are equivalent regarded as observations, for this
would not be a good concept of equivalence to apply to random varia-~
bles regarded as such. For example, a pair of equivalent observations
can obviously be a pair of real random variables with different expected
values. Bome properties of the relations of extension, contraction, and
equivalence between observations are given by the following easy but
important exercises. Throughout this set of exercises it is unnecessary
to suppose the observations confined to a finite set of values; in the case
of Exercise 3b, it is impossible to do so.

Exercises

1. x and y are equivalent, if and only if x is both an extension and a
contraction of y.

2a. If P{z(s) = y(s)} = 1, x and y are equivalent.

2b. Any observation x is equivalent to itself,

3a. If there is a value yg such that Piy(s) = yo] = 1, then every
x is an extension of y, and any two such observations are equivalent.
Such an observation, of course, amounts to observing nothing at all
and will therefore be called a null observation.

3b. If z{s) = & for almost all s ¢S, then x extends every y.

4. If x is an extension of y, and y is an extension of z, then x is an
extension of 2. State and verifly the analogous fact about equivalence.

S5a. If y' 18 a function associating an element of } with each element
of X, and x is an observation, then the observation y such that y =
y'(x) is & contraction of x.
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5b. If y is a contraction of x, then there is a function ¥’ such that
Piy(s) = ¢'(z(s))} = 1. What freedom is there in the choice of the
function y'?

S¢. What are the implieations of Exercises 5a and 5b for equivalence
between observations?

6. If x and y are observations and z = |x, y| is the corresponding
double observation, then z is an extension of x and of y. (This exercise
seems to call for a converse saying that every extension can be regarded
as a double observation, but no really neat one suggests itself to me.
Nane the less, in thinking about extensions and contractions, the sort
brought out by the exercise is a typical and stimulating example.)

7. 1x, v} is equivalent to x, if and only if x extends y.

The relations of extension, contraction, and equivalence have paral-
lels for sets of acts, defined thus:

If F and G are (non-vacuous) sets of acts such that, for some B of
probability one, there is for each g ¢ G an f ¢ F with f(g) = g(s) for all
s ¢ B; then F is an extension of G, and G is a contraction of F. If F is
an extension of G, and G is an extension of F, then F and G are equiv-
alent.

More exercises

8. If F is an extension of (equivalent to) G, then »(F) > (=) »(G).

9. Discuss the analogues of Exercises 1, 2b, and 4 for sets of
acts.

10, If F O G, then F extends G,

11. If F(x) is derived from F on observation of x, then F(x) extends
F.

12. Hyp.

F(x) i# derived from F on observation of x;

F(y) is derived from F on obseryation of y;

F(x, y) is derived from F on observation of [x, y{;
F(x; y) is derived from F(x) on observation of y.

CoNoL.

1. Fix, y) 1= equivalent to F(x; v).

2. F(x, y) extends F(x) and F(y).

3. If x is equivalent to y, then F(x) is equivalent to F(y).

4. If y extends x; then F(x, y) is equivalent to F(y), F(y) is equiva-
lent to F(x; y), and F(y) extends F(x).
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13a. Under the hypothesis of 12, the equivalences and relations of
extension among the sets of acts arising out of two observations ecan,
with evident conventions, be diagrammed thus:

;¥ Yy ¥ X

} !
x—>)4 ¥

13b. If ¥y extends x, the diagram becomes

X,V X, ¥ ¥ X ¥y, —x—=10

13¢. If x and y are equivalent, the diagram becomes

X ¥ Ly y.x -0
x y ]

14. If F(x) and G(x) are derived from F and G, respectively, and if
F extends G, then F(x) extends G(x).

15. #(F(x)) = E[p(F | x)] = f v(F | z(s)) dP(s) > v(F).

4 Dominance and admissibility

According to Exercise 3.14, if one set of acts, regarded as basie, ex-
tends another, the first is at least as valuable as the second in the light
of any observation whatever. This section explores a relation, domi-
nance, which has the same property but is not so striet as extension.
Dominance is of some importance for the theory of personal probability
as it has been developed thus far. But its ‘importance will be even
greater in the study of statistics proper, where interpersonal agreement
is of particular interest; for, as the definition shortly to be given will
make clear, two people having different personal probabilities will agree
as to whether one of two sets of acts dominates another, if only they
agree which events have probability zero—a condition generally met
in practice, and one that could if desired be dispensed with by a slight
change in the definition of dominance.

It will be seen that dominance and notions related to it are intimately
associated with the sure-thing principle. Indeed, probability being
taken for granted, the basic facts about dominance seem to give a com-
plete expression of the sure-thing principle. Dominance and related
concepts were much stressed by Wald, in [W3] for example.
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Two or three notions, the logical connections among them, and those
between them and extension, are to be treated. The logical connec-
tions being many but simple, I think that the material lends itsell bet-
ter to formal than to expository treatment, for in such a context the
reader who looks for the motivating ideas sees them himself more easily
than he comprehends someone else's verbalization of them. This see-
tion will therefore consist primarily of a group of formal definitions and
several exercises,

If and only if P(f(s) > g(z)) = 1, f dominates g. If and only if some
(every) element of F dominates (is dominated by) g, F dominates (is
dominated by) g If and only if F dominates every element of G,
F dominates G. If and only if f dominates g, but g does not dominate
f, f strictly dominates g. If and only if f « F, and f 18 not strietly domi-
nated by any element of F, f is admissible (with respect to F),

Involving as they do acts as well as sets of acts, the definitions,
strictly speaking, introduce four different kinds of dominance. How-
ever, this complexity can be alleviated, with a slight lapse of logic, by
identifying each act f with the set of acts of which f is the only element,
for it is easily seen that this identification is in such harmony with the
definition that, once it is made, the four kinds of dominance collapse
into one.

Exercises

la. Consider analogues of Exercises 3.2b and 3.4.

1b. When can two acts dominate each other?

2a. If F extends G, then F dominates G. Discuss the converse,

2b. F(x) dominates F.

2¢. If F O G, then F dominates G.

3a. If F C G, and F dominates G, then each admissible element of G
dominates and is dominated by an element of F.

3b. After any finite number of non-admissible elements is deleted
from F, what remains of any subset of F that dominated F continues to
dominate F.

3e. Though the set of admissible elements of F may in some instances
dominate F, no proper subset of the set of admissible elements can ever
do so; but, if any other subset dominates F, some proper subset of it
also does so.

3d. If F is finite, the set of admissible elements of F dominates F.

3e. Discuss the role of “finite” in 3b and 3d.
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4a. If the set of admissible elements of F dominates G, and G domi-
nates F, then the set of admissible elements of F 1s equivalent to the
set of admissible elements of G.

4b, If F and G dominate each other, and either is finite, then the
sets of admissible elements of F and G, respectively, are equivalent to
each other, and each dominates both F and G.

5. If F dominates G, then v(F) = v(G).

6. If F dominates G, then, for any observation x, F(x) dominates
G(x).

6 Outline of the design of experiments

(Often, especially in statistics, a decision problem can be seen as the
problem of deciding which of several experiments—or which of several
observational programs, if that is really a more general term—to under-
take.

In this section the notion of the decision problem derived from a
basic decision problem and an observation must be elaborated a little,
because, as derived acts have been treated thus far, they correspond to
the possibility of making an observation free of charge. Though obser-
vations are sometimes free, there is typically a cost associated vith
making them; information must typically be bought either from other
people or, more often from nature, so to speak. The cost of informa-
tion may be money, trouble, one's own life, that of another, or any of
innumerable possibilities, but all can in principle be measured in terms
of utility. The cost of an observation in utility may be negative as
well as zero or positive; witness the cook that tastes the broth.

In prineiple, if & number of experiments are available to a person, he
has but to choose one whose set of derived acts has the greatest value
to him, due aceount being taken of the cost of observation. That simple
formulation, like some others in this book, is, in a sense, oversimple; it
abstracts from the enormous variety of considerations that enter into
the careful design of any experiment. The possibility of so abstracting
from variety does not remove the ultimate necessity of studying some
aspects of that variety in detail. R. A. Fisher's The Design of Experi-
ments [F4], for example, is concerned almost exclusively with experiments
based on a special technique called the analysis of variance, and it is
but an introduction to even that important facet of statistics. Again,
there is a growing literature (in which the work of A. Wald is outstand-
ing) on sequential analysis, which is concerned in principle with all ex-
periments in which later parts of the experiment are conducted in the
light of what happens in earlier parts; but this literature has, by neces-
sity, been confined to a relatively tiny part of that domain.
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Before turning to a more formal recapitulation of the outline of the
design of experiments, this may be a good place for a few speculative
words about the difference, if any, between experiment and observation.

Some sciences are commonly called experimental as opposed to others
that are called observational. Aerodynamies, the psychology of rote
learning, and the genetics of fruit flies would typically be called experi-
mental sciences; and, to take parallel examples, meteorology, the psy-
chology of dreams, and human genetics would be called observational.
But it is widely agreed, and the most casual consideration makes it
clear, that any basic difference that may really be present resides not
in the sciences themselves but in the methods typical of each. To illus-
trate the role of observation in sciences ordinarily considered experi-
mental and viee versa, observations of wild populations of fruit flies
have been useful in the study of the genetics of fruit flies; the effects of
fatigue, for example, on dream content may well be the subject of an
experiment; and, except for the atom, no topic in seience is more popu-
lar today than experimental rain making. The illustrations could be
extended indefinitely, and there is alzo a less direct sort exemplified by
the discipline called experimental medicine, which typically studies ex-
periments on animals with the hope, often justified, that the findings
thus obtained can be extrapolated to humans.

The problem, then, is to distinguish an experiment from an observa-
tion. Except for brevity, it might be better to say mere observation,
for, in general usage, an experiment would be considered a special sort
of observation.

The first apparent contrast that comes to mind is that experimenta-
tion is generally thought of as active and observation as passive. But,
upon examination, it i8 seen that observation is also active, for obser-
vations are typically made by going sumewhere to cbserve, or waiting
attentively till something happens. Often it is not only the observer
himself who must be transported and put in readiness to make an ob-
servation, but also a considerable body of apparatus. What demands
more activity than the modern observation of a solar eclipse?

Another apparent contrast is that the experimenter acts on the thing
he observes, whereas the observer acts only on himself and on instru-
ments of observation that may be regarded as extensions of his own
sense organs. If this criterion were accepted altogether naively, there
would be no such thing as a physiological experiment on one’s self;
even sophisticated interpretations might find it difficult to embrace
psychological experiments on one’s self.

Finally, experiments as opposed to observations are commonly sup-
posed to be characterized by reproducibility and repeatability. But
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the observation of the angle between two stars is easily repeatable and
with highly reproducible results in double contrast to an experiment to
determine the effect of exploding an atomic bomb near a battleship.
All in all, however useful the distinetion between observation and ex-
periment may be in ordinary practice, I do not yet see that it admits
of any solid analysis. At any rate, no formal use of the distinetion will
be attempted in this book.

Return now to the notion of observation subject to cost. It may be
that the value of the random wvariable x 18 observable but only at a
cost ¢, a real-valued random variable measured in utiles. If, as hereto-
fore, F(x) denotes the set of acts derived from F on cost-free observa-
tion of x, let F(x) — ¢ denote the set of derived acta subject to the ran-
dom cost ¢. This notation is interpreted to mean that, if f is the generic
element of F(x), then f — ¢ (which, being a utility-valued function of
8, 18 an act) is the generic act of the set F(x) — ¢. Very often the cost
of an observation is independent of s, but not, for example, for him that
tests the sharpness of a thorn with his finger. Since observations are
typically paid for before, or simultaneously with, making the observa-
tion, the cost is typically observed along with the observation proper.
Put differently, the cost ¢ is typically a contraction of the observation
x. Thus, if in some special context any advantage were to be gained
by so doing, it would not be drastic to assume the cost of observing x
to be a function of the form ¢'(x); but, as a matter of fact, no such ad-
vantage has come to my attention. It is not difficult to think of ex-
periments to which the assumption does not apply. For example, in
the present state of uncertainty about the long-term effects of x-rays,
anyone conducting a short-term experiment in which young human be-
ings were subjected to large doses of x-radiation would risk costs that
might not overtly manifest themselves for half a eentury, or even for
generations,

Much that would ordinarily be called observation cannot be described
by saying that the random cost is simply to be subtracted from each de-
rived act of the corresponding observation thought of as free of cost.
Allowing that it may be legendary, the form of trial by ordeal in which
the guilty floated safely to be hanged and the innocent drowned to be
exonerated epitomizes such a situation; except in point of absurdity,
ordinary industrial destructive testing of electric fuses and other prod-
uects is much the same, Strictly speaking, discrepancy oecurs even in
the ordinary context in which the cost of observation is a fixed sum of
money; for the utility of money is not strictly linear, so the cost of ob-
servation typically affects different derived acts somewhat differently.
This sort of situation is indeed so common as to introduce at least a
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slight error into almost every application of the notion of cost as a sub-
tractive term. It would therefore be desirable to extend considerably
the notion of cost of observation, but, thus far, I see no way to do so
that does not destroy the mathematical advantage of singling problems
of observation out of the class of decision problems generally.

It is convenient now to analyze the appropriateness of regarding the
number v(F) as a measure of the value of F. As must already be clear
to the reader, if a person is to make a preliminary decision limiting his
next decision to one or another of several sets of acts, say, F, G, and H,
then his preliminary decision will select a set that has the highest value
of v, and the preliminary and secondary decisions, regarded as a single
grand decision, amount to the problem of deciding on an act from
F UG UH. Sofaras this use of v is concerned, any increasing mono-
tonie funetion of r such as +* or 3 would be equally satisfactory, but v
has an advantage in arithmetic simplicity when costs of observation
are involved. Consider, for example, the problem of whether to make
a particular observation at the random cost ¢ or to make no ohservation
at all. The two sets of acts involved may then be symbolized by
(F(x) — ¢) and F, respectively. The peculiar simplicity of v as a meas-
ure of the value of a set of acts, in this context, is exhibited by the almost
obvious fact that v(F(x) — ¢) = »(F(x)) — E(c). It may be remarked
in passing that v is a particularly good measure in any problem where
F, G, or H is, =0 to speak, made available by lot, a possibility realized
in (7.3.2), for example.

Finally, if one among several observations is to be chosen, each with
its own random cost (possibly including the null observation), the per-
son will choose an observation for which v(F(x)) — E{c) is as large as
possible. If the number of observations among which deecision is to
be made is infinite, that function may not attain a maximum value,
but the value of the situation to the person can reasonably be regarded
as the supremum of the function; there are, of course, observations
among those available for which the supremum is arbitrarily nearly
attained.



CHAPTER 7

Partition Problems

1 Introduction

In the introduction of the preceding chapter it was explained that
the treatment of decision problems in general had been carried to a
logical conclusion, and that to study decision problems further it had
become necessary to specialize. The notion of observation was accord-
ingly chosen as the subjeet of specialization. The situation now re-
peats itself at a new level, for I have now ecovered the main points that
oceur to me about observation in general, though I see considerably
more to say about a certain type of observation.

The type of observation problem to which the present chapter is de-
voted, though relatively special, is still very general. Indeed, its gen-
erality is suggested by the fact that no other type of problem is syste-
matically treated in modern statistics. In objectivistic terms, it would
be described as the type of decision problem in which the consequence
of each basic act depends only on which of several (possibly infinitely
many) probability distributions does in fact apply to the random wvari-
able to be observed.

Modern statistics has no name for this type of problem, because it
recognizes no other type; and no particularly suggestive name oecurs
to me. I am therefore tentatively adopting the noncommital name
“partition problem.” Such motivation as there is for that name will
be apparent when the concept is defined.

In non-objectivistic terms, a partition problem has the following
structure. There are, of course, basic acts F and an observation z.
The peculiar feature is a random variable b, which is typically not sub-
ject to observation, with the property that every f in F is constant
given that b has any particular value b,

In many practical problems b takes on an infinity, even a non-de-
numerable infinity, of values, but systematic consideration of such
problems would involve those advanced mathematical techniques that
are explicitly being avoided in this book. Glossing over such questions
of technique for the moment, the state of the world, which is itself a
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random variable, might play the role of b; with respect to this b, any
observational decision problem would presumably be a partition prob-
lem. It may, therefore, be inaceurate to call partition problems special,
but they are special whenever b is not equivalent to the state of the
world.

As has just been mentioned, the general policy of this book with re-
spect to mathematical technique restricts formal treatment of partition
problems here to thoee in which b assumes only a finite number of dif-
ferent values, that is to say, those in which b is to all intents and pur-
poses s partition B;, whence the name “partition problem.” For the
reader who is not familiar with the elements of the geometry of n-dimen-
sional convex bodies, there will be a distinct expository advantage in
confining the formal treatment still further to twofold partitions. At
the same time, by explicit statements and by the use of suggestive no-
tation, all readers will be given at least some idea of the extension of
the theory to n-fold partitions; indeed, a reader familiar, for example,
with Sections 16.1-2 of V4], or with [B20] will ind the extension as
plain as if it had been made explicitly. Thus the restriction to twofold
as opposed to n-fold partitions will be to the advantage of some and to
the disadvantage of none.

Partition problems are even closer than are observational problems
generally to the subject matter of statistics proper. In particular, in
the course of this chapter, multipersonal considerations will from time
to time be pointed out in connection with partition problems,

2 Structure of (twofold) partition problems

A central feature of a twofold partition problem is, of course, a two-
fold partition, or dichotomy, B;, + = 1, 2. By way of abbreviation let
B{i) = P(B,),and g = [8(1), 8(2)}. The B(i)’s can be any two numbers
such that B(r) > 0 and Z8(x) = 8(1) + B(2) = 1. Bince §(2) = 1 —
B(1), it might seem superfluous to have a special notation for 5(2); but
this redundancy more than pays for itself in symmetry, especially in
the extension of the theory to n-fold partitions. The possibility that
one of the (i)'s vanishes has been ruled out, for it is neither typical nor
interesting, and its retention would mar the exposition of the theory,

Each basic act f ¢ F is characterized by a pair of numbers f; such that

(1) P(f(s) = fi| B) = 1

for each ©. The technical assumption will be made that as f ranges
over F the numbers f; are bounded from above for each ¢, which is a
little more stringent than the now familiar assumption that ¢(F) < .



122 PARTITION PROBLEMS i7.2

The assumption expressed by (1) is made for definiteness and sim-
plicity, though its full force will seldom be used. The possibility of re-
laxing (1) in certain contexts will be mentioned from time to time, es-
pecially since this possibility is of some interest even in the exploitation
of (1) itself. In particular, for several pages now it will scarcely ever
be necessary to assume anything about the structure of F relative to
B, except that E(f | B)) is bounded from above for each i; for making
the abbreviation f; = E(f| B;), almost everything from here through
Exercise 1 applies verbatim.

The expected utility of any f ¢ F can be computed in several forms
thus:

2) Ef) = E(f| B)P(B,) + E(f| By)P(B,)
= f18(1) + f28(2)
= Zf8()
= fa + ( — f2)8(1).

The first of these forms expresses the expected value in general terms;
the second utilizes abbreviations; the third is an obvious mathematical
transeription of the second, particularly suggestive of extension to the
n-fold situation; the fourth sacrifices the symmetry exhibited by the
preceding three in order to take advantage of the relation between
g(1) and 8(2). From the fourth form of (2), it is clear that, for fixed f,
E(f) is a linear function of 8(1). Henceforth that fact, for example,
would be expressed in symmetric form by saying that E(f) is linear in
B8, and the dependence of E(f) on § might be explicitly indicated by
writing E(f | 8).

Since in any one decision problem 8 is constant, it might seem point-
less to emphasize that E(f | §) is linear in 8. But there are, in fact, two
different reasons for being interested in variation of 8. In the first place,
once the observation x has been observed to have the value z, the basie,
or & priori, decision problem is replaced by an a posteriori problem in
which P(B; l z) plays the role originally played by P(B;) = g(i). Sec-
ond, interest in comparing different people is becoming increasingly
more explicit a8 the book proceeds. In particular, it is of interest to
compare people who have available the same set of basic acts and who,
at least so far as the distribution of x and the acts in F are concerned,
have the same conditional personal probability given B; but who at-
tach different probabilities 5(f) to the elements of the partition.
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To emphasize its dependence on 8, v(F) will sometimes be written
n{F|ﬂ] ; its computation in the following fashion is fundamental to
the theory of partition problems.

(3) o(F|8) = sup E(f|8)
= sup [18(1) + f28(2)]

= k(8),

where k{8) is defined by the equation in which it occurs. According to
Exercise 4 of Appendix 2, the function k is convex in g8, that is, k is
eonvex when recognized as a function of 8(1) alone. Interpreted as a
pair of a priori probabilities, 8 is confined to the open interval defined
by 28(j) = 1, 8(i) > 0, but it is valuable to recognize that k is defined,
eonvex, and continuous on the closed interval Z8(j) = 1, 8({) > 0.
Many typical features of the relationship between F and B; are illus-
trated graphically by Figure 1. The abscissa of that graph represents

:X
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Figure 1

both 8(1) and 8(2), as indicated, and the ordinate is measured in utiles.
The straight lines, the left ends of which are marked a, b, ¢, d, and e,
graph as functions of 8 the expected values of the five basie acts of the
particular problem represented. The ordinates at their right and left
ends, respectively, are the corresponding values of the fi’s and fi's.
The graph of k is marked by heavy line segments. It is seen that the
lines a, ¢, and ¢, and they alone, touch the graph of k, for they repre-
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sent the only acts that are optimal for some value of 8. The act repre-
sented by d is inadmissible (if (1) is taken literally), being in fact strictly
dominated by every other act except e, and it is therefore superfluous
to the person, no matter what the value of 8; b is obviously equally
superfluocus, but for a different reason.

In many typical problems in which F has an infinity of elements, k
is, unlike the k in Figure 1, strictly convex; that is, its only intervals
of linearity are point intervals.

Exercise

1. Compute and graph k for the set F of dichotomous acts of the
form
file) = 1= (1 + @)%
—2<¢<+2
fale) =1 - (1 — ¢)%

Answer. k(8) = [3(1) — B(2)F = [28(1) — 1P

Turn now to the relations between an observation x and the dichotomy
B;. As before, it will be assumed for mathematical simplicity that the
values of x are confined to & finite set X. The probability that x at-
tains the value z given B;, written Pz I B;), is fundamental in connec-
tion with partition problems. For one thing, as has already been indi-
cated, there is interest in considering people who, though differing with
respect to 8, agree with respect to P(z | B;). The probability P(z, B)
that x attains the value z and that B; simultaneously obtains, the proba-
bility P(x) that x attains the value z, and the probability 8(r | z) of B;
given that x(s) = z are derived from P(z i B;) and g by means of Bayes’
rule (3.5.4) and the partition rule (3.5.3) thus:

(4) P(z, B,) = P(z | B)8(%).
(5) P(z) = 2 P(z, B).
(6) 8(i| z) = P(z, B))/P(2),

if P(x) # 0; and B(i | z) is meaningless otherwise. It must be remem-
bered that P(z, B;), P(z), and 8(i | x) depend on the value of 8 and that
a really complete notation would show that dependence. On the other
hand, the condition that P(x) # 0 is independent of the value of 8.
When a second observation y is to be discussed, (i 1 y) is, in defiance
of strict logie, to be understood as the analogue of 8(i i x); that is, as
the conditional probability of B; given that y(s) = y, not as the same
funetion as 8(¢ | z) with y substituted for r. Corresponding conven-
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tions apply to P(y), P(y| B,), and P(y, B,). Finally, free use will be
made of such contractions as 8(z) for {8(1 [ z), .3{21 z)}.
Equation (1) implies that

(M E(t| B, z) = E(f| B)

for all f ¢ F and for all z such that P(z| B;) > 0. Equation (7) is the
mathematical essence of the concept of a partition problem, and wir-
tually all that is to be said about partition problems applies verbatim,
if (7), even without (1), applies to such observations as may be under
discussion.

In view of (7),
(8) E(f|B,z) = 2 E(f| B;, z)P(B;| z)
i
= ;mn | z),
if P(z) > 0.

3 The value of observation

If the observation x is made, and it is found that z(s) = z, then the
a posteriori value of the set of basic acts, written o(F | z), or more fully
o(F | 8, ), will typically be different from the a priori value v(F| 8).
Indeed, in view of (2.5),

(1) o(F| B, z) = sup E(f| 8, z)

= o(F | 6(z))
= k(8()).

This is the first illustration of the technical convenienece of the funetion k.

It is known on general principles that #(F(x)) > »(F), but there is
some interest in reverifying the inequality in the present context; in
particular, it is possible here to say in interesting terms just when equal-
ity can obtain.

(2) v(F(x) | 8) = E(w(F | 8(x)) | 8)
= E(k(8(x)) | 8)
> KE(@SX) | 8)),

where the terminal inequality is an application of Theorem 1 of Appen-
dix 2. To appreciate the inequality (2), it is necessary to calculate
E(g(i| x)) explicitly. This caleulation, typical of many the reader must
heneeforth be expected to make for himself, runs as follows, where it is
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to be understood that the summation with respect to x applies only
to those terms for which P(x) 1s different from 0.

(3) E@B@E|x) |8 = 208G | 2)P(z)

P(z, B;)
- F;: P(x)

= ZP{Ir Hi}

= P(B:) = 8(1).
Substituting (3) into (2) leads to the anticipated conclusion that
) v(F(x) | 8) = k(8) = o(F | B).

According to Theorem 1 of Appendix 2, »(F(x) | 8) is definitely greater
than o(F | 8) unless 8(x) is confined with probability one to some inter-
val of linearity of k, in which case the observation x may fairly be
called irrelevant to the basic decision problem at hand. If x is irrelev-
ant, the interval of linearity to which 5(x) is confined must, in view of
(3), contain 8. In the particularly interesting case—and the only pos-
gible one, if k(8) is strietly convex—in which 8(x) is with probability
one equal to a constant value, that value must therefore be 8. An ob-
servation for which g(x) 18 with probability one equal to § may fairly
be called utterly irrelevant, because it is irrelevant no matter what set
F of basic acts is associated with the dichotomy.

To say that x is utterly irrelevant is to say that, with probability
one,

P(z)

®) 8| 2) = 22 Lf;;’“ﬂ

= B(i).
Since 8(1) > 0, (5) is equivalent to the condition that
(6) P(z| B)) = P(x),

at least when P(x) > 0. Furthermore, it i8 obvious from (2.5), again
noting that 8(7) > 0, that, if P(z) = 0, then P(z| B;) = 0. Therefore
x is utterly irrelevant, if and only if (6) holds for all z and 4; that is, if
and only if the distribution of x given B, is independent of ¢. This form
of the condition is intuitively evoked by the words “utterly irrelevant”
and has the advantage of not involving 8.

It is noteworthy that whether an observation is utterly irrelevant
depends neither on the particular set of basic acts, nor on the value of
8, so people will agree on what is utterly irrelevant independent of their
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personal a priori probabilities and the acts among which they are free
to choose,

The greatest lower bound in x of »(F(x) | 8), namely »(F | 8), and the
circumstances under which this bound is attained having been estab-
lished, it is natural to turn to a parallel investigation of the least upper
bound. A foothold for that investigation is found in the remark that
the ehord joining the ends of the graph of k never lies below the graph.
\nalytically,

(7) k(8) < B(1)k(1, 0) + B(2)k(0, 1) = 1(8),

where 1(8) is defined by the context. Unless one of the 8(i)'s vanishes,
equality holds in (7), if and only if k(8) iz a linear function. In view of
(7) and (3),

(8) v(F(x) | 8) = Ek(8(x)) | B) < E((8(x)) | 8) = I(8).

The inequality (8) gives an upper bound for »(F(x)). In graphieal
terms it says that, for any 8, no observation can add more to the value
k(8) of F than the vertical distance at 8 between the graph of k and
the graph of the chord joining the ends of k.

Equality obtains in (8), if k is linear, in which case the upper and
lower bounds are equal to each other irrespective of the value of 8 and
the nature of the observation. If F is dominated by a single f, that is,
if there is a single f optimal given B, for both values of ¢, then k is linear.
It can easily be verified that, provided F is finite and (1) actually ob-
tains, this is indeed the only circumstance under which k is linear, and,
even if these provisions are not satisfied, the possibilities are not much
mare interesting.

Suppose, then, that k is not linear; equality can hold in (8), if and
only if f(x) is with probability confined to the ends of the interval, a
condition that does not depend at all on F. By simple considerations,
which have by now been rendered familiar, this condition on x is equiv-
alent to the condition that

(9) P(z| B))P(z | By) = 0,

for all z. An observation satisfyving (9) may fairly be called definitive,
because, if (1) obtains, such an observation removes all uncertainty
about the outcome of each f « F, no matter what 3 may be.

Perhaps many of the observations made in everyday life are defini-
tive, or practically so. Once Old Mother Hubbard looked in the cup-
board, her doubts were reduced to the vanishing point. None the less,
definitive observations do not play an important part in statistieal
theory, precisely because statistics is mainly concerned with unecer-
tainty, and there is no uncertainty once an observation definitive for
the context at hand has been made.
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4 Extension of observations, and sufficient statistics

It was shown in § 6.4 that a statistic, or contraction, y of an obser-
vation X is never worth more than x and is typically worth less. The
purpose of the present section is to explore the relation between an ob-
servation and a contraction of itself in the case of a partition problem,
especially to explore the special conditions in that case under which the
statistic is as valuable as the observation itself.

Let x and y be two observations such that y is a statistic of x, that
is, such that, for some function y', y(s) = y'(z(s)) with probability one.
The values of F(x) and F(y) can be compared by the following calcula-
tion, which in the light of the preceding section will need but little ex-
planation.

(1) v(F(x)) = E(k(8(x)) | 8
= 3 E(k(8(x)) | 8, v)P(y).
w

(2) E(k(8(x) | 8, v) = KE@BX) |8, ),
if Py} > 0.
(3) E@GE]x) |8, v) = 2 8¢ 2)P(z| v

_ 586 9P@ Y

: P(y)
if P(y) > 0.

Because of the special relationship between x and y, P(z, y) = 0 un-
less 4'(z) = y, in which case P(z, y) = P(z). Understanding that the
summation indicated by Z' in (4) below extends only over those values
of z for which ¢'(z) = y, the caleulation is continued thus:

, P(z, By) P(z)
P(z) Py
_ P(z, B;)
P(y)
Py, B;)
Ply)
= B(i | y).

(4) E@GE|x) |8 y) =2

Therefore,
(8 o(F(x) | 8) > 2 k(BW)PW) = v(F(y) | 8).
¥
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After the preceding section, it seems almost superfluous to explain
that the point of the calculation above is not to obtain the inequality
(5), which has already been derived with less labor and greater gener-
ality in Exercises 6.3.8 and 6.3.13b, but to be able to discuss when equal-
ity holds in (5). The caleulation makes it clear that equality holds in
(5), if and only if equality holds in (2) for every y of positive probability.
This in turn is equivalent to the condition that, given y, 8(x) is confined
with probability one to an interval of linearity of k. A sufficient con-
dition for that is that, given y, 8(x) be confined with probability one to
a single value, which eannot be other than 3(y); if k is strictly convex,
the almost certain confinement of 5(x) to B(y) is also necessary. Now,
if, for every y of positive probability, P(8(z(s)) = 8(y) | y) = 1, then
it is true that f(z) = B(y) with unconditional probability one, that is,

(6) P(B(z(s)) = B(y(s))) = 1.

The condition (6) clearly does not depend on F, and the following
caleulstion so expresses it as to make clear that it does not depend on 8
either., Equation (6) is satisfied, if and only if

P(z| B)BG _ PW'(x)| BB
P(z) Py'(z))

when P(z) > 0; or, if and only if

P@|B) _P@)

Py|B) P

when P(x 1 B;) > 0; or, again, if and only if

(9) P(z| By y) = Pz y),

when P(y | B;) > 0; or finally if and only if P(z| B;, y) is independent
of i for those values of ¢ for which it is defined. In this form, and yet
another to be derived in connection with (10), the condition is widely
studied in modern statistical theory and a statistic satisfying the con-
dition is there called a sufficient statistic. The name is well justified;
for, as has just been shown, it is sufficient, for any purpose to which x
might be put, to know y, if and only if y is a sufficient statistic for x.

A different, and perhaps more congenial, approach to sufficient sta-
tistics is the following. If the person observes the particular value y
of y, his original basic decision problem is replaced by a new one with
the same basic acts, but with 3 replaced by 8(y). BStrictly speaking,
this will fail to be a partition problem, in ease 8(y) is (0, 1) or (1, 0), or,
for brevity, if 3(y) is extreme. To see whether o(F(x) | 8) is really greater

(7)

(8)
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than »(F(y) | 8), it is enough to investigate whether, for some y of posi-
tive probability for which 8{y) is not extreme, x is relevant to the par-
tition problem based on 8(y), for if 8(y) is extreme there can be no value
in following the observation that y has occurred by the observation of
x. Therefore, x will be a worthless addition to y, if, for every y for
which g(y) is not extreme, x is utterly irrelevant, that is, if y is sufficient
for x. If k is strictly convex, the condition is also necessary.

The recognition of sufficient statistics in explicit problems is often
facilitated by the following factorability criterion. A statistic y is suffi-
cient for x if and only if there exists at least one pair of functions R and
S such that

(10) P(z| By) = R{y(x); )3(z).

The necessity of the condition follows from the exhibition of a particu-
lar R and S for a sufficient statistic thus:

(11) P(z| By) = 2 P(z| B;, y)P(y | B))
¥

= > P(z|y)P(y| B)
v

= P(y'(z) | B)P(z| ¥'(z)).

On the other hand, if P{x| B,) can be expressed in the form (10), y
can be seen to be sufficient for x thus: If P(z| B, y) is meaningful, it
is given by

(12) P(z| B, y) = P;;‘I’ g‘j
=0, if y'(z) # v,
_Pa | By) |

P(y| By
8@
X 8E)
yir') ey

which is independent of . The reader may be interested in asking
himself, as an exercise, what freedom there is in choosing R and S when
at least one such pair of factors exists.

Interest in sufficient statistics is not confined, of course, to twofold,
or even finite, partitions. With that in mind, the various eriteria for
sufficient statistics have been given in such terms as to be valid for any
finite partition and the usual infinite ones. They require some modifica~

if y(z) = v,
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tion if the observations are not confined to a finite, or at any rate de-
numerable, set of values, but formal details of that important extension
will not be given here. Elementary treatments are given in most text-
books of mathematical statistics: more advanced and general treat-
ments are given in [B2], [L6], and [H3).

There are several examples of sufficient statistics in the exercises
below, others are given in almost any fairly advanced textbook on sta-
tistics (in particular, in [C9]), and one other general example of extraor-
dinary importance is treated in the next section,

Exercises

In these exercises, let x denote a multiple observation x = |x3, -+,
X« ], where, given B, the x,'s are independent and identically distributed.
There will be no real advantage here in thinking of the partition as
twofold, or even finite, and for some of the exercises it will be imprac-
tical to do so.

1. Let P(z, 1 B;) = p; if z, = 1,

= i if Iy = ﬂ..
= (), otherwise,
where p; + ¢; = 1; and let y/(z) = 2 z..

Show that:
(8) P(z| B) = pfei™;
(b) y is sufficient for x, using the factorability criterion;

) P(y| B) = (;) pdai, where, as always, (:) =yl = )
-1
@) Pz|y@) = (; ) :
(z)

2. For each positive integer 1, let
P(z,|B) =i, ifz <4
= (), otherwise,

where the values of x, are confined to the positive integers; and let
v'(z) = max z,. Show that:

(@ Piz|B) =i, ify<i
= ), otherwise ;

(b) v is sufficient for x.
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3. In the two exercises above it has been possible to choose the fae-
tor S identically equal to 1. To exhibit & more typical example, let 1,
z,, and y be confined to the positive integers with y'(z) = max z,, a8
in the preceding exercise, and let

P

Pz, | By = . if v, < %
(2 B2 G+ 1) fr=h
= ), otherwise.
Show that:
2 . ]
P Bi = ) 3 l-f ﬂ .J
@ Pe|B) = () T ity <
= (), otherwise,

(b) y is sufficient for x.

4. Put no restriction on the conditional distributions P(z, | B;), ex-
cept that x, be confined with probability one to some fixed finite set.
Say, for the moment, that two values z and z' of x are team males, if
one arises from the other by permutation of the component observa-
tions. This divides the possible values of x into feams, and, academic
though it may seem, the team to which z belongs can be taken as y'(z).
Show that the probability of z given y'(z) and B; is independent of 4
(if it is defined at all), so that the statistic y'(x) is sufficient for x.

If the values of the x,.'s happen to be real numbers, then for any =z
it is possible to permute the component observations to obtain a non-
decreasing sequence of n (not necessarily distinet) numbers, and only
one such non-decreasing sequence can be so obtained from each z.
The sequence thus attached through x to each s is called in statistical
usage the sequence of order statistics corresponding to x. Since team
mates, and only team mates, have the same order statistics, the set of
order statistics regarded as a single statistic is equivalent to the team
statistic y'(x) defined more generally in the paragraph above and is
therefore sufficient.

5. Let x, given B; be subject to the normal probability density with
mean g,;, and variance ¢,°, that is,

(13) #(x, [ B;) = {Eﬂig]_ﬁﬁﬁp { —(x, — u)?/26).

This situation, though elementary, does not fall within the technical
scope of this book, because x, is not confined to & finite set of values.
The reader familiar with probability densities will see, however, that
the density of x is

{14} 'ﬁ(-tu "t | B.}q {Eﬂﬂ'ii}_ﬂﬂ 'E.Ip{

E#rn + BTy HE ]
Ed'.'ﬂ d’f 20'1‘.2
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which suggests that y, defined by
“5} F}[J:) = lEIrE: Zz. |,

may fairly be called a sufficient statistic for x.

Show in the same heuristic way that, if ¢; is independent of ¢, then
y'(z) = Zz, defines a sufficient statistic; and that, if u; is independent
of 1, then ¢/(z) = nZz,® — (Zz,)* does so.

6. If w and z are observations independent of each other given B;,
under what conditions can w be sufficient for {w, z}?

7. To break away from independent observations, suppose that, in
the event B;, n cards are dealt from a thoroughly shuffled deck of n 4 4
cards each bearing a different serial number from 1 through n 4+ 1.
Let w, be the number on the rth card dealt and w = {wy, -+, Wal.
Show that max w, defines a sufficient statistic for w and that the w,’s

are not independent.

8. If z extends w, and w is sufficient for y, then z is also sufficient for
y.
9. If z is sufficient for w, and y is independent of both z and w, then
iz, v} is sufficient for |w, y|.

10, Every definitive statistic is sufficient,

In virtually all statistics texts it would be said that the y defined by
(15) constitutes not one statistic, but two; similarly, the set of order
statistics would ordinarily be referred to as n statistics rather than as
one. There are contexts in which it is appropriate to try to count sta-
tistics in that fashion, but, so far as the theory of sufficient statistics
is concerned, it often seems fruitless, if not positively detrimental, to
do so.

The concept of sufficient statistics has proved of great value in sta-
tistical theory and practice. The reason for this does not seem to me
altogether easy to analyze, but, as the exercises above illustrate, the
families of distributions most frequently studied in statistics are gen-
erally rich in sufficient statistics. It is hard to separate cause from
effect here; for the distributions that are most studied tend to be those
having the greatest mathematical simplicity, and the presence of strik-
ing sufficient statistics, such as those exhibited by Exercises 1, 2, 3, 5,
and 7, are among the sources of mathematical simplicity most often
met in the study of particular families of distributions.

It must be emphasized that sufficient statistics often provide a signifi-
cant saving in the mechanical labor of storing and presenting data.
Thus, in any experiment faithfully represented by Exercise 1, it is
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sufficient, in both the technical and ordinary senses of the word, to
record & single integer vy in place of the list of z,'s, which might well be
very long., Several of the other exercises would in principle also lead
to great savings of this sort, but Exercise 5 is the only other that arises
frequently in practice.

The concept of sufficient statistics was introduced, together with
much of the theory associated with it, by R. A. Fisher (cf. index, [F6]).
The subject has been one of eontinuing interest and has been explored
in several directiqns; key references are [B2], [E1], [L6], [H3], [K15],
and [M5], and (LeCam 1964).

6 Likelihood ratios

The random variable 8(x) has played so important & role in preced-
ing sections that the reader will probably not be surprised to find that
A(x) is a sufficient statistic for x, & conclusion that, in the light of the
factorability criterion (4.10), can be seen thus:
P(By| z)

B(#)

B(i| 2)
B(1)
If a statistic is sufficient, it is sufficient irrespective of the value of 3;
moreover, any multiple of it by a non-gero constant is also sufficient.
Therefore, (1) implies that for any numbers «(1), such that «(i) > 0,
the multiple observation r{a) defined by
' P(z| B)
Za(j)P(z| B))

(1) P(z| B) =

P(z)

—
—

P(zx).

ri(z; @) =p

(2)

T{I; “} =Di irll:z'.l ﬂ]: r:{:, ﬂ}]

is a sufficient statistic for x. Since
3) 2 a(iryz; ) = 1

]

there is some redundancy in retaining both components, but this re-
dundaney is more than compensated by the advantage of retaining
symmetry, especially when n-fold partitions are contemplated.
Formally, the r{a)’s are an infinite family of sufficient statistics, one
for each a; but to all intents and purposes they represent but one suffi-
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cient statistie, for any r(e) is equivalent to any other, say r{«"), as can
be demonstrated thus:

P(z| B))/Za/(k)P(z | By)

4 @) =
(4) iz, a) Za(f)|P(z| B,)/Za'(k)P(z | By))

r;{:r, al']
Za(jri(z, )

Having such a multiplicity of forms for what is essentially one im-
portant statistic is rather embarrassing, so there is some incentive to
pick a standard form. Betting each «(j) = 1 recommends itself as con-
venient and leads to the particular statistic r = {r;, 13}, where

P(z | By)

©) "= S Pe B

This form is indeed convenient for twofold and, more generally, for n-
fold partitions, but, where infinite partitions are to be dealt with, its
apparent naturalness is misleading, for the sum in the denominator of
(5) is then typically divergent. In the case of twofold partitions, a
convenient form for the statistic is that of a likelihood ratio, in the
sense introduced in § 3.6, for it 15 easy to see that, infinite numbers
being admitted, P{:! By)/P(x [ Bg) is equivalent to r. Henceforth, any
statistic equivalent to r will be called a likelihood ratio of x with re-
spect to the partition B,—a definition that does not seriously confliet
with ordinary statistical usage of the term.

Figure 1 illustrates a geometric interpretation of likelihood ratios
that is sometimes valuable. The figure can best be deseribed by telling
how to draw it. First draw a pair of cartesian coordinate axes for varia-
bles u; and u;. Next draw the two line segments represented by u; +
g = 1 and (uy /(1)) + (ug/a(2)) = 1 with the u/s non-negative. The
left ends of these segments are indicated in Figure 1 by a and b, re-
spectively, the particular value & = {1/3, 2/3} being used for illustra-
tion. Now plot the point [P(z|B,), P(z| Bs)}. If z has positive
probability (for any, and therefore for all, 8); this point will be different
from the origin O, so it will be possible to draw the (dashed) line con-
necting the origin with the point {P(z| B,), P(z| By)}. This line {or
ray through the origin, as it is often called) must necessarily pierce
the line segments a and b. The important geometrical fact, which the
reader will have no difficulty in verifying, is that these intersections
oceur at the points {ry(z), 13(z)} and {ry(z, @), 2(x, a)}, respectively.
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.f—h-

-

e

{pes|By, Pee|By)

-
-~
-

Bl—-

Figure 1

It is also obvious that the ratio Pz I B,)/P{z | By) is the reciprocal of
the slope of the ray.

Since, to each r that occurs with positive probability, there corre-
sponds a ray through the origin, the ray can be taken as a statistic;
according to the geometrical eonstruction of the preceding paragraph,
this statistie is equivalent to r and is therefore a likelihood ratio of x
with respect to the partition B;.

The ray connecting the origin with a point {u,, us} can conveniently
be represented by the suggestive notation u,:ug, though, of eourse, dif-
ferent pairs of numbers can represent the same ray. More explicitly,
if A is any number different from 0, Au;:huy represents the same ray
a8 uy.tg. In analytical projective geometry any pair of numbers rep-
resenting a ray in this fashion is called a set of homogeneous coordinates
of the ray. The redundaney of the notation u, 143 may be removed by,
for example, characterizing the ray by the reciproeal of its slope u;/us.
Such non-homogeneous coordinatization entails a sacrifice in symmetry
and the necessity of admitting infinity as a meaningful value of the
quotient; both losses are quite troublesome in extension of these geo-
metric concepts to cartesian space of n dimensions, which is necessary
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in connection with n-fold partitions. In homogeneous coordinates the
likelihood ratio can conveniently be represented by any of the equally
good sets of homogeneous coordinates, P(z | By):P(x | By), ri(x):rs(z),
and ry(z, a):ry(z, ). Finally, it may be remarked that P(z| B,)/
P(z | B,) is a non-homogeneous coordinate. Thus the many equivalent
forms in which the likelihood ratio statistics can be naturally expressed
corresponds to the many different notations by which a ray through the
origin can be naturally designated.

The most remarkable fact about the likelihood ratio considered as a
statistic is that it is necessary, so to speak, as well as sufficient. By that
I mean that to have the advantages of knowing x it is necessary as
well as sufficient to know the likelihood ratio. The point can be put
formally thus:

TrEOREM 1 If y is sufficient for x, then y is an extension of r.

Proor. The theorem is virtually obvious in terms of the factora-
bility eriterion for sufficient statistics, for in the notation of (4.10)

R(y(z), 1)
G =
© 0 = SRa@, »
with probability one, exhibiting r; as a function of y. @

Cororrary 1 If z is sufficient for x, and if every y sufficient for x
is an extension of z, then 2 is equivalent to r.

By ordinary analytic standards, the likelihood ratio seems to be a
rather complicated statistic, at least in the case of n-fold partitions,
where 7 is at all large; for, to one who takes seriously the idea that a
multiple statistic should not also be regarded as a single statistic, the
likelihood ratio seems at first sight to be n, or perhaps (n — 1), statis-
tics. Yet Theorem 1 and its corollary show that the likelihood ratio is,
in a fundamental sense, the most compact sufficient statistic that a
partition problem admits.

As an explicit example of a likelihood ratio, consider the twofold par-
tition problem arising from Exercise 4.1 on confining attention to two
different values of p, say p, and p,. The likelihood ratio r is easily
computed thus:

(7) P(z| B) = p¥®(1 — p)*~¥®
V@)
=(1- ‘Pi]'( = ) = gi" (E)’.
80 1 —p g
®) a) = H P27

Zo (pilg)* ™
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Theorem 1 is thereby verified in the present instance; for (8) exhibits
r explicitly as a contraction of y, and y is easily exhibited as a contrac-

tion of r thus:
{ ri{z) H‘:)' }
lﬂg » ——
ro(x) g1 .

M
Pz

In this example, v i3, in view of (8) and (9), equivalent to the likelihood
ratio.

(9) y(z) =
log

Exercises
1. Express k(8(z)) and v(F(x)) in terms of the likelihood ratio thus:
(10) 8(i; 1) = s rB()/ 5;'2 r8(J),
(11) k(B(z)) = k(B(r(z))).
(12 o#@) | ) = T He0) |  Pel 5o |

2. This extended exercise develops the personalistic and behavioral-
istie theory of what, following the objectivistic and verbalistic tradi-
tions of statistics, is called the testing of a simple dichotomy, a type of
decision problem that, though seldom wery realistie, is a popular and
instructive example with important implications for more realistic prob-
lems. Verbalistically such a problem is deseribed as that of making the
best guess on the basis of an observation as to whether it is B, or B,
that obtains. Behavioralisticallv, this is generally interpreted as the
problem of deciding, on the basis of observation, between two primary
acts one of which is preferable to the other if B, obtains and vice versa
if By does. Here is one topic in which the assumption that ¢ is confined
to two values is rather more than simply a pedagogical simplification;
a reader interested in relaxing the assumption will find pages 127-130
of [W3] stimulating.

Suppose that F contains only two acts f; and f; and is dominated by
neither. Let ¢, = py E(f; i B;).

(a) There is no loss of generality in supposing
(13) b1 = i L >0, d=m fu—on >

2 2
which will henceforth be done. That is, it will be supposed that £, is
appropriate only to B; and vice versa.

0,
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(b) Show that

(14) k(B) = ; ¢18(7)  for (1) = 8;/(61 + &) = Bo(1)
= };: $i8(7)  for B(2) > 8o/ (81 + &2) = Bo(2)

= }(d11 + $21)B(1) + §(d12 + 22)8(2) + | 5:8(2) — 328(1)|
- Zj: B8(7) + | 8:8(2) — 88(1) |,
where 8, and the ¢'s are defined by the context.
(e) E(f; | f) = k(8), if and only if 8(f) > 8o(7). This condition ob-

tains for both 's simultaneously, if and only if 8 = §,.
(d) S8how that

(18) k(B(r) = [}: eriB(7) + | 81728(2) — 8ariB8(1) 1}!‘;; ri8(7)

i

- ; i85 r) for r; 2 ri*(8, Bo),

where

. Bo(1)/B())
(16) ri*(8,60) =i ;ﬂu(}'}fﬁm ;
and that

(17) oFx) |8 = }; B8() + 3. | 81P(r | Ba)B(2) — 82P(r| By)B(1) |

= {& + 81l — 2P(ry < ry*(8, Bo) | By)
~ P(r = r*(8, Bo) | B1)11B(1)
+ (& + &1[1 — 2P(ra < r2*(B, Bo) | Ba)
— P(r = r*(8, Bo) | B2)1}B(2).

(e) Any derived act f(x) determines a function i assigning an t to
each r, 1 being implicitly defined thus: f(z) = f;(sy. Conversely any i
determines a derived act. Show that E(f(x)|8) = v(F(x) | 8), if and
only if rye)(z) 2 ritz)*(B, Bo) for every z. Such a function i(x) is called
a likelihood-ratio test associated with r*, Bhow that at least one likeli-
hood-ratio test is associated with every value of r*, and that if P(r = r*)
= ()} (which is typiecally the case) there is only one.

(f) If f(x) is determined by a function of i, the probability of deciding
on the inappropriate value of i in case B; obtains is generally called
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the probability of an error of the j-th kind. Analytically the probabili-
ties of error of the first and second kind are, respectively,

(18) er =pt P(i(x) = 2| By), &3 =pr P(iz) = 1| By).

If i* is a likelihood-ratio test associated with r*, show that its errors
of the first and second kind are subject to the bounds

(19) Pirn<n*|B) <e*<Pir,<n*| By
(20) P(ry > n*| By) < g* < P(ry 2 r;*| Ba).

What about the typical case that P(r = r*) = 07

(g) Show that, if i is at least as good as i* in the sense that ¢; < ;*
for both ¢'s, then i is a likelihood-ratio test and i is virtually i* in that
e; = ¢;* for both v's. Hint: Consider an F and a 8 for which »*(8, 8,)
= r*, showing that these exist, and note that, for this decision problem,

Efin| 8) = (&1 — 821 — 2:%)}8(1) + [e2 — 8:(1 — 2e2*)}8(2)
= o(F(z) | 8)
Ef|B) = {e1 — 82(1 — 2e1)}8(1) + lea — &;(1 — 2¢3)}8(2)
> o(F(x) | B),
with equality if and only if i is a likelihood-ratio test.
This important conclusion about likelihood-ratio tests has been much
emphasized, especially by the Neyman-Pearson school.

The concept of likelihood ratio, sometimes simply ealled likelihood,
is now one of the most pervasive concepts of statistical theory. It
seems to have been introduced in 1922 by R. A. Fisher (cf. index of
[F3]), who emphasized it in connection with the important method of
estimation named by him “the method of maximum likelihood.” Tts
use in testing hypotheses was apparently first emphasized by J. Ney-
man and E. 8. Pearson (see Vol. II, p. 303 of {K2]). In connection with
likelihood ratios as necessary and sufficient statistics, mathematically
advanced readers will be interested in Section 6 of [L&], [B2], and
[M5]. One of the earliest contributions in this direction was made by
C. A. B. Smith [S14].

(21)

6 Repeated observations

If x(n) = {x;, -+, x,}, where, given B;, the x,’s are independent
identically distributed random wvariables, then #(F(x(n))) is a non-de-
creasing function of n, for the (n + 1)-tuple is an extension of the n-
tuple. If k(3) is strictly convex—a condition that you now recognize
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as interesting—v(F(x(n))) is easily seen to be strictly increasing in n,
unless the individual x,'s are either utterly irrelevant or definitive.

It is to be expected, especially in the light of the approach to certainty
discussed in § 3.6, that, as n becomes very large, x(n) will become prac-
tically definitive. Indeed, § 3.6 makes it possible to state and prove a
formal theorem to that effect.

TaEOREM 1

Hre. 1. x(n) = {xy, ---, X}, where, given B;, the x,'s are inde-
pendent and identically distributed random variables.
2. The x,’s are not utterly irrelevant to B;.

3. o(F|8) = k(g).
Coscr.  lim o(F(x(n)) [8) = UB) =np: B(K(, 0) + Bk, 1)
uniformly in 8.

Proor. Writing x as short for x(n),
(1) o(F(x) | 8) = E[k(8(x))].

For an arbitrary e > 0, let the closed interval I on which k is defined
be partitioned into two subsets J and K, where J is the set of those
B's such that

(2) k(B) 2 1(8) — ¢

and K is the complement of J relative to 1.

It follows from the continuity of the funections on each side of (2)
that 8 ¢J, if either component of g is sufficiently large.

The computation initiated in (1) can now be carried forward thus:

8)  Ek(B(x)] = Ek(B(x) | plz(s)) ¢ JIP(B(x(s)) eJ)
+ Elk(8(x)) | B(z(s)) = KIP(8(z(s)) ¢ K)
> E[UB(x)) | B(x(s)) ¢ JIP(B(z(s)) ¢ J)
+ min k(8)- P(3(z(s)) ¢ K) — ¢

= E[l(8(x))] — {E[l(8(x)) | Bx(s)) ¢ K]
- It:’gn k() P(B(x(s)) e K) — e
> 18) - max| k(@) |-PEE) ¢ K) ~ e
Now, in view of the paragraph in which (3.6.15) occurs and the fact

that, if either component of 7 is close to 1, 8 «J; P(8(z(s)) & K) becomes
arbitrarily small for sufficiently large n. %
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7 Sequential probability ratio precedures

The present section digresses to discuss an interesting application of
the ideas presented in this chapter to what is called sequential analysis,
Sequential analysis refers in principle to the theory of observational pro-
grams in which the selection of what observations to make in later
phases of the program depends on what has been observed in earlier
phases. Buch behavior is commonplace in everyday life; for example,
you look for something until you find it, but not longer. Statisties it-
self has always used sequential procedures. For example, it is not rare
to conduct a preliminary experiment to determine how a main experi-
ment should be carried out. Thus, if one were required to estimate
with a roughly preassigned precision the mean of a normal distribution
of unknown mean and unknown variance, one might reasonably begin
by taking ten or twenty observations, which would give some idea of
the variance and would therefore determine about how many observa-
tions are necessary for achieving the requisite precision.

Commonplace though problems with sequential features are, A. Wald
was the first to develop (1943) a systematic theory of a considerable
body of problems of this sort. For early history see the Introduction
of [W2] and the Foreword of Section I of [S17)].

Some later ideas on sequential analysis, due mainly to Wald and
Wolfowitz, are the subject of this section. If will not be praectical to
proceed with full rigor, primarily because random variables capable of
assuming an infinite number of values are necessarily involved. Full
details are given in [W3] and more compactly in [A7], but not in Wald's
book on sequential analysis [W2],

Let x = {x(1), -+, x(v), - -}, where the x(r)'s are conditionally an
infinite sequence of independent, relevant, identically distributed ran-
dom variables. Rather informally, a sequential observational program
with respect to x is a rule telling whether to observe x(1) or whether to
make no observation at all; if the particular value z(1) is observed,
whether to observe x(2) or to diseontinue observation; if the values
z(1) and x(2) are observed whether to observe x(3) or to discontinue
observation, ete.

More formally, let N be a funetion of the infinite sequence of values
z = [z(1), +-+, z(¥), -- -} such that, if the sequence z’ agrees with z in
every component from the first through the N(z)th, then N(z') = N(z).
Such a funetion N determines a sequential observational program,
which is a contraction of x, call it y(x; N), defined thus:

(n y(x; N) =p¢ {x(1), ---, x(N(x))].



7.7] SEQUENTIAL PROBABILITY RATIO PROCEDURES 143

It is te be understood that, if N(z) is zero for some z, it 18 identically
zero, and that y(x; 0) is a null observation.

It will be assumed that the random cost associated with a sequential
observational program is proportional to the number of random varia-
bles observed, that is, ¢ = N(x)y, v > 0. No categorical defense of
this assumption is suggested, but clearly there are interesting problems
in which it is met at least approximately. The domain of applicability
of the theory can actually be considerably extended by modifying the
assumption to include a fixed overhead cost that applies except in case
N is identically zero; this does not greatly complicate the analysis, as
the interested reader will be able to see for himseli. The theory would
even remain virtually unchanged, if ¢ were only assumed to be of the

form
Nz}

(2) c=h+ X, clr), HN>D,
= |
=0, if N =0,

where h, ¢(1), ¢(2), -+ are independent with finite expected values
E{h) > 0, E(c(r)) > 0, and the c{v)’s are identically distributed.

For any F there are some values of 8 for which it would be unwise to
adopt any sequential observational program other than the null obser-
vation. Suppose, for example, that 8 is so close to an extreme value
that I(8) — k(8) < ¥, under this circumstance the most that could be
gained by observing even x itself would be less than v, but the cost of
making so much as one observation is at least v. Let the set of values
of 8 for which it is not justified to make any but the null observation be
denoted for a while by J(F; ), or simply J, for short.

Now, if # ¢J, the person’s utility can, by the definition of J, be maxi-
mized by refraining from any observation but the null observation and
accepting the utility k(3); otherwise there will be some advantage to
him in observing x(1). If the person does observe the particular value
#(1) of (1), he finds himself with a posteriori probabilities 8(z(1)) in
place of the a priori §, he has paid (or at any rate entailed) a cost -,
and he must now decide whether to make any further observations.
His new problem is simply the problem he would have faced at the out-
set had his a priori probabilities been 5(z(1)) instead of 8, except that
all uiilities are now reduced by 5. He justifiably accepts the utility
k(8(x(1))) — «, if B(z(1)) ¢J; otherwise he will observe x{2). Continu-
ing this line of argument step after step, it follows that optimal action
consists in ohserving successive x(v)'s until an a posteriori probability
in J occurs, and then adopting a basic act consistent with the a posteriori
probability.
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In actual practice, it is far from easy to determine whether a particu-
lar value of 8 belongs to J(F;v), because in principle the whole enormous
variety of sequential observational programs has to be explored to de-
termine whether any one of them has & derived value greater than k(8).
The practical advantage achieved in the preceding paragraph is that
of greatly restricting the class of programs that merit consideration.
Thus the problem of determining whether 8 « J(F; ) does not require
a survey of all observational programs, but only of those defined in
terms of some set J' according to the rule that N(z) is the first integer
for which g(z(1), - -, z(n)) e J".

If programs corresponding to all sets J° had to be examined, the
process would still be mathematically impractical; indeed, in all but
special cases, practical solutions have yet to be found. But, if any
special conditions that J must necessarily satisfy are discovered, only
sets J’ satisfying those conditions need be examined. Some very gen-
eral conditions are these:J contains the extreme points of I; J is topo-
logically closed, that is, if a value 3, is not in J, then the near neighbors
of 8y are also not in J. The first of these conditions requires no com-
ment, and the second follows easily from the continuity as a function of
8 of

@) Elk(8(y(x; N))) — ¥N | 8] — k(8).

These conditions alone do not go far toward narrowing to practical
limits the variety of sets to be explored. Thus far in the development
of the subject, really powerful conditions have been obtained only at
the expense of considerable restrictions on the strueture of F or, equiv-
alently, of k.

Suppose, then, that F is dominated by a finite number of acts or,
what amounts o a little less, that the graph of k is polygonal, as it is
for the k graphed in Figure 2.1. Technically, this restriction on k may
be expressed by saying that the interval 7 is the union of a finite num-
ber of intervals of linearity of k. Under the restriction, relatively much
can be concluded about the structure of J(F; v), for it is true in general,
as will be shown in the next paragraph, that the intersection of J with
any interval of linearity of k is a closed interval.

Suppose, indeed, that 8, and s belong to J and to a common interval
of linearity of k, but that 8, on the interval between 8; and §; does not
belong to J. A contradiction follows according to the following com-
putation, in which h is any aect derived from a sequential observational
program, cost included, that is advantageous at S,.

(4) 2 E(h | BBo(i) > k(Bo),
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for h is supposed to be advantageous at §o; and

(5) 2 EM|B)Ba(i) < kBm)y m=1,2,

for no derived act is supposed to be advantageous at S, since B, ¢J.
Since 8, is a weighted average, say Zv,.8m., of the 8,'s, and since k(8) is
linear in the interval between 8, and 3;, it follows from (4) and (5) that

(6) 2_ E(h| BaBo(i) < K(Bo),

contradicting (4). The supposition that 8y ¢ ~J has thus been re-
duced to absurdity.

The demonstration just given extends directly to m-fold problems.
The general conclusion is that the intersection of J with any domain
of linearity of k is convex, so that, if k is polyhedral, J is the union of a
finite pumber of closed convex sets, each lying wholly in a domain of
linearity of k. The practical implications of the conclusion are enor-
mously greater for twofold than for higher-fold problems, because
twofold problems lead to one-dimensional bounded, closed, convex
sets, which present no great variety, all of them being closed bounded
intervals. But threefold problems, for example, lead to closed bounded
two-dimensional convex sets, a restriction that leaves great room for
variety.

If k is polygonal, the variety of sets J' to be surveyed is enormously
reduced, for J* must be the union of a known number of intervals, each
of which is confined to a known interval. Suppose that this number is
m; the class of sequential observational programs to be surveyed ean
be characterized by the two end points of each of the m intervals, ex-
cept that the possibility that some of the intervals are vacuous must be
bhorne in mind. Since the extremes of I are neeessarily in J, and there-
fore necessarily appear as end points of intervals in J, the exploration
has been reduced to a 2{(m — 1} parameter family of possibilities.

The possibility that m = 1, which almost means that F is dominated
by a single element of itself, is trivial; for then all §'s are in J, and ob-
servation is never called for. This can be seen in many ways. In par-
ticular, it follows as an illustration of the machinery that has just been
developed, thus: The end points, or extremes, of I are both in J, as al-
ways, and, since m = 1, they are both in the same interval of linearity
of J; therefore the interval between them, namely every value of 8,
lies in J.

The possibility that m = 2—in ordinary statistical usage, the se-
quential testing of a simple dichotomy—is of particular importance,
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It oeccurs typically when F is dominated by two acts, neither of which
dominates the other, as in Exercise 5.2. One of the two acts is approp-
riate to one “hypothesis” B;, and the other is appropriate to Bs. In
case m = 2, it is easily seen, by methods that have now been indicated
more than once, that each of the two closed intervals that constitute J
has as one end point one of the extremes of J. Neither of the two inter-
vals can be vacuous, nor can either consist only of a single point. It is
relatively easy to find, at least approximately, the two values of § that
determine J(F; v), and the theory of this situation has correspondingly
been brought to a relatively high degree of perfection; for details, see
[817], [W2], [W3], and [A7].

Following (or at least paraphrasing) Wald [W2], a sequential obser-
vational program characterizsed by making successive observations un-
til the a posteriori probabilities fall into some set J, followed by adopt-
ing & basic act appropriate to the a posteriori probability, is called a
sequential probability ratio procedure. The reason for this nomencls-
ture is that to observe until the a posteriori probabilities fall into J is
to observe until the numbers

) B(5P(x(1), - -, z(¥) | BY)
(?] ﬂ{‘ | II:]-}I Ty I(F}} = —;Eﬁu]P{:(I]j "y :I:u} I Bj]

lie in a certain set, or, what amounts to the same thing, satisfy certain
conditions. But, the particular value of 8 having been assigned, this
is tantamount to requiring the ratios of probabilities

P(z(1), ---, z(N) | By)
P(z(1), +--, 2(N) i Bi]

to satisfy certain conditions.

Since (7) and (8) are waye of expressing the likelihood ratio, the ob-
servational program together with the act derived from it might also
be referred to as a sequential likelihood-ratio procedure. Indeed, but
for the precedent established by Wald, that would seem the better
name.

As an actual example of a sequential probability ratio procedure,
suppose that the distribution of x(v) given B; attaches the probabilities
p; and ¢; = 1 — p; to the values 1 and 0, respectively, The expression
(8) can in any case be written in the factored form

¥ (Pae)| B)
®) 11 {P(:r(vl' B

2 |

(8)
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and in the present example this takes the special form

p\FM fg \ N ¥ g\ / piga\* ™
lﬂ' _) (E;) =1 - ]
(10) (Pﬂ (9’2 (Pﬂ'l
where
N
(11) y(N) = 2 z(v).
pe=1

It i1s noteworthy, in connection with sufficient statistics, that the con-
dition that the a posteriori probability be in J is in this case expressible,
according to (10), as a condition on y(N) and N. Specializing the ex-
ample further, suppose that J is of the sort appropriate to testing a
simple dichotomy. The condition that the a posteriori probability be
in ~J is then expressed by each of the following equivalent pairs of
inequalities, where (1) and «(2) are positive numbers such that a(1)
4+ a(2) < 1.
B(1] (1), ---, 2(N)) < 1 = (1),

(12)
82| z(1), «--, 2(N)) <1 — «(2).
8(1)Q
sme+ @ W
(13) @
B
1 — a2
se+e@ - @

where @ for the moment denotes the likelihood ratio (10).

B@)(1 — a(1))
< T e

B(2a(2)
B — a(2)

where Q*, Qs are defined by the context. Since, according to (13), the
strueture of —J is superficially determined by three parameters, say by
B(1), a(1), and a(2), it is worthy of some note that the corresponding con-
dition is ultimately expressed in terms of only two special parameters,
Q* and Qs ; this is only natural, considering that ~J is an open interval
determined by its two end points. The act that would be appropriate
to B, is called for by values of @ = Q*, and the one appropriate to B;
i called for by values of @ < Q.

Q*,
(14)
Q>

Qs
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Thus far, the particular form (10) of the likelihood ratio has not
really been exploited in the caleulation, so (14) applies to the testing of
simple dichotomies generally. Taking account of (10), (14) ean by ele-
mentary manipulation be put in the following form,

y(N) < {log @* + N log (ga/91)} /log (p1g2/P2ttr),
y(N) > [log Qe + N log (g2/q1)}/log (p192/D2q1),

where, for definiteness, it is supposed that p; > p;. Thus, the region
in the (N, y) plane determined by ~J, the region in which further ob-
servations are called for, is & band bounded by two parallel lines of
positive slope.

8 Standard form, and absolute comparison between observations

If x and y are such that, for every F and 8, »(F(x) | 8) > o(F(y) [ﬂ};
then x imitates, so to speak, an extension of y, and it may appropriately
be said that x is a virlual extension of y. Correspondingly, if x is a vir-
tual extension of y, and y is a virtual extension of x, it may be said that
x and y are virfually equivalend.

No matter what a priori probabilities a person may have, or what
basic acts are available to him, he will have no preference between a
pair of virtually equivalent observations, so virtually equivalent obser-
vations are indeed equivalent for many practical purposes. Where com-
binations of observations are under consideration, however, the rela-
tion of virtual equivalence does not resemble true equivalence. For
example, if x and y are equivalent, then each is equivalent to the mul-
tiple observation {x, y}, but if x and y are only virtually equivalent,
they may well be independent, in which case neither will typically be
equivalent to {x, v}.

This section explores the notions of virtual extension and wirtual
equivalence. In particular, an interesting standard representative of
the class of observations virtually equivalent to a given observation x
is defined and discussed. This material is scarcely referred to later in
the book, and it may without much loss be skipped or glossed over. It
will be couched frankly in the language of n-fold as opposed to twofold
partitions, but readers with the rest of the chapter behind them will
easily be able to concentrate on the twofold situation, if they find it
more understandahble.

Most of the ideas to be presented in this section were originated by
H. F. Bohnenblust, L. 8. Shapley, and 8. Sherman in a private memo-
randum dated August 1949, which I was privileged to see at that time.

(15)
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This work was extended and brought to the attention of the public by
David Blackwell in [B16].

It is obvious that, if y is a sufficient statistic for x, then x and y are
virtually equivalent. In particular the likelihood ratio r derived from
x is virtually equivalent to x. Moreover, the reader may anticipate, and
it will be formally shown in the course of this section, that if and only
if observations are virtually equivalent do their likelihood ratios have
the same distribution for avar:,r ﬂtue of 8, or, what comes to the same
thing, given each B;, ¢ = 1, -++, n. Thus the n conditional distribu-
tions of the likelihood ratio given each B; could be taken to characterize
the observations virtually equivalent to a given one, say x. Actually,
as will be shown, the class of observations virtually equivalent to x can
be represented by the distribution of the likelihood ratio for any single
non-extreme value of 8. For definiteness, the particular value 8% =
{1/n, -+-, 1/n} will be used, but the interested reader will find it a
simple exercise to extend all the considerations based on 8* to any
other non-extreme 3, as would be necessary in any extension of the theory
to infinite partitions.

Let m(r) be the probability that the likelihood ratio in the standard
form (5.5) attains the particular value r when g = §*. With self-evi-
dent abbreviations,

(1) m(r) = P(r| 8%
E Z} P(r | By)(1/m)

"E rz P{IJB:]
Fiz)=r
The second line of (1) exhibits m(r) expressed in terms of the n distri-
butions P(r | B;). It is rather more interesting to see that those n dis-
tributions can themselves all be expressed in terms of the single dis-
tribution m, as follows from the definition (5.3) of r and the third line
of (1) thus:

(2) P(r|B) = 2. P(z|B)

riz)mr

= 2 r.{:}jZP{I[Bs}

r{z)==r

= nrym(r).

@) P 8) = n Igrﬁm} ().
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Regarded as a probability measure on the set of all n-tuples of num-
bers r, m has the following three important properties.

P(r; 20[m) = 1;
(4) P(Zj:rf-um)-:;

E(r;| m) = n~,

Of these, the first two are obvious from the definition of r, and the third
follows by calculation from (2) thus:

(5) 1= 3 P(r|B) = n 2 rem(r)

= nE(r;| m).

Conversely, suppose that m is any mathematical probability defined
on the set of n-tuples r of numbers, subject to the conditions (4), then,
as can easily be verified, n mathematical probabilities are formally
defined by the equation P(r| B)) = nram(r). Mathematically, r dis-
tributed thus ean be regarded as an observation. The following caleu-
lation demonstrates the expected conclusion that the likelihood ratio
of this observation is the observation itself and that its distribution
given g* is m.

P(r | By) nram(r)

T Pr|B) = 3 rym(r) -
P(r| %) = 2 nram(r)(1/n) = m(r).
?

It is interesting and fruitful to compute v(F(x) | 8) in terms of m.
7 uF@|8) = ERkEE) | 8)
= E[k({rs8(s)/ f; 5:8()1) | 8]
= nk [k({r8()/ Ij: I‘Jﬂ(ﬂﬂ}; r;8(7) | m}.

Temporarily adopt the convention that, if « is any n-tuple of positive
numbers and h any function of r (not necessarily convex), T'(e)h is &
function of r defined thus:

8) T(a)h(r) = pt h({rie(i)/ 2 ria(i)}) Zrals).
Then (7) takes the abbreviated form ’
©) E(k(a(x)) | B) = nE(T@)k(r) | m).

Tis

(6)
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To see the implications of (9), it is necessary to know something about
what the operation T'(8) does to the function k, in particular to know
that T(8)k is convex in r. The derivation of these necessary facts is
straightforward and is left to the reader as a sequence of exercises,

Exercises
la. T(@)T(@h = T({a(1)8(1), - --, a(r)d(r)})h = T(F)T(a)h.
1b. h = T(fa(1)7}, ---, a(n) ™ })T(a)h.
2. T(g*)h = ilL
3. If k(r) > g(r) for r between r’ and r"; then T(a)A(r) 2> T(a)g(r)
for r between r;'a(i)/ E ri'a(j) and »"alz)/ Z ri"'a(g).
i k]

4. If h is linear, then so is T(a)h.

5. If h is convex (strietly convex), then so is T'(a)h.

Exercise 5 is obvious in the light of Exercises 3 and 4, but some may
prefer the demonstration suggested by the following calculation, where
A< u=1; 7, u = 0; and obvious abbreviations are used.

(10) T(a)h(\r + wr')
( AT r poer' r
= h o+
a+(Ar 4 pr') a-r a+(Ar + pr') a-r’

r r

< Mt(a—:t) a'r+ u.'l(—ﬁn) ar
o7 a-r

= AT(a)h(r) + T (a)h(r’).

It is amusing to establish once more that observation generally pays,
this time by means of (10), (4), and Exercises 5 and 2.

(11) nE(T@)k(r) | m) > nT(@)k(E(r | m))
= nT(B)k(3%)
= k(8).

If x and x’ are observations and m and m’ are the corresponding dis-
tributions, it is now easy to say in terms of m and m’ when x is utterly
irrelevant, when it is definitive, and when x is virtually an extension of x’.

::r) a-(Ar 4+ pr')

More exercises

6. The observation x is utterly irrelevant if and only if P(r = g% [ m)
= 1.

7. The observation x is definitive; if and only if P(r; = 1| m) = 1/n,
or, equivalently, if and only if P(r; = 0| m) = (n — 1)/n.
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8a. The observation x is a virtual extension of ', if and only if, for
every convex function h defined for r,

(12) E(h(r) | m) > E(h(r) | m").

8b. The two observations are virtually equivalent, if and only if, for
every convex function’h,

(13) E(h(r) | m) = E(h(r) | m).

The conclusion reached in Exercise 8b can be much improved. In-
deed, it will be shown that the two observations are virtually equiva-
lent, if and only if m and m' are the same probability measures. This
will be achieved if, for example, it is shown that m and m" have the
same moments, for it is well known that two different countably addi-
tive probability measures confined to a bounded set of n-tuples of num-
bers cannot have the same moments.t The moments in question are
expected values of monomials of the form

(14) g(r) = r%"ra™ <= ry™,

where the ¢'s are non-negative integers. In general, g will not be
convex, so it cannot be concluded immediately that g has the same
expected value with respect to m and m'. If, however, a highly convex
function is added to g, then the sum will be convex and its expected
value will be the same with respect to m and m’. Sinee, by hypothesis,
this is also true of the convex term of the sum, it must also be true of
the not necessarily convex term. Specifically, let

(15) h(r) = g(r) + 2 2277,
¥

where X ig a positive number to be determined later. To test h for con-
vexity, let s be for the moment an arbitrary n-tuple of numbers and «
a real variable, and compute the second derivate of A(r + ¢s) with re-
spect tocat o = 0.

d*h(r + os) > a*g(r)
do® s 5 0T AT

Considering that each r; is between 0 and 1, the absolute values of the
derivatives of g that appear in (16) have a common upper bound, say

t Bee, for example, Corollary 1.1, p. 11, of [813].

Under our usual simplifying assamption that x is confined to a finite number of
valyes, m is certainly countably additive. Actually, the whole theory can be de-
veloped mutatis mutandis sssuming only that the distribution of x is countably
additive on some suitable Borel field.

+ Morse and Sacksteder (1066) show, in effect, that the test can be confined
to the very special convex funetions max p;r;, where the p; are arbitrary posi-
tive numbers.

(16)

88 + A 2 87,
j
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@ 8o, if A > wn?, h is convex in the region where each r; lies between 0
and 1 and is a fortiori convex in the intersection of that region with
the hyperplane Zr; = 1.

Now that it has been established that m and m’ represent virtually
equivalent observations, if and only if m and m' are identical, it is ap-
parent that m—or, more exactly, the set of conditional distributions
P(r| B)) = nrgm(r)—is a unique standard form for all observations
virtually equivalent to x.

If x virtually extends v, it is to be expected that, no matter what rea-
sonable definition of “informative’” may be suggested, x will be at least
as informative as y. In particular, it is to be expected that the infor-
mation of B; with respect to B; (as defined in § 3.6) will be at least as
large for x as for y, which the following calculation verifies, supposing
for simplicity that, for both observations, infinite information is im-
possible, The point in question depends on the convexity of the fune-
tion b defined by

(17) h(r) = ri(logr; — logr;),
because
(18) li,;j = E(logr; — logr; | B

= nE[r,(log r; — log r;) | m].

The required convexity can be demonstrated much as it was in (15)*
for a different function also momentarily called h:

d&® a*h(r) a%h(r) 3h{r)
19) —hir 8 = 24+ 2 .. 3
(19) de® r o8) &l ard ¢+ ﬂ'ﬂﬂ?‘jl‘l:ff. ﬂ'l"j‘ K
- -!ii N 28¢8; + :l'.:!;!
i rs sl

2 ['."_,-E';' — Tiﬁj}: :_:’ 0.
FiTy

It would be interesting to know whether every virtual extension is
realized by an actual extension, that is, whether whenever x is a vir-
tual extension of y there exist random wvariables x’ and ¥’ such that x
and x’ are virtually equivalent, ¥y and y' are virtuslly equivalent, and
x’ extends y'. To the best of my knowledge that conclusion has thus
far been established only in the case of twofold problems, the demon-
stration for that case being given by Blackwell in [B16].

+ Actually, this ealculation depends only on the convexity of (log vy, —
log r;} im ry/rg



CHAPTER 8

Statistics Proper

1 Introduction

I think any professional statistician, whether or not he found himself
in sympathy with the preceding chapters, would feel that, even allow-
ing for the abstractness expected in a book on foundations, those chap-
ters do not really discuss his profession. He would not, I hope, find the
same shortcoming in this and the succeeding chapters, for they are eon-
cerned with what seems to me to be statistics proper. The purpose of
the present short chapter is to explain this transition and to serve as a
general introduetion to its successors.

2 What is statistics proper?

=0 far as I can see, the feature peculiar to modern statistical activity
is its effort to combat two inadequacies of the theory of decision, as I
have thus far discussed it. In the first place, there are the vagueness
difficulties associated with what in § 4.2 were called “unsure probabili-
ties."” Second, there are the special problems that arise from more than
one person’'s participating in a decision.

From the personalistic point of view, statistics proper can perhaps be
defined as the art of dealing with vagueness and with interpersonal
difference in decision situations. Whether this very tentative defini-
tion is justified, later sections and chapters will permit the statistical
reader to judge. At any rate, vagueness and interpersonal difference
are the concepts that, directly or indirectly, dominate the rest of this
book.

I will not try to discuss vagueness in this chapter, but something
may profitably be said here about interpersonal differences.

3 Multipersonal problems

As I have already frequently said, it seems to me that multipersonal
considerations constitute much of the essence of what is ordinarily
called statistics, and that it is largely through such considerations that
the achievements of the British-American Bchool can be interpreted in

154
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terms of personal probability. This is a view that can best be defended
by illustration, and the requisite illustrations will be scattered through-
out later chapters; but some support is lent to it by those crities of
personal probability who say that personal probability is inadequate
because it applies only to individual people, whereas the methods of
science are, more or less by definition, those methods that are sccepta-
ble to all rational people.

The sort of multipersonal problems I mean to call attention to are
those arising out of differences of taste and judgment, as opposed to
those, so familiar in economics, arising out of conflicting interests. Asza
matter of fact, the latter type of multipersonal situation can, if one
chooses, be regarded as among the former; it may, for example, be
said that you and I have different tastes for the process of taking a dol-
lar from me and giving it to you.

Though modern statisticians do not at all deny the existence of dif-
ferent tastes in different people, only oceasionally do they take that
difference explicitly into account. In particular, the theory of utility
has scarcely ever entered explicitly into the works of statisticians. Our
intellectual ancestors who believed in the principles of mathematical
expectation were less tolerant than modern statisticians in so far as
they denied rationality in those whose tastes departed from that prin-
ciple, and some of their bigotry is occasionally met with today.

In dealing with multipersonal situations, it is clearly waluable to
recognize those in which the people involved may all reasonably be
expected to have the same fasfes, that is, utilities, with respect to the
alternatives involved in the situation. Explicit attempts to discover
general circumstances under which people’s tastes will be identical are
rare. The most important and fruitful attempt of this sort is repre-
sented by D. Bernoulli’s idea that utility functions will typically be
approximately linear within sufficiently confined ranges of income.
Consciously or unconsciously, that prineiple is repeatedly appealed to
throughout statistics; it was, for example, brought out in § 6.5 that the
very idea of an observation depends for its practical value on Bernoulli’s
principle of approximate linearity.

Relatively inexplicit exploitations of similarity of taste are sometimes
made in statistics. The idea is often expressed, for example, that the
penalty for making an estimate discrepant from the number to be esti-
mated will, for everyone concerned, be proportional (within a reason-
able range) to the square of the discrepancy; an argument for this prin-
ciple a= a rule of thumb appropriate to many contexts will be given in
§15.5. Again, there are situations in which it is agreed that the pen-
alty will depend only on the discrepancy and not on the true value of
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the number to be estimated. Of course, there are problems in which
both rules are invoked simultaneously, the penalty being supposed to
be proportional to the square of the diserepancy and independent of
the value to be estimated.

Turn now to differences in judgment, that is, to differences in the
personal probability, for different people, of the same event. Though
modern objectivistic statisticians may recognize the existence of dif-
ferences of judgment, they argue in theoretical discussions that statis-
tics must be pursued without reference to the existence of those differ-
ences, indeed without reference to judgment at all, in order that con-
clusions shall have scientific, or general, validity. To put the same
idea in personalistic terms, I would say that statistics is largely devoted
to exploiting similarities in the judgments of certain classes of people
and in seeking devices, notably relevant observation, that tend to min-
imize their diferences.

The tendency of observation to bring about agreement has been il-
lustrated in § 3.6. Some of the other general circumstances in which
different people may be expected to agree, or at least nearly agree, in
some of their judgments have also been mentioned. For example, it
may well happen that different people are faced with partition prob-
lems that are the same in that the same variable is to be observed by
each person, but differ in that each person has his own a priori proba-
bilities 8 and his own set of available acts F. If, however, the condi-
tional distribution of x given B; is the same for each person, then the
people will, for example, agree as to whether a contraction y of x is
sufficient, which is often of great practical value. Again, there are cir-
cumstances under which each of these same people will agree that cer-
tain derived acts are nearly optimal.

4 The minimax theory

In recent years there has been developed a theory of decision, here
with due precedent to be called the minimax theory, that embraces so
much of current statistical theory that the remaining chapters can
largely be built around it. The minimax theory was originated and
much developed by A. Wald, whose work on it is almost completely
summarizged in his book [W3]. Wald’s minimax theory, of eourse, de-
rives from, and reflects the body of statistical theory that had been
developed by others, particularly the ideas associated with the names of
J. Neyman and E. 8. Pearson. It seems likely that, in the development
of the minimax theory, Wald owed much to von Neumann's treatment
of what von Neumann calls gero-sum two-person games, which though
conceptually remote from statistics, is mathematically all but identical
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with study of the minimax rule, the characteristic feature of the mini-
max theory.

Wald in his publications, and even in conversation, held himself
aloof from extramathematical questions of the foundations of statistics;
and therefore many of the opinions expressed in later chapters on such
points in connection with the minimax theory were neither supported
nor opposed by him. It may fairly be said, however, that he was an
objectivist and that his work was strongly motivated by objectivistic
ideas,

My policy here of holding difficulties of mathematical technique to a
minimum by making stringent simplifying assumptions will be adhered
to in connection with the minimax theory. A large part of Wald's book
[W3] is concerned with overcoming the difficulties in technique that are
here avoided by simplifying assumptions, but that must be faced in
many practical problems. Despite Wald's able effort, lmpurt.u.nt. prub-
lems of analytic technigue still remain in connection with the minimax
theory. It should also be appreciated that the individual mathematieal
problems raised by applications of the minimax theory are often very
awkward, even when stringent simplifying assumptions are complied
with; consequently much work on specific applications of the theory is
still in progress.



CHAPTER 9

Introduction to
the Minimax Theory

1 Introduction

This chapter explains what the minimax theory is, almost without
reference to the theory of personal probability. This course seems best,
because the theory was originated from an objectivistic point of view
and as the solution of an objectivistic problem. Moreover, a philo-
sophically more neutral presentation seems to result, if the ideas of per-
sonal probability are here kept out of the foreground.

The minimax theory begins with some of the ideas with which the
theory of personal probability, as developed in this book, also begins.
In particular, the notions of person, world, states of the world, events,
consequences, acts, and decisions presented in §§ 2.2-5 apply as well
to the minimax theory—from which they were in fact derived—as to
the theory of personal probability.

The point at which the two theories depart from each other is § 2.6,
which postulates that the person’s preferences establish a simple order
among all acts. That assumption is necessarily rejected by objectivists,
for it, together with the sure-thing prineiple (which they presumably
accept), implies the existence of personal probability. For objectivista,
of course, conditional probability does not apply to all ordered pairs of
events. More specifically, it seems to be a tacit assumption of objecti-
vistic statistics that the world envisaged in any one problem is parti-
tioned into events with respect to each of which the conditional proba-
bilities of all events (ignoring the mathematical technicality of measura-
bility considerations) are defined, but that conditional probability with
respect to sets other than unions of elements of the partition are not
defined. That, incidentally, is why partition problems dominate objec-
tivistic statistics. The partition in question is in general infinite, but,
for mathematical simplicity, it will here be assumed to be a finite par-
tition B,

The objectivistic position is not in principle opposed to the concept
of utility. In particular, the minimax theory is predicated on the idea

158
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that the consequences of those acts with which it deals are measured
numerically by a quantity the expected value of which the person
wishes to have as large as possible, whenever (from the objectivistic
point of view) the concept of expected value applies. It will therefore
be doing the minimax theory little or no injustice to postulate here, as
elsewhere, that the consequences of acts are measured in utility.

These preliminaries disposed of, the general objectivistic decision
problem is to decide on an act f in some given F, by criteria depending
only on the conditional expectations E(f| B,), and therefore without
reference to the “meaningless” P(B;).

Taking any personalistic or necessary point of view literally, it is
nonsensical to pose an objectivistic decision problem, that is, to ask
which f of F is best for the person, without reference to the P(B;). On
the other hand, many, if not all, holders of objectivistic views, like Wald,
find themselves logically compelled by two widely held tenets to con-
sider such problems meaningful. First, for reasons I have alluded to in
Chapter 2 and will soon expand upon, many theoretical statisticians
today agree, at least tacitly, that the object, or at any rate one object,
of statisties is to recommend wise action in the face of uncertainty—a
point of view that Wald was particularly active in bringing to the fore.
Becond, statisticians of the British-Ameriean School, of which Wald is
to be considered a member, are objectivists and are therefore committed
to the view that the probabilities P(B;) are meaningless, or, at any
rate, that they cannot be legitimately used in solutions of statistical
problems.

So far as [ know, Wald is the only one who has proposed any solution
to the general objectivistic decision problem, barrng minor variations.
His proposal, which is here called the minimax theory, is rather compli-
cated to state. In view of its complexity and the importance of this
theory for the rest of this book, and for statistical theory generally, I
hope the reader will have particular patience with the present chapter.

2 The behavioralistic outlook

Prior to Wald's formulation of what is here called the objectivistic
decision problem, the problems of statistics were almost always thought
of as problems of deciding what to say rather than what to do, though
there had already been some interest in replacing the verbalistie by the
behavioralistic outlook. The first emphasis of the behavioralistic out-
look in statistics was apparently made by J. Neyman in 1838 in [N3],
where he coined the term “inductive behavior” in opposition to “in-
duective inference.” In the verbalistic outlook, which still dominates
most everyday statistical thought, the basic acts are supposed to be
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assertions; and schemes based observation are sought that seldom
lead to false, or at any rate grossly inaccurate, assertions.

The verbalistic outlook in statistics seems to have its origin in the
verbalistic outlook in probability eriticized in § 2.1, which in turn is
traceable to the ancient tradition in epistomology that deduetive and in-
duetive inference are closely analogous processes.

I, and I believe others sympathetic with Wald’s work, would analyze
the verbalistic outlook in statistics thus: Whatever an assertion may
be, it is an act; and deciding what to assert is an instance of deciding
how to act. Therefore decision problems formulated in terms of acts
are no less general than those formulated in terms of assertions.

If, on the other hand, a sufficiently broad interpretation is put on the
notion of assertion, perhaps every decision to adopt an act can be re-
garded as an assertion to the effect that that act is the best available,
in which case the difference between the verbalistic and the behavioral-
istic outlooks is only terminological; but I do think that, even under
such an interpretation, the behavioralistic outlook with its tendency
to emphasize consequences offers the better terminology.

Fallacious attempts to analyze away the difference between the ver-
balistic and behavioralistic viewpoints are also sometimes put forward,
especially in informal discussion. For example, it ia sometimes said
that one should act as though his best estimate of a quantity were in
fact the quantity itself. But on that basis few of us would buy life
insurance for next vear, for we do not typically estimate the year of
our death to be so close. Other examples are discussed by Carnap in
Section 50 of [Cl].

If mssertions are, indeed, to be interpreted as a special class of acts
of particular importance to statistics, I have no clear idea what that
class may be; but it would presumably exclude certain acts, such as the
design of an experiment, that surely are of importance to statistics.
Actually the verbalistic outlook has led to much econfusion in the foun-
dations of statistics, because the notion of assertion has been used in
several different, but always ill-defined, senses, and because emphasis
on assertion distracts from the indispensable concept of consequences.
I conclude that the behavioralistic outlook is clearer, fuller, and better
unified than the verbalistic; and that such value as any verbalistic con-
cept may have it owes to the possibility of one or more behavioralistic
interpretations.

This analysis iz really too brief and must be supplemented by certain
remarks. To begin with, the reader may wonder whether the verbalistie
outlook has adherents who defend it against the behavioralistic, and if
80 what their arguments may be. Actually, the statistical public
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to greet the behavioralistic outlook as a relatively new idea—how old
it may actually be is beside the point here—which as such must be re-
garded with some skepticism. To the best of my knowledge, however,
only one objection against the behavioralistic outlook has been pre-
sented. It must be discussed next.

It has been as an objection to the behavioralistic outlook that
the consequences of some assertions, particularly those of pure science,
are extremely subtle and difficult to appraise. As a function of the true
but unknown velocity of light, what, for example, will be the conse-
quences of asserting that the velocity of light is between 2.99 X 10%°
and 3.01 X 10'° centimeters per second? But, if some acts do have
subtle consequences, that difficulty cannot properly be met by denying
that they are acts or by ignoring their consequences. Certain practical
solutions of the difficulty are known. For example, considerations of
symmetry or continuity may, as is illustrated in Chapters 14 and 15,
make a wise decision possible even in some cases where the explicit
consequences of the available acts are beyond human reckoning. Again,
analysis sketched in the next two paragraphs tends to show that asser-
tions with extremely subtle consequences play a smaller role in science
and other affairs than might at first be thought.

No worker would actually publish—indeed no journal would accept
-—as research the hypothetical assertion about the,velocity of light men-
tioned in the paragraph above. The consequences might be subtle, if
he did ; but they would not be very important, for no one would take
him seriously. An actual worker would do as much as was practical
to say what observations relevant to the velocity of light he, and per-
haps others, had performed and what had been observed. To be sure,
his statement of the observations would typically be much condensed;
he would resort to sufficient statistics or other devices to put his reader
rapidly in position to ae! as though the reader himself had made the
observations. Assertions about the wvelocity of light, and countless
others of that sort, are of course published in textbooks and handbooks.
These assertions do indeed have complicated consequences, so judgment
is called for in the compilation of such books; but the seriousness of the
consequences of their assertions is limited because of the possibility of
referring to original research publications, a possibility serious text-
books and handbooks facilitate by the inclusion of bibliographies.

On the other hand, it is obvious that many problems described aec-
cording to the verbalistie outlook as calling for decisions between asser-
tions really call only for decisions between much more down-to-earth
acts, such as whether to issue single- or double-edged razors to an army,
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how much postage to put on a parcel, or whether to have a watch re-
adjusted.
It is time now to turn back to objectivistic decision problems.

3 Mixed acts

Speaking with pedantic strictness, it might be said that Wald does
not propose a solution for the general objectivistic decision problem,
because, before undertaking a solution, he insists that F be subject to
a certain condition. On the other hand, he argues that the condition
is typically met in practice; he might fairly have insisted that it is the
very heart of much actual statistical practice. Before discussing the
issue in detail, let me give a small but typical illustration of it,

Suppose that in a rental library I am confronted with the choice be-
tween two detective stories, each of which looks more horrifying than
the other. At first sight it would seem that only two acts are open to
me, namely, to rent one book or the other, but Wald points out that
there are other possibilities, not ordinarily thought of as such. In par-
ticular, I can eliminate one of the books by flipping a coin. More aceu-
rately and more generally, I can let my choice depend on the cuteome
of a random variable that is utterly irrelevant to the fundamental par-
tition—in this example, a random wvariable the outecome of which is in-
dependent of the relative merits of the two books. The random varia~
ble may as well be confined at the outset to two values corresponding to
the rental of one or the other of the books, and random vanables as-
signing the same probabilities to the books are equivalent for the pur-
pose at hand, In practice, especially serious statistical practice, such
random variables are, taking reasonable precautions, readily provided
by coins, cards, dice, tables of random numbers, and other devices.

In terms of the general objectivistic decision problem, Wald's point
can (except for mathematical technicalities) be formulated thus: If f,
represents a finite number of elements of F, and ¢(r) is a corresponding
set of non-negative numbers such that Z¢é(r) = 1, then the person can
make the mixed act

(1) f =2 o(r)f,

available to himself by observing at no appreciable cost a2 random varia-
ble taking the values r with corresponding probabilities ¢(r) irrespec-
tive of which B; obtains, so F may be assumed to include f. Techni-
cally, the sum in (1) should, for full generality, be replaced by an inte-
gral with respeet to a probability measure. But such integrals become
superfluous under the simplifying asssumption, which is herewith made,
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that there are in F a finite set of acts f,, to be called primary acts, with
respect to which every act in F can be represented in the form (1). In
the rental-library example, the two acts corresponding to the two books
can be regarded as primary.

Since mixed acts are also available from the personalistic point of
view, it may well be asked whether it is advantageous to consider them
in eonnection with that point of view, and, if not, how they can be of
advantage from one point of view but not the other. The answer to
the first part of the question is easy. Indeed, if f is defined by (1) then
it is personalistically impossible that f should be definitely preferred to
every f., that is, that

(2) Ef) = 2 ¢(NE{) > max E(f,),

for a weighted mean cannot be greater than all its terms. Technical
explanation of the efficacy of mixed acts from the objectivistic point of
view can best be presented after the whole statement of the minimax
rule, but those at all familiar with modern statistical practice will de-
rive some insight from the remark that the usual preference of statis-
ticians for random samples represents a preference for certain mixed
acts.

4 Income and loss

It is sometimes suggestive, and in conformity with some statistical
(though not quite with economic) usage, to refer to E(f| B;) as the
income of f when B; obtains, and, correspondingly, to use the notation
I(f; 7). An important concept associated with the income is that which
I shall refer to as the loss (symbolized by IL{f; 7)) incurred by the act {
when B; obtains. By that I mean the difference between the income
the person could attain if he were able to act with the certain knowledge
that B; obtained and that which he will attain if he decides on f when
B; does in fact obtain. Formally,

(1) Lt; §) = pe max I(€; 4) — I(t; ).

If the person decides on f when B; obtains, L(f; i) measures in terms of
income the error he has made. If he were himself informed of B; after
f had been chosen, which is not typically the case, L{f; 1) would, so to
speak, measure his cause for regret. On that account, some have pro-
posed to call loss “regret,” but that term seems to me charged with
emotion and liable to lead to such misinterpretation as that the loss
necessarily becomes known to the person. On the other hand, the



164 INTRODUCTION TO THE MINIMAX THEORY 9.5

term “loss” has been used by Wald in the sense of negative income,
but in contexts where loss as defined here is, of the two senses, the only
defensible one, as will be explained in § 8. I hope the sense proposed
here will not cause serious confusion.

Exercises
1. For each 4, there is at least one primary act f, such that

(2) I{f,; 1) = max I({; 7).
t

Such a primary act may fairly be called correct for 1.

2. Lif; 1) = Z¢(r)L{f,; 7} = 0, equality holding if and only if f is a
mixture of acts correct for 1.

3. Li{f; i) = max I(f,-; v) — I(f; 1).

4. L{f;+) = —I(f; 1), if and only if

(3) max I(f,; 1) = 0.

6 The minimax rule, and the principle of admissibility

The most characteristic feature of the minimax theory is a certain
rule of behavior, or recommendation to the person. This rule, to be
called the minimax rule, can now be formulated thus: Decide on an
act f', such that

(1) max L{f'; ) = min max L(f; 1),
i t ]

where f and f’ are, of course, confined to F.

In words, the minimax rule recommends the choice of such an act
that the greatest loss that can possibly accrue to it shall be as small as
possible. An f satisfying the recommendation of the minimax rule will
be called s minimax act, and the greatest loss that can acerue to & mini-
max act will be called the minimax value of the (objectivistic) decision
problem and written L*. Under the simplifving assumptions that have
been made, it i3 not technically difficult to show that at least one mini-
max act exists. The statement of the rule can be reasonably extended
to mathematically more general situations, but a digression about this
possibility is not appropriate here. The name of the rule is presumably
derived from the abbreviation “min max" in (1) or from the Latin
phrase “minimum maximorum’ thus abbreviated.
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It may well happen that F contains more than one act that is mini-
max for the problem, in which case the minimax rule recommends, not
a particular act, but only that the choice be narrowed to the set of
minimax acts. Some other criterion must then be invoked to narrow
the choice further. In particular, it can be shown that at least one of
the minimax acts is admissible, in the sense of § 6.4. As Wald indicates,
it would, therefore, be an inexcusable violation of the sure-thing prin-
ciple not to narrow the choice to admissible aets. This application of
the sure-thing principle will be called the principle of admissibility.
The minimax rule and the principle of admissibility constitute the sub-
ject matter of, and thereby define, the minimax theory.

6 IDlustrations of the minimax rule

It would be hard to imagine an objectivistic decision problem simpler
than that of whether to make an even-money (or more accurately, even-
utility)} bet in favor of a certain event or to refrain from betting. That
problem, therefore, provides a convenient first example of the minimax
rule and the concepts associated with it. Supposing, as one may with-
out loss of generality, that the bet is for one utile, the objectivistic de-
cision problem is completely deseribed by Table 1, which gives the in-

Taste 1. THE INCOME OF AN EVEN-MONEY BET, I(f,; ¢}

Event

Act
By By

[

Bet, fy -1
Don't bet, f; 0 0

come of each of the two primary acts for each of the two elements of
the partition corresponding to the event in question and its com-
plement.

In view of Exercises 4.2 and 4.3 the corresponding loss function is
deseribed by Table 2, Therefore,

(1) AT Lf; 1) = max Ze(r)LAL,; 1)

= max (i) > §,



166 INTRODUCTION TO THE MINIMAX THEORY 9.6

equality obtaining if and only if ¢(1) = (2) = 4. Therefore, L* = §,
and the only minimax act is f = 3f; + 4fs.

Tasre 2. THE Loss OF AN EVEN-MONEY BET, L(f,; %)

Event
Act
B, B,
fy 0 1
fs 1 {0

In this problem, therefore, the minimax rule recommends that the
person decide, in effect, by flipping a fair coin. If the odds in the bet
had not been even, the minimax rule would have recommended the
use of a coin with a certain bias; this more general example will be
worked out in detail in § 12.4. It is noteworthy in connection with the
present problem—for it happens in many others—that, for the minimax
act £, L(f; ¢) = L* for every value of 1.

The following more elaborate example, illustrating the mechanism of
observation, is paraphrased from a slightly incorrect example in [S2].
Of three numbered coins, two are pennies and one is a dime, or else one
is & penny and two are dimes. This gives rise to a sixfold partition B,
because any of the three coins may be the singular one, and in two ways.
The available primary acts are described in two stages thus: First, the
person may select one of the coins by number for cbservation, or he
may refrain from so doing; second, he must guess at the denomination
of the singular coin. His income in utiles is defined by the following
conditions:

1. If the singular coin is & penny, he must pay a tax of 10; if it is a
dime, he receives a bonus of 20.

2. If he chooses to observe a coin, he must pay an inspection fee of
1, regardless of the particular coin selected for observation.

3. If his guess is incorrect he pays a penalty of 8.

It is easy to see that the first of the three terms in the person's in-
come is irrelevant to his loss, since his decision does not affect the mag-
nitude of that term. His loss is therefore the sum of two terms. The
first of these is 1 or 0 depending on whether he decides to make an ob-
servation; the second is 0 or 8, depending on whether his guess is correct.
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If the person chooses not to pay the inspection fee, it is clear from the
preceding example that, no matter what he does, his loss may be as
high as 4, and that it is certain to be that small if and only if he governs
his guess (essentially) by the flip of a fair coin.

Suppose next that the person decides to make an observation. If
he selects any particular coin for observation, he is as badly off as he
was before the observation, and he has in addition incurred the inspec-
tion fee. Thus, even if the person knows that the first coin is a penny,
there is nothing he can do to be sure that his total loss will not be more
than 5, and, as before, he can guarantee that small a loss only by govern-
ing his guess with the flip of a fair coin.

I think every practicing statistician would say that, if an observation
is to be made at all, one of the three coins should be selected at random
(i.e., the probability 1/3 should be attached to observing each of them)
and after the observation the person should guess that the singular
coin is opposite in denomination to the one observed. It will be shown
in the next paragraph that this common-sense act is minimax.

In the first place, the loss L{fy; 1) for the act f; in question is, for each
i, equal to 1 + 4 X 8 = 3%, which is less than 4; for the inspection fee
is 1 and the probability of making a wrong guess, which would result
in the loss of 8§, is 1/3. To show that f; is minimax, it will be enough to
show that every act can result in a loss of at least 35. One possibility
for doing this (which in § 12.3 will be shown to be a natural one to try)
is to show that, for a certain set of weights, the weighted average of
L(f; ©) with respect to 1 is at least 3% for all f. In fact, it is sufficient,
in view of Exercise 4.2, to establish such an inequality for the primary
acts. In the present example, it happens that the weights can be cho-
sen to be equal. What is to be shown, then, is that the following in-

equality obtains for every primary f.
() L) =i} T L&D > 33

Now, if the primary act f does not involve observation, L{f) = 4; be-
cause three of the six terms to be averaged are then 8, and the other
three are 0. Suppose next, for definiteness, that f involves the ohser-
vation of the first coin; there are then three possibilities to consider.
First, the guess is made without regard for the denomination observed,
in which case the observation is, so to speak, thrown away, making
L{f) = 5. Becond, the denomination guessed may be the same as the
denomination observed, in which case the guess will be wrong for four
of the six values of ¢, making L(f) = 6%. Finally, the denomination
guessed may be the opposite of the one observed, in which case the guess
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will be wrong for two of the six values of 7, making L(f) = 33. This
argument shows that L* > 3%; and, since L{fy; 7) = 33 for every 1, f;
is & minimax act and L* = 3%. It would not be difficult to show that
fy is the only minimax act for this problem.

7T Objectivistic motivation of the minimax rule

The minimax rule recommends an act for the person to choose; more
strietly, it recommends a sharp narrowing of his choice. But how can
this particular recommendation be motivated? To the best of my
knowledge no objectivistic motivation of the minimax rule has ever
been published. In particular, Wald in his works always frankly put
the rule forward without any motivation, saying simply that it might
appeal to some. Though my heart is no longer in the objectivistic point
of view, I will in the next few paragraphs suggest a relatively objecti-
vistic motivation of the rule.

I evolved this far from satisfactory argument at a time when I took
the objectivistic view for granted. Now, as a personalist, it still seems
interesting to me in that it shows, or at least suggests, how statistical
devices combat vagueness, a topic I find very difficult to discuss di-
rectly. On a different level, the argument may shed light on the per-
gonalistic view by suggesting how personalistic ideas entered the mind
of at least one objectivist.

A categorical defense of the minimax rule seems definitely out of the
question. Suppose, for example, that the person is offered an even-
money bet for five dollars—or, to be ultra-rigorous, for five utiles—
that internal combustion engines in American automobiles will be obso-
lete by 1970. If there is any event to which an objectivist would refuse
to attach probability, that corresponding to the obsolescence in ques-
tion is one. As the example centering around Tables 6.1-2 makes clear,
the minimax rule recommends that the bet be taken or rejected aceord-
ing as a fair coin falls heads or tails. Yet, I think I may say without
presumption that you would regard the bet against obsolescence as a
very sound investment, agreeing that provision for adequate interest
and compensation for changes in the value of money is implicit in meas-
urement of income in utiles.

On the other hand, there are practical circumstances in which one
might well be willing to accept the rule—even one who, like myself,
holds a personalistic view of probability. It is hard to state the cir-
cumstances precisely, indeed they seem vague almost of necessity.
But, roughly, the rule tends to seem acceptable when L* is quite small
compared with the values of L{f; ¢) for some acts f that merit serious
consideration and some values of ¢ that do not in common sense seem
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nearly incredible. Suppose, for example, that I were faced with such
a decision problem, in which it may be assumed for simplicity that there
is only one minimax act f, and consider how I might defend the choice
of that act to someone who proposed another to me. He might, for
example, tell me that he knows from long experience, or by a tip from
his broker, that some act g is preferable to f. “Well,” I might say, “I
have all the respect in the world for you and your sources of informa-
tion, but you can see for yourself—for it is objectively so—that the
most I can lose if T adopt f is L*."” He will not be able to say the same
for g, and in many actual situations the greatest possible loss under g
may be many times as great as L* and of such a magnitude as to make
a serious difference to me should it oecur, which may well end the argu-
ment so far as I am concerned.

It is of interest, however, to imagine that my challenger presses me
more closely, reminding me that I am a believer in personal probability,
and that in fact I myself attach an expected loss L to g that is several
times smaller than L*. Even then, depending on the circumstances, 1
might answer frankly that in practice the theory of personal probability
is supposed to be an idealization of one’s own standards of behavior;
that the idealization is often imperfect in such a way that an aura of
vagueness is attached to many judgments of personal probability; that
indeed in the present situation I do not feel I know my own mind well
enough to act definitely on the idea that the expected loss for g really
is L; but that I do, of course, feel perfectly confident that f cannot re-
sult in a loss greater than L*, a prospect that in the case at hand does
not distress me much.

It seems to me that any motivation of the minimax prineciple, ob-
jectivistic or personalistic, depends on the idea that decision problems
with relatively small values of L* often occur in practice. The mecha-
nism responsible for this is the possibility of observation. The cost of
a particular observation typically does not depend at all on the uses to
which it is to be put, so when large issues are at stake an act incorporat-
ing & relatively cheap observation may sometimes have a relatively
small maximum loss, In particular, the income, so to speak, from an
important scientific observation may acerue copiously to all mankind
generation after generation.

8 Loss as opposed to negative income in the minimax rule

As a variant to the minimax rule as I have stated (or perhaps I should
gay interpreted) it, one might consider the possibility of letting the
negative of income play the role of the loss in (5.1). Indeed, strictly
speaking, Wald himself always proposed the minimax rule in that
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form. I believe he never made written allusion to the rule formulated
in terms of loss (as “loss” is defined here); orally he took the position
that loss and the form of the minimax rule based on it were inventions
of mine, toward which he was tentatively sympathetic. There is vir-
tually no mathematical difference between the two rules, and it was
characteristic of Wald’'s approach to the foundations of statistics to be
reluctant to commit himself with respect to any other differences.

Though the minimax rule founded on the negative of income seems
altogether untenable, as will soon be explained, and though no one but
myself seems to question that I originated the variant of the theory
based on loss, little or no originality is attributable to me in this re-
spect. Wald more than foreshadowed the idea, for, though he based
his minimax rule on the negative of income, he made it clear in publica~
tions, including [W3], that he regarded as typical problems in which
the income has, for every ¢, the property specified in Exercise 4.4.
Therefore, in the situations Wald regarded as typieal, the distinction
between the two forms of the rule vanishes, so, until hearing his ex-
plicit disavowal, I considered the idea of loss as opposed to negative
income his,

To see that the minimax rule founded on the negative of income is
utterly untenable for statistics, consider, for example, a twofold parti-
tion problem with two primary acts in which the income is as in Table 1.

Tamx 1. I(f,.; 1)

Event

Act
B, By

f -1 -1
fa —10 1

Now, if the person were interested in minimizing the maximum of the
negative income, he would have no recourse but to decide on f;, in which
case (but in no other) he could be sure that the negative income would
be at most 1, whichever B; obtained. This may not in itself seem ob-
jectionable, but suppose now that the person has available free of cost
an observation, however relevant to B;, Then, no matter what derived
act he chooses, if B; obtains, his negative income will be at least 1
utile; and, to be sure that it is not more, he again has no recourse but
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to decide on f;. In short, for the problem at hand, the person’s behavior
would not be influenced by any observation, however relevant. This
seems to me absurd on the face of it, but perhaps the absurdity can be
hm;htmtbyalﬂnbutmctaihmhunmﬂdmgthumphimt
given. A person has a ladder, and, just as he is about to use it, it oe-
mhhmthatthnhddamaypmblybadmgnmﬂydmm
He envisages two basic primary acts: f;, to throw the ladder away and
buy a new one, which will cost 1 utile in either event; and f;, to use the
ladder, which will, if the ladder is defective, result in his injury to the
extent of 10 utiles, and will, if the ladder is sound, accomplish his ob-
Jant,whlchuwnrhhlutﬂe Nuw,ﬂthﬂpemnmunthupnnmplau{
minimizing the maximum of negative income, he will throw the ladder
away, no matter what tests tend to show that it is sound.



CHAPTER 10

A Personalistic Reinterpretation
of the Minimax Theory

1 Introduction

In this chapter a reinterpretation of the minimax theory, based on
the theory of personal probability and the idea that statistical problems
are typically multipersonal, is tentatively put forward. The reinter-
pretation is based on a model or scheme that captures, I believe, much
of the essence of actual statistical situations, but it may be possible to
effect that end with other equally simple and even more realistic models;
for the one to be presented here leaves much to be desired. In struc-
ture, this chapter is kept roughly parallel with Chapter 9, to enable the
reader to examine as closely as he may wish the parallelism between the
objectivistic interpretation given there and the personalistic one given
here. In particular, the liberty is taken of giving old symbols new mean-
ings in order to bring out the parallelism between the two interpreta-
tions,

2 A model of group decision

Consider a group of people, indexed by numbers i. These people are
supposed to have the same utility funetion, at least for the consequences
to be considered in the present context, but their personal probabilities
are not necessarily the same. The group of people is placed in a situa-
tion in which it must, acting in concert, choose an act f from a finite
set of available acts F, the consequences of the acts being measured in
terms of the common utility of the members of the group.

The situation just described will be called a group decision problem.
It is epitomized by a jury. The members of the jury, in legal theory,
are supposed to have common value judgments in connection with the
legal matters at hand; for these are incorporated in the law as stated
in the instructions of the court. But it is part of the very concept of a
jury that its members may be of different opinions; that their judgments

172
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as to questions of fact may differ; that, to put it technically, they may
have different systems of personal probability. B8till other situations
resembling the group decision problem are widespread in science and
industry, though the group decision problem does by no means repre-
sent the only sort of social interaction tending to make the theory of
personal probability, confined to a single person, inadequate. When-
ever a hospital or a factory modifies its procedures, whenever a doctrine
is adopted with little reservation by wvirtually all the workers in a
science, or whenever a panel of experts drafts a report, something like
group decision is taking place.

Since the members of the group in a group decision problem, though
required to act in concert, typically differ from one another in their
probability judgments, it is too much to expect that any rule can bhe
formulated that will be acceptable to, or in any sound sense proper for,
all groupe under all circumstances. On the other hand, there may be
one or more rules of thumb that will lead the group to an acceptable
compromise in many practical circumstances. Two such suggestions,
the group minimax rule and the group prineiple of admissibility, will
be made and explored in the next section.

3 The group minimax rule, and the group principle of admissibility

In the first place, the possibility of using mixed acts is to be pointed
out. If, for example, you and I, walking together, disagree about which
branch of a fork in the road leads home, we can, and in fact may, de-
cide which to try by flipping a coin.

In general, mixed acts are available in a group decision problem for
reasons analogous te their availability in objectivistie decision prob-
lems, for, though the members of a group may generally differ in the
probabilities they personally assign to some events, there is in practice
an abundance of events associated with coins, cards, random numbers,
and the like that make it possible for the group to mix the primary acts
in any proportion, all members of the group being in agreement about
what the proportions are. The example of the fork in the road illus-
trates how the use of mixed acts can effect such a compromise as to
make decision possible in what might otherwise be an impasse. As in
the account of the objectivistic decision problems, it will therefore be
taken for granted from now on that F contains all mixtures of its ele-
ments, and once more, for mathematical simplicity, it will be assumed
that there are a finite number of primary acts f, in F, of which all
others are mixtures.

The ith person in the group attaches a certain expected utility, or
(personal) income, to the act f; call it I(f; ¢). In the judgment of the
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ith person, adoption of the act f would represent a (personal) loss,
(1) L{f; 1) = m:}xf{r’; i) — I(f;9).

(possibly zero) as compared with the income or expected utility that
in his opinion would result from an aet he considers most promising.

The group minimax rule is the suggestion that an act be adopted
such that the largest loss faced by any member of the group will be as
small as possible. To put it formally, the suggestion is that an f be
adopted such that

(2) max L{{'; 1) = L* =mmijumn:L{f;l'}+

The parallelism between the group minimax rule and the minimax rule
stated in § 9.5 is great. In particular, (2) is identical in appearance
with (9.5.1). This is really only a pun, though a fruitful one, because
L, i, and even f have altogether different meanings in the two contexts.

As indicated at the outset, it cannot be expected that the group mini-
max rule will, or reasonably should, be accepted by every group faced
with every problem. But, much as in the corresponding objectivistic
decision problems, it may happen that, if L* is small, in a rather vague
sense, the group will accept the group minimax rule. Indeed, if L* is
small, the group minimax rule requires no member of the group to face
a large loss, 50 no member will feel that the suggestion is & serious mis-
take. In any event, no member of the group can suggest an alternative
that will not make some member's loss as great as L*, for there is none.
Moreover, in many problems the group minimax rule will lead to the
same loss L* for every member of the group (as is explained in § 12.3),
a circumstance which, when it oecurs, may add to the acceptability of
the suggestion by making it seem fair.

Of course it is possible that, as in the objectivistic interpretation,
more than one act fulfilling the minimax principle exists. Here, a para-
phrase of the principle of admissibility will further narrow the choice,
for if

(3) L{g; 1) < L{f; 1)

for every 1, with inequality obtaining for some ¢, the group cannot seri-
ously consider f.

4 Critique of the group minimax rule

Some of the eriticisms that have been, or may be, raised against the
minimax rule can as well be discussed in connection with one interpre-
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tation as with the other, and Chapter 13 will be devoted to such eriti-
eisms. But some that bear specifically on the multipersonal interpre-
tation in this chapter should be discussed here.

In the first place, the group minimax rule is flagrantly undemocratic.
In particular, the influence of an epinion, under the group minimax rule,
is altogether independent of how many people in the group hold that
opinion. In general, it is difficult to give a formal analysis of the concept
of demoeratic decision, a point diseussed at length by Arrow [A5], Hil-
dreth [H4a], and others. Perhaps, considering that the people in the
group are postulated to have & common utility function, a satisfactory
analysis of demoecratic decisions eould be given in the case of & group
decision problem by some such procedure as minimizing the average
with respect to 1 of L{f; {). But, in many situations in which I envisage
application of the group minimax principle, the group will in fact be a
rather nebulous body of people, for example the group of all specialists
in some field. The principle would in such a case be administered by a
single member of the group somewhat in the following fashion. In
planning an investigation, the results of which he intends to publish,
he will endeavor to take account of all opinions, so far as he can know
or guess them, that are considered at all reasomable in his field of
investigation. And when he publishes his results he will say, in
effect, “Whatever reasonable opinions have heretofore been held by
members of this specialty, in the light of my investigation and the min-
imax rule, it is now proper for the members of the specialty, in so far
as they are called upon to act in concert, to agree to such and such an
action.” To put it a little differently, in such an application the group
is rather fictitious, and the individual investigator is admitting as rea-
sonable a rather large class of opinions, but excluding many that he
is sure his confreres will agree are utterly absurd. He will, for example,
feel quite free to exclude those opinions that almost all educated people
regard as superstitious,

The group mimimax rule is also objectionable in some contexts, be-
cause, if one were to try to apply it in & real situation, the members of
the group might well lie about their true probability judgments, in
order to influence the decision generated by the minimax rule in the
direction each considers correct. This objection is, however, scarcely
serious in the fictitious sort of application suggested above,

It is appropriate, in terminating this section, to discuss a certain dis-
tinetion, neglect of which can, as was pointed out to me orally by Bruno
de Finetti, lead to serious misunderstanding of the group minimax rule.
Voluminous observation typically tends to make any one person almost
certain of the truth, and also, when a group of people is involved, it
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typically tends to make L* small. These two tendencies, though re-
lated, are separate phenomena, as an illustration will bring out.

Suppose that Peter and Paul are required to bet 1 utile in concert
either that the majority of a large electorate has voted for, or that it
has voted against, a certain issue; but that before betting they are to
be allowed to examine a random sample of 1,001 ballots.

If specific opinions about the division of the electorate are assigned
to Peter and Paul, the situation can be regarded as a group decision
problem. To start with an interesting extreme possibility, suppose
that it is Peter’s unequivoeal opinion that 5597 of the electorate is for
and 457, is against the issue and Paul's that the division is 459 for
and 559, against; that is, Peter, for example, is supposed to act as
though he knows that the division is 559;45%.

If, finally, it is understood that the group decision problem eonsists
in the two people, Peter and Paul, deciding, before the sample is ac-
tually observed, how their bet is to be determined by the composition
of the sample; then the unigue minimax act is to bet that the electorate
majority i whatever the sample majority happens to be. Granting
this easily established solution of the minimax problem, it is obvious
that the two people both face the minimax loss L*. Peter, to be specific,
regards L* as the probability that through random fluctuation the sam-
ple will accidentally fail to corroborate his “knowledge” that the ma-
jority is for the issue. Numerically, L* is about 0.0008.

Peter and Paul, recognizing that the possibility of observing the
sample reduces the minimax loss to about 0.0008 as compared with the
0.5 that it would be if no sample were available, may well find the min-
imax act a satisfactory compromise; at any rate, it is hard to see in
this situation how they could arrive at any other,

Though the incorporation of the sample into the problem has greatly
reduced L*, observation of the sample does not affect the opinion of
either person in the slightest, for unequivocal opinions such as they
hold are not subject to modification in the light of evidence. At least
one of the two people is immovably wrong, and the observation of no
sample, however large, can bring them both close to the truth. This
brings out a contrast between the reduction of L* and the approach to
certainty of the truth, both of which typically occur with the accumn-
lation of evidence,

The same contrast i3 expressed by remarking that, though the two
people may readily adopt the minimax act, each feeling that at the ex-
pense of a small risk he is diverting the obstinacy of his colleague to
their common good; after the observation of the sample, one or the
other of them is bound to feel that the prize has been lost by a sad
and improbable accident.
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The wary will ask, “Who will feel how, when the actual majonty is
disclosed and settlement made? What if Peter's unequivocal opinion
turns out to be false?’ BSuch questions suggest that paradox lurks in
an example in which different people unequivocally hold mutually in-
consistent opinions, so there is some interest in considering a modifica-
tion of the example, free of that objectionable feature.

Suppose then that Peter and Paul, though strongly opinionated about
the division of the electorate, are not absolutely unequivocal in their
opinions. To be quite definite, suppose that Peter attaches probability
1-10~° to the division 55%-45%, and probability 1070 to the divi-
sion 45%,-559,, and that Paul attaches the same probabilities but in
the opposite order to the two divisions. Here, as in the example of the
unequivoeal opinions, the unique minimax act is to let the bet be chosen
in accordance with the sample majority; L* is a trifle lower than before.
Observation of the sample does now generally affect the opinions of the
two people, but, though it radically reduces the minimax loss, it does
not typically bring the two people into close agreement. If, for ex-
ample, the division is in fact 45%,-559,, Paul’s strong a priori belief
that that is the actual division is almost sure to be strengthened by the
sample, and Peter's equally strong but false belief is almost sure to be
weakened. Still, the probability is only about 1/2 that Peter will be
led by the sample to attach an a posteriori probability even as great
as 0.05 to the actual division. Thus, speaking loosely but practically, the
approach to certainty of the truthis here not typically nearly so far
advanced by observation as is the reduetion of the minimax loss.”

It may not be superfluous to point out that the preceding paragraph
allodes not only to the two different personal probability systems of
Peter and of Paul, but also to certain conditional probabilities that
you and I have accepted hypothetically in setting up the example.

Whichever division does actually obtain, it is rather probable that,
once the sample is observed, either Peter or Paul will wish he could
break his contract. This seems to me to reflect a serious objection to
the group minimax principle, especially in those applications in which
the members of the group are not literally consulted, for people cannot
be expected to abide by disappointing contracts they might have made
but didn't.

For other approaches to the group decision problem see de Finetti
[D6], [D7a), de Finetti (1954), Staél von Holstein (1970, p. 65 and ff.),
and Winkler (1968).

+ As de Finetti has remarked, the separation between the two phenomena 1s
more clearly brought out if Peter and Paul decide which bet to make on the
basis of a tennis match between themselves. For, if each thinks himself much
the superior player, L* will be depressed, though the opinions of Peter and
Paul about the election remain completely unaffected by the outeome of the
match.



CHAPTER 11

The Parallelism between
the Minimax Theory and
the Theory of Two-Person Games

1 Introduction

John von Neumann, in 1928 [V3], developed a theory of games in
which two people play each other for money.t This theory is mathe-
matically so closely akin to that of the minimax rule and has had such
influence on its development that it would be artificial to give an expo-
sition of the minimax rule without saying something of the theory of
what von Neumann calls sero-sum two-person games, though the ac-
count given here must necessarily be highly compressed. The most
convenient references in English to the theory of zero-sum two-person
games, should the reader be interested in a fuller account, are [B18],
[M3], and Chapters IT and III of [V4]; though those who read German
may find it best to start with the expository sections of the paper [V3]
in which von Neumann first discussed the subject.

The sort of systematic punning by which the formal parallelism be-
tween the objectivistic and personalistic minimax theories was empha-
sized in Chapter 10 will be used onece more, to bring out the formal
parallelism between those theories and that of sero-sum two-person
games, Logic will be still further sacrificed to clarity and convenience

by calling the two people who play the game “you" and “I.”

2 Standard games

A certain sort of game, here called a slandard game, is defined thus:
You secretly choose a number r from a finite set of possibilities, and I
secretly choose a number 1, also from a finite set of possibilities. The
numbers r and ¢ having been chosen, you pay me the sum of money
(possibly negative) L(r; 1), where L is an arbitrary function of r and ¢,
known to both of us. It is assumed that, for the sums involved, each
of us finds money proportional to utility.

t In this completely independent development he was to some extent anticipated
by Emil Borel. Consult [F9], [F10|, and [B21) for details and further references.
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At first sight, standard games look very dull, though it 18 immediately
recogniged that some such games are played. A tiny but typical ex-
ample is the game of “Button, button, who's got the button?’; “"Stone,
paper, scissors’” is almost as familiar an example; and others could be
mentioned. But, and this seems remarkable at first, any game, except
possibly those dependent on physical skill, can be viewed as a standard
game. The great generality of standard games is demonstrated in de-
tail in Chapter 1I of [V4], but informal discussion of a single example
will render the idea intuitively clear. Suppose then that you and I are
to play a game of poker (of a specified variety). At first sight poker
does not seem to be a standard game, because it involves several ran-
dom events, and several decisions on the part of each of us, some to be
made in the light of others. But, it can be argued, there are only a
finite number of different situations that can arise in the course of a
game of poker. You could, therefore, in prineiple write into a notebook
exactly which choice you would make in each of the possible situations
with which you might be faced in playing poker with me. The number
of possible ways of compiling such notebooks, or policies of play, is
finite; so, except for limitations of time and patience, you will be at
no disadvantage in playing one game with me, if vou simply chose
once and for all that one of the many possible policies of play that seems
best to you. Similarly, from my point of view, the game consists, in
principle, in choosing one policy of play. Once you have chosen one
of the policies possible for you, say the rth, and I have chosen one of
the policies possible for me, say the ith, the amount you will have to
pay me at the termination of the game is a random variable. Sinee it
is agreed that the payments are effectively in utiles for both of us, your
payment to me is effectively the expected value of this random variable,
which may be called L(r; 1) and which is in principle known to both
of us as a function of r and 7. The elaborate game of two-person poker
is thus exhibited, at some expense to realism, as a standard game.

Regarding the choice of an r by you or an ¢ by me as a primary act,
both of us are at liberty to use mixed acts. Indeed, explicit attention
apparently was first called to the possibility of using mixed acts by
Borel (see [B21]), in just this context.

Let f and g represent mixed acts assigning probabilities ¢(r) and (i)
to the values r and 4, respectively. The standard game is now replaced
by a somewhat different game in which you choose an f; I choose a g;
and yon pay me the amount L(f; g}, where

(1) L(f;g8) = Zi L(r; 9)$(r)y(i).
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3 Minimax play

Von Neumann adduces an argument, the statement of which will be
briefly postponed, that, if you have respect for my intelligence, you will
see to it that the most I can possibly take from you shall be as small
as possible, that is, you will choose an f* for which

(1) max L(f'; g) = L* -mm!jnmn.xL{f;g}.
K E

Symmetrically, according to his argument, I should choose a g’ such
that

(2) m’in Lif;g') = Le =y max n:m L{t; g)-

Since, making the recommended choice, you are sure that you will
not pay me more than L* and I am correspondingly sure that you will
not pay me less than Le; it follows that L« < L* This inequality
would, of course, have obtained even if mixed acts were not permitted.
It is a remarkable mathematical fact (not to be proved in this book)
that, permitting mixed acts, equality always obtains; so the special
symbol L is superfluous here.

The argument for the recommended choices rests on the equality of
L* and Le. You realize that I can take at least L* from you and that,
if you are not careful, I may take more. On the other hand, I realize
that you can prevent my taking more than L* from you and that, if
I am not careful, I may get less. This suggests to many that a pair of
intelligent players, each respecting the intelligence of the other, will
each adopt one of the recommended acts.

4 Parallelism and contrast with the minimax theories

Some formal parallelism between the minimax theories of decision
and the theory of zero-sum two-person games is evident, but the paral-
lelism is much more complete than may appear at first sight. The mix-
tures g are without counterpart in the two minimax theories of deci-
gion, and the appearance of g in (3.1) at the place where ¢ appears in
(9.5.1) may seem to mar the parallelism between these two equations.
But, letting

(1) L(f; 1) =p1 2. L(r; i)e(r),
in the game theory (in close parallelism with the decision theories),
©) L(k; @) = 2 Lit; 97() < max L{£; i),
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and
(3) max L{f; g} = max L(f; 1),

[ L1

Therefore (3.1) 1s equivalent to
(4) max L{f'; ¥} = min max L{f; 1) = L*
# f 1

Thus from the point of view of the minimax theories of decision the
g’'s represent no material innovation and are at worst useless baggage.
Actually, though of little if any relevance in the interpretation of the
minimax theories, the g's constitute a useful mathematical device.
Their usefulness has in faet been illustrated in working out the second
example in § 9.6 and will be systematically demonstrated in the next
chapter, along with the usefulness of the apparently irrelevant “maxi-
min" problem posed by (3.2) and of the fact that Ls = L*.

Some remarks on the possibility of interpreting the g's in the minimax
theories are postponed to the end of this section.

In the game theory, L may be any function whatsoever of its argu-
ments r and 7, but, in the decision theories, L is subject to the condition
that, for every 1,

(5) min L{r; i) = 0,

where L(r; 1) is of course to be interpreted as L{f.; ©). Here is the only
mathematical difference between the game theory and the decision
theories, the former being mathematically slightly more general than
the latter.

Though the mathematical differences are negligible, the intellectual
difference between the situations leading to the game theory on the
one hand and to the decision theories on the other is great. Serious
misunderstandings of the (objectivistic) minimax theory have often re-
sulted from identifying it with the game theory. Among other things,
loss is then confounded with negative income, and the misconception
that the (objectivistic) minimax rule is ultrapessimistie is created. I
have even heard it stated on this account that the minimax rule amounts
to the assumption that nature is malevolently opposed to the interests
of the deciding person.

Though mathematical convenience seems to be the basic reason for
introducing the g's in the minimax theories, it is tempting to ask whether
the g's have also some natural interpretation in those theories. At the
moment, I do not see a convincing interpretation in either theory, but
completeness demands an account of an interpretation suggested by
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Wald for his version of the objectivistic theory, especially since this
interpretation influenced some of Wald’s most widely used terminology.

The objectivistic problem of deciding on an act in ignorance of which
partition element B; obtains, the P(B;) being regarded as meaningless,
suggests a new problem that may perhaps also be called objectivistic.
The new problem arises on postulating that P(B;) is meaningiul but
utterly unknown, that is, P(B;) = «{(i), where the (t)'s are the com-
ponents of a g here interpreted as the a priori distribution unknown to
the deciding person.

Since for Wald “loss” was syvnonymous with “negative expected in-
eome,’” he naturally caleulated the loss of the new problem thus:

(6) Lif;g) = —E(f | g
= ; —E(f | B;)P(B;)

= 2 L(f; v(),
i

arriving thus at the very function suggested by the game theory. In
Wald's version of the theory, the new problem therefore amounts to
the formal introduction of the g's in connection with the old one, which
neatly fulfills the reasonable expectation that there should be no ma-
terial difference between regarding P(B;) as meaningless and regarding
it as meaningful but utterly unknown.

The suggested interpretation of a g as an unknown—or, to mirror
Wald more faithfully, fictitious—a priori distribution does not work,
however, if the loss function of the new problem is defined by (9.4.1),
for the new funetion L(f; g) is not then generally the same as the fune-

tion L(f; g) suggested by the game theory; thus
) Lit;g) = max E(f — | g)

= max 2 E@ —£| Byv(d)
= max g {L(f; 9) — L{f'; 9)}v(D)
= L(f; g — mlgﬂ Lif'; g)

< L{f; g),

equality holding for a typical g (i.e., a g such that +(i) > 0 for every 1)
only in the altogether trivial situation that F is dominated by one of
its elements.
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Does this mean that, contrary to expectation, there is a material dif-
ference between the new problem with loss L and the old one? The fol-
lowing exercises show that it does not.

Exercises
1. max L(f; g) = max L{f; 1).
E

2. m!m max L(f; g} = L*.
£

3. max L(f; g) = L* if and only if max L(f; :) = L*.
E i



CHAPTER 12

The Mathematics
of Minimax Problems

1 Introduction

Since the two different minimax decision theories and the theory of
zero-sum two-person games have a common mathematical core, it will
be worth while to digress for a chapter even at the expense of some
repetition, to discuss this common core mathematically, that is, vir-
tually without reference to its various possible interpretations. The
discussion will have to be drastically confined relative to the large body
of relevant literature, but the reader who wishes to pursue the subject
much further will find [B18], [V4], (W3], and [M3] to be key references,

2 Abstract games

To begin with a very general situation, which will later be specialized
to the one of main interest, let f and g denote generic elements of any
two abstract sets, and let L{f; g} be the value of an essentially arbitrary
real-valued function. It will, however, be assumed for simplicity that
for every f’ and g’ the quantities
max L(f'; g}, min L{f; g')

t

E
() L* =y min max L(f; g), [+ = py max min L{f; g)
f [ £ f
exist. To say that a maximum, for example, exists is not only to say
that the function in question is bounded from above, but also that the
maximum value is actually attained for at least one value of the argu-
ment. For want of a more neutral term, call the function L(f; g) an
abstract game.
An f' is called minimax, if and only if

(2) max L(f'; g) = L*;
K

and a g is called maximin, if and only if
(3) min L{f; g’} = Ls.
t
184
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The existence of minimax and maximin values of the variables 15 1m-
plicit in (1). It is an easy exercise to show that f' is minimax, if and
only if

(4) L(f;g) < L*

for every g.
The corresponding characterization of maximin g"”s as those such
that

(5) L{f;8') 2 Le

for every f could similarly be shown. But the symmetry of the situa-
tion iz such that it would be superfluous to derive this characterization
of a maximin explicitly. Indeed, every theorem, or general conclusion,
about L(f; g) obviously has a dual, which arisés on applying the theo-
rem to the new abstract game L(g; f) with L(g; f) = —L(f; g). This
is typical of what is known in mathematics as a duality principle. Hence-
forth the duals of demonstrated conclusions, even when not explicitly
stated, will be as freely used as the demonstrated conclusions them-
selves. Some conclusions are of course self dual. Incidentally, another
example of a duality principle was used in § 5.4, and a very important
one was pointed out in connection with Boolean algebra in § 2.4.

An argument showing that Ls < L* was given in connection with
the theory of games. More formally, if f' and g’ are, respectively, mini-
max and maximin, then from (4) and (5)

(6) L* 2 I(f;g) 2 La.

It is possible, indeed typical, that L« < L*. Suppose, for example,
that f and g are variables that take only two values and that L{f; g)
is described by Table 1. Here, as the reader should verify, both f's

Tamwe 1. Lif; g
4
1 2
110 1
f
2|1 0

and both g's are minimax and maximin, respectively, and L* = 1,
Ls = 0.

The following theorem is frequently applicable to the identification
of minimax and maximin values of f and g, and of L* and Le.
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TaeorEM 1 If £, g', and the number C are such that L{f'; g) < C
< L{f; g’') for every f and g; then L* = Ly = C = L{f'; g"), ¥ is mini-
max, and g’ is maximin,

Proor. First, C > L* because

(7) C = max L{f'; g) = m'm max L(f; g) = L*,
[ ] E

and, dually, C < Ls. But Ls« < L*; 50 ( < L« < L* £ C, that is,
= L+ = (. Now (4) and (5) apply. &

CororrLary 1| If f and g are such that L{f'; g) < L(f; g") for every
f and g; then f' and g’ are, respectively, minimax and maximin, and L*
=L« = L{{; &)

3 Bilinear games

If one stumbles somehow onto a pair f', g' satisfying the hypothesis
of Corollary 2.1, then he has discovered a minimax, a maximin, and
the values (in this case equal to each other) of L* and L«. But that
possibility of discovery does not exist unless L* = L+, which at the
level of generality of the last section is unusual. Almost all real inter-
est, however, centers on & very special class of abstract games, here to
be called bilinear games, for which it is demonstrable that L* is in-
variably equal to Ls.

The definition of bilinear games involves several steps. First, con-
gider an abstract game, L(r; 1), based on a pair of variables, r and 1.
The two variables are here assumed for simplicity to have only & finite
number of possible values, an assumption that can, and for statistics
must, be considerably relaxed. Next, let f and g be non-negative fune-
tions of r and 4, respectively, arbitrary except for the constraint that

(D 2.fr) = ;ﬂiﬂ =1,

in short, probability measures on the r's and ¢’s, respectively. Finally,
the bilinear game L(f; g) is defined thus.

@ L{f; 8) =t 2, L(r; df(r)g ().

It is important to recognize that the duality principle continues to
hold, that is, if L(f; g) is a bilinear game, then L(g; f) = —L{f; g) is
also one,
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In terms of the auxiliary functions

L(f; §) =pr 22 Lr; 9f(r),

(3)
L{r; g) =pr 2_ L(r; 9)g(1),
i

the following equalities and inequalities can easily be verified by the
reader.
max L(f; g) = max L(f; 1),
X '

(4) _ .
mn L(f; g) = min L(r; g).

(5) min max L{r; {} 2 min max L(f; 7) = L* > Ls
F 1 f i

= max min L{r; g) 2 max min L(r; 7).

B F ' r

But more can be said in connection with (5), for it has been shown by
von Neumann [V3] that for the special class of functions now under
discussion L* is actually equal to Le. This important equality cannot
conveniently be proved here, but the interested reader can refer to the
relatively simple proof given by von Neumann and Morgenstern in
Section 17.6 of (V4] (reading first, if necessary, the introduction to the
mathematics of convex sets that eonstitutes Chapter 16 of that boaok)
or to the version of it presented in [B18].
In the light of the equality of L* and Ls, (5) becomes

(6) min max L(r; ©) > min max L(f; {) = L*
. § ¢ i

= max min L(r; g} = max min L{r; ).
[ 4 r L] r

In view of (4) and (6), Theorem 2.1 ean be much improved upon for
bilinear games:

TaEorEM 1 For bilinear games, the following three conditions on
f', ¢, and C are equivalent:

1. f minimax, g’ maximin, and L* = (.

2. L(f';g) s C < L{f;g)  forevery f and g.

3. Lif';1) < C < Lir; g") for every { and r.

Proor. Condition 2 implies 1, by Theorem 2.1; 1 implies 3 by (8);
and 3 implies 2 by (4). ®
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CororLrary 1 A necessary and sufficient condition that f be mini-
max 15 that, for some g, L{f; 1) < L(r, g) for every r and 7. Under
that condition L* = L{f; g), and g is maximin.

Corollary 1 seems an especially appropriate expression of Theorem 1
in connection with the minimax decision theories, where the g's are, after
all, not really of interest in themselves. Theorem 1, and equivalently
Corollary 1, are of great practical value. To be sure, there are algo-
rithms, or rules (given by Shapley and Snow in [S12]), by which L*
and all minimax values of f can in principle be computed, but these al-
gorithms are so awkward to apply that in practice one generally guesses
one or more minimax f's, and also 4 maximin g, on the basis of some
clues, verifying the guess and evaluating L* by Corollary 1. To finish
the job, one then finds, if one can, an argument to show that the mini-
max f's thus discovered are all there are. This rather imperfect pro-
cedure is especially important, since it can relatively easily be extended
to many situations in which r and ¢ are not confined to finite ranges, as
does not seem to be true of the algorithms.

As was mentioned in § 10.3 and as the examples that have been given
illustrate, if f is minimax, then L(f; 1) is in practice often actually equal
to L* for all, or at least many, values of 7. Insight into that phenome-
non is given by the following theorem.,

TaroREM 2 If ¢ is such that there exists a maximin g for which
g(t) > 0, then L(f; ¢) = L* for every minimax f.

Proor, L(f;¢) < L* because f 18 minimax. Therefore L(f; g), be-
ing a weighted average of the L{f; ¢)'s, is at most L*; and it is actually
less, if any term with positive weight is not equal to L*. But L{f; g)
> L*, because g is maximin. 4

It can happen, and in statistical practice it often does happen, that
every 1 satisfies the hypothesis of Theorem 2, in which case L{f; 1) =
L* for every 1 and every minimax f.

Theorem 2 often provides a basis for guessing & minimax f, & maximin
g, and the value of L*, which can then be checked by application of
Corollary 1. To take a simple example, suppose that there are n values
of r, and n of {. There may be some reason to conjecture that each ¢
is used by some maximin g, that is, that each 1 satisfies the hypothesis
of Theorem 2. If the conjecture is in fact true, then f(r) and L* satisfy
the system of eguations

2 1f(r) +0L* = 1

i 2 Lir; 0)f(r) = 1L* = 0.
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Typically, (7) as a system of n + 1 linear equations in n 4+ 1 variables
will have exactly one solution (f(r), I.*). This solution, if the conjec-
ture is valid, will actually consist of the components of a minimax f
(in this case the only one) and the value of L*. But the conjecture is
not yet confirmed. In particular, if any f{r) in the solution of (7) is
negative, it is contradicted ; if not, the investigation can proceed. The
candidates for maximin values of g are now, by the dual of Theorem 2,
among the solutions of the system.

Z 1g(i) + 0L* =1

8
® 2 L(r; Dg(i) — 1L* = 0,

where r is confined to the values for which f(r) > 0. To consider only
the simplest and most typical case, suppose f(r) > 0 for every r. Re-
garding L* as known, (8) consists of n 4+ 1 equations for n variables,
which at first sight might be expected generally to have no solution.
To put the matter differently, if one forgets for the moment that L*
has been determined by (7), it might seem possible that (8) could lead
to a different value, say L*. But, using the latter part of (8) and then
the first part of (7), it is seen that

(9) 2 L(r; Df(g() = X f)L* = L¥,

and dually the double sum equals L¥*; =0 discrepancy between L* and
L* is not among the real snags in the tentative program-—irrespective
of the number of r's participating in (8). Finally, if (8) leads to even
one set of positive g(1)'s, it follows from Corollary 1 that the f and L*
derived from (7) are the unique minimax and the true value of L*, re-
spectively.

The converse of Theorem 2 has been proved by Bohnenblust, Karlin,
and Shapley in [B19], though their proof cannot be reproduced here.
Az is pointed out by these authors, the converse does not extend at all
readily to situations involving infinite ranges of r and 7. Theorem 2
and its converse can be summarized thus:

TrEOREM 3 There exists a maximin g for which g{¢) > 0, if and
only if L{f; ¢} = L* for every minimax f.

4 An example of a bilinear game

It is now convenient to diseuss a certain example, or rather a class of
examples, of bilinear games, namely those in which ¢ takes only two
values, say 1 and 2. Two preliminary remarks will help to orient the
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discussion. First, bilinear games in which 7 takes only one value are
devoid of interest, for the minimax problem in that case is simply a
problem of finding an ordinary minimum. Second, the discussion of bi-
linear games in which ¢ takes only two values includes, in effect, be-
cause of the duality principle, the discussion of those in which r takes
only two values,

If ¢ takes only the two values 1 and 2, the values g = [g(1), g(2)}
can be represented graphically by points on an interval, as illustrated
at the foot of Figure 1. For every r, L(r; g) is linear as a function of

L

E— {4 "L @
Figure 1

g, as is L{f; g) for every f. It is, of course, just because the L{f; g) of a
bilinear game is linear in this sense and its dual that I use the term “bi-
linear.”” In Figure 1 the five slanting solid lines represent the five linear
functions L{r; g) of a bilinear game in which r (for illustration) takes
five values and ¢ takes two. The dashed lines represent two values of £,
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each of which has for simplicity been so chosen as to use, or mix, only
two values of r.

As may be verified by inspection, the particular bilinear game rep-
resented by Figure 1 has the special property that min L{r; ¢) = 0 for
each 7, which is the distinguishing property of those bilinear games that
arise in eonnection with the minimax decision theories described in
Chapters 9 and 10.

Figure 1 bears a more than accidental resemblance to Figure 7.2.1.
In particular, the concave function

(1) min L{r; g)

marked by heavy line segments in Figure 1 is closely analogous to the
convex function so marked in Figure 7.2.1. The particular g empha-
sized by Figure 1 is that for which the function (1) attains its maximum
value, which according to (3.6) is L*. This g is therefore the unique
maximin. It has been shown quite generally in [B19] that bilinear games
with more than one minimax or maximin are, in a sense, unusual;
Figure 1 makes it graphically clear that the special bilinear games now
under consideration do usually have a unique maximin, because there
is more than one maximin only in case (1) happens to have a horizontal
segment.

What are the minimax f's for the bilinear game represented by Figure
17 According to the dual of Theorem 3.2, an r cannot be used in the
formation of & minimax f unless L{r; g} = L* for the (in this case
unique} maximin g. That consideration eliminates all but two of the
r's from consideration, and it is graphically clear that this will usually
be the case for bilinear games in which 7 takes only two values. Theo-
rem 3.2 itself, applied to the particular game under discussion, shows
that the graph of L{f; g) as a function of g must be horizontal for any
minimax f. The two preceding conditions together eliminate all values
of f except the one corresponding to the horizontal dashed line in Fig-
ure 1; and that f is indeed minimax, because L{f; ¢) = L* for both
values of 1.

To specialize still further, suppose that r as well as ¢ takes only two
values. Such a game can, of course, be represented graphically in the
spirit of Figure 1. Several qualitatively different situations can oceur,
which might, for example, be classified by the relation of the two linear
functions Lir, g) to each other. The reader should graph and consider
many or all of these possibilities for himself. The only one treated
here will be that in which the two functions eross each other at an in-
terior g, with one function sloping up and the other down. It is graphi-
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cally clear that there will then be a unique minimax and a unique maxi-
min, a8 will now be shown analytieally.

The condition postulated can be expressed without loss of generality
thus:

@) L{1;2) > L(1; 1), L(2;1) > L(2; 2),

L(2:1) > L(1; 1), L{1;2) > L(2; 2).
Or, more mnemonically,
(3) L(1;2), L(2; 1) > L(1;1), L(2; 2).

It is conjectured, in this case on graphical grounds, that the program
outlined in connection with (3.7-8) applies, and the reader can indeed
verify that that program leads to the conclusion

(4) L* = [L(1; 2)L(2; 1) — L(1; 1)L(2; 2)} /4,
where
(5) A= L(1;2) + L(2; 1) — L(1; 1) — L(2; 2);

and that the unique minimax f and maximin g are

) 1)‘(1] = [L{(2; 1) — L(2; 2)l/A
f(2) = [L(1; 2) — L{1; 1))/ A,
o |E{1} = [L(1; 2) — L(2; 2))/A
g(2) = [L(2; 1) = L(1; 1)}/A.

If the game arises from an application of the minimax deecision theory,
(3) almost always applies. More precisely, in this case, except possibly
for the order of numbering,

8) L(1;1)=L(2;2)=0 and L(1;2), L(2;1) 2 0;

g0, if only the inequalities in (8) are both strict, (3) applies. Then
(4-7) specialize to

(9) L* = L(1; 2)L42; 1)/4,

where

(10) A = L(1; 2) + L(2; 1);

(11) Q1) = L(2;1)/4,  f(2) = L(1; 2)/4,

(12) g(1) = L(1;2)/4,  ¢(2) = L(2; 1)/A.
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6 Bilinear games exhibiting symmetry

Mathematically the solution of a bilinear game is often simplified by
considerations of symmetry. For statistical applications, the implica-
tions of symmetry for bilinear games are of fundamental importance
in 8o far as they represent a counterpart in the minimax theory of the
disreputable but irrepressible principle of insufficient reason. This sec-
tion discusses these implications in an elementary, but formal, way.
It can be skimmed over or skipped outright without much detriment
to the understanding of later sections.

Any discussion of symmetry involves, at least implicitly, the branch
of mathematies known as the theory of groups. Though what is to
be said here about games exhibiting symmetry is intended to be clear
without prior knowledge of the theory of groups, it may be mentioned
that introductions to that subject are to be found in many places, for
example in [B14].

It can, and in practice often does, happen that a bilinear game has
some symmefry.t This means that there are permutations, here sym-
bolized by 7', 7", etc., of the values of r among themselves and the values
of { among themselves such that

(1) L(Tr; Ti} = L{r; 1)

for every r and ¢, where, of course, Tr and Ti are the values into which
T carries r and 1 respectively. Permutations satisfying (1) are said to
leave the game invariant, or to belong to the group (of symmetries) of the
game. The permutation U that leaves every r and every ¢ fixed must
be counted among the permutations in the group of the game, but the
game has no symmetry (worthy of the name) unless there are other
permutations besides U in its group.

An example of a game with high symmetry is the game implicit in
the second example of § 9.6, for, to any permutation whatsoever of the
gix '8 in that game among themselves, there is a corresponding permu-
tation of the r's such that the two permutations taken together leave
the game invariant. It was, of course, the exploitation of symmetry
that made the treatment of that example relatively simple.

Returning to bilinear games in general, if T and 7" are in the group
of the game, then the product T'T' defined by the condition that

(2) (TT) =pe T(T'r), (TT') =pe T(T)
is obviously also & permutation in the group of the game. This multi-

1 This concept must not be confused with that of “symmetrical games " which are
symmetrical in the sense that the equation Lir; 1) = —L{i; r) is meaningful and true
for every r and.i,
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plication of permutations somewhat resembles the ordinary multipli-
cation of numbers. In particular, (TT)T" is evidently the same as
T(T'T"), though it is not necessarily true that T'T" = T'T.

Relative to this multiplication the permutation I/ plays the role of
the unit, or number 1, in arithmetie, for it is obvious that TU = UT
= T for any permutation T.

For every permutation T, there is evidently a permutation 7!, and
one only, that undoes T, that is, one such that T7'7T = U. It is easy
to see also that 77! = U and that, if T is in the group of the game,
T is too. The notation T is of course motivated by the considera-
tion that, relative to the multiplication of permutations, 7" plays the
role of the reciproecal of T.

It will be adopted as a definition that Tf and Tg are the functions
such that Tf(r) = f(T'r) and Tg(i) = g(T"i) for every permutation
of T and for every r and i. The intervention of 7! in this definition
may at first seem arbitrary, but it is motivated by the following con-
giderations. First, if f is, for example, the function such that f{ry) = 1
and f(r) = 0 for r # ry, then Tf should be such that Tf(Try) = 1 and
Ti(r) = 0 for r # Try. Second, S(Tf) should be (ST rather than
(T'S)f. The definition having been adopted, L(Tf; Tg) can be calcu-
lated thus:

(3 L(TS; Tg) = 3 Lir; Df(TN)g(T™)

= 3 L(Tr; TOf(T*Tr)g(T"Ti)
Tl

= Zi L(Tr; TO)f(r)g(3),

where the basic fact is exploited that, if r, 4 runs onee through all pairs
of values, then T'r, T also does so. It follows from (1) and (3) that, if
T is in the group of the game, then

(4) L(Tf; Tg) = L{f; g).

An f (g) is called invariant under the group of the game, if and only if
Tf = (Tg = g) for every T in the group. There is a natural way to
construct from any f an f invariant under the group, and dually for g.
Namely, let

1
f =pe— 2 TH,
nr
(5)

1
gE=pt— 2 Tg,
n'r
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where (here and throughout this section) n is the number of elements
in the group and the summation is over all elements of the group. The
definition (5) accomplishes its objective, because

1
(6) Lje) = -2 XA
= ;l- E 1 = E o= l1I
and nrg n
) Tf(r) = {(T""'r)

- 2T AT
n s

-2 2. T'Tf(r) = J(r)
n'r

for every r and for every T in the group. In (7) use is made of the
easily established facts that T7'7"~! = (T"T)~" and that as T runs
once through the group so does T'7T', The justification of g is, of course,
dusl to that of £ It is noteworthy that f = I, if and only if f is invariant
under the group of the game.

Suppose B (I) is a set of the r's (i's). Then, by definition, r ¢ TR
(i ¢ TD), if and only if T ¢ R (T~ ¢ I); and the set R (I) is invariant
under the group of the game, if and only if TR = R (T = I) for every
T in the group.

Exercises

la. If R is invariant, so 158 ~R.

1b. If R and R’ are invariant, soare R 1 R and R U R’.

le. The vacuous set and the set of all r's are invariant.

2. For every R, let B = pg Uf TR, where T is of course confined to
the group; and, for every r, define the trajectory of r as [r], where [r] is,
as is customary, the set whose only element is r.

(a) E is the smallest invariant set containing R.

{b) Rhtheiﬂtarmtinnufaﬂinvaﬁmtutsmtainingﬂ.

© BE=UFR.

ri R
(d) [r] is the smallest invariant set of which r is an element.
3a. I[Risinvaﬁmt.andRﬂF];ﬁﬂ,then_R:[_r].
3b. If R is invariant, and r ¢ R, then B D [r].
3c. If [r] N [r'] = 0, then [r] = ['].
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4a. The following conditions are equivalent:
a. R is invariant,
8. R = E.
¥. FnreverjrrlR,FlCR
8. R is partitioned mto sets each of which is a trajectory.
4b. The following conditions are equivalent:
a. fis invariant.
8. The set of r's for which f takes any given value is invariant.
v. f is constant on every trajectory.
5a. If T'r = r, then (TT'T")Tr = Tr.
5b. If {r] denotes the number of elements of the group that leave r
fixed, then [r} = [Tr}.
5¢. If || r || denotes the number of elements in {r], then n = {r}|| r||.
5d. Both {r} and || r || are divisors of n.
5e. The value of f everywhere on the trajectory of r is

(®) |—[1—” T 10).

rejrl

6. Note the dual of each of the preceding exercises,

In the establishment of all these preliminaries, the theory of bilinear
games has been almost lost sight of, but it is now possible to say much
about the significance of invariant functions and sets for bilinear games.
I begin with a theorem wvalued for some of its corollaries rather than

for any charm of its own.

Tagorem 1  If L(f; Tg) < L{"; Tg) for every T, then L{{; g) <
L{#"”; g). If in addition L(f'; g) < L{f’; g), then L(¥'; g) < L(f"; g).

Proow.

(9) L(T™'; g) = L(f; Tg) < L{f"; Tg).
Therefore

1
(10) Lit;g) =- 2 L(T7'f; g

n'y

1
< -3 L(#"; Tg) = L(f"; g).
nr
If Lif'; g) < L{f'"; g), then (9) is strict for T = U, and therefore (10)
15 also strict. #

CoROLLARY 1 If L(f'; Tg) = L{f"; Tg) forevery T, then L{l'; g) =
Lif": g).
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COROLLARY 2 If L(f';: g) = L(f’; g) for every g, then L{¥; g) =
L(f"; E) for every g.

Cororrary 3  L(t; g) = L(f; §) = L(f; ) for every f and g.
Cororrary 4  If f is invariant under the group of the game, L(f; g)
= L(f; g) for every g.

Paraphrasing some of the nomenclature of § 6.4, if L(f'; g) < L(f"; g)
for every g, say that f' dominates f"'; if f dominates £, but f does not
dominate f', say that £ strictly dominates f''; if f dominates f”, and "
dominates f', say that f' and " are equivalent; if £’ is not strietly domi-
nated by any f, say that £ is admissible.

COROLLARY 5 If £ dominates, strictly dominates, or 18 equivalent
to £, then #' dominates, strictly dominates, or is equivalent to ", re-
spectively.

CoroLtary 6 If L(f; Tg) < L(I; Tg) for every T, then L(f; g) =
L{; g).

CoroLLArY 7 If L(f; 1) < L(f; ¢) for every 1 ¢ I, where [ is invari-
ant under the group of the game, then L(f; 1) = L({f; ) fori e [.

CoroLLary 8 It is impossible that f strictly dominates .
TaeoreM 2 max L(I; g) < max L(f; g), equality holding, if and only

K &
if the right-hand maximum is attained for a g invariant under the group
of the game.

Proor.

(11) max L({f: g) = max L{f; §
E E

< max L{f; g).
K

The inequality in (11) follows from the fact that every E is a g; equality
holds, if and only if the final maximum is attained for some g, that is,
for some invariant g. @

CoROLLARY 9 If f is minimax, so is {.

CoROLLARY 10 There exists a minimax f invariant under the group
of the game.

If a game has more than one minimax f, it is tempting to suppose
that in statistical, if not in all, applications of the theory an invariant,
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or symmetrical, minimax f would recommend itself at least as highly
as any other minimax f. This supposition, being vague, cannot be
really proved, but certain facts tend to support it. In particular, the
following theorem is a reassuring improvement of Corollary 10,

THEOREM 3 There is at least one admissible, invariant, minimax f,

Proor. It is a direct consequence of a theorem (Theorem 2.22, p. 54,
of [W3]) of Wald's, too technical for statement or proof here, that at
least one invariant minimax f is strictly dominated by no invanant f’,
If that f were strictly dominated by any ' (invariant or not), it would
also, according to Corollary 5, be dominated by £, which is impossible.
Therefore f is admissible. @

If the bilinear game has high symmetry or, more explicitly, if the
number of trajectories into which the r's or the ¢'s, or both, are parti-
tioned is small; the search for invariant minimax fs and invariant
maximin g's is relatively simple. An invariant minimax is character-
ized as an invariant f' such that
(12) max L{f'; g) = m!in max L(f; g) = L*,

£ £

But, since at least one invariant minimax exists, the criterion (12) is
not changed if the minimization on its right side is confined to invari-
ant f's; with f so confined, the criterion remains unchanged, if both
maximizations are confined to invariant g's (as Corollary 3 shows).
Thus the search for invariant minimax f's and invariant maximin g's
amounts to the solution of an abstract game that arises from the origi-
nal bilinear game by ruling out certain values of f and g, namely the
un-invariant ones,

This new and smaller abstract game can be exhibited as a bilinear
game thus: Let it be understood for the moment that r' ranges over
such a set of the r's that there is exactly one r’ in every trajectory [r];
dually for ¢'. For invariant f and g,

(13) Lit; g) = 2 20 Lir; 9(r)o@)

=L E{_ 2, L(r; M(r)g()
i relr] T

= E Ef{r’}g[i’} E E L(r; 1)

Fil r‘]il'l

= 2 2 L'(7; Y ("' ("),
roo
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where

# P - ]' -
{14} L':f’:‘,:' D Hr,” ”:., " r:ZF’I I_%F]L{r: ﬂ:
and
(15) 0 =il 7 1707); 767 = pa || ¥ |9

Finally, it is easily verified that, except for the conditions f'(r") > 0,
g'(¢") 2 0, and Zf'(r") = Zg'(i") = 1, the coeflicients f'(+") and ¢'(s") are
arbitrary. The new game is therefore to all intents and purposes a bi-
linear game with only as many r"'s and "5 as there are r-trajectories
and i-trajectories, respectively, in the original game. The new game,
incidentally, may well have symmetry of its own.

If there is only one r- or one i-trajectory, the new game is so simple it
scarcely deserves to be called a game. This oceurs, for example, in the
second example of § 9.6, where there iz only one i-trajectory. In that
situation there is only one invariant g, and it is equal at every i to the
reciprocal of the total number of i’s (which is here the value of || 1|
for every ). That g must therefore be an admissible maximin. The
value of L* is therefore given by

(186) L*= E Lirs 1).

Il il %

The invariant minimax f's are those and only those invariant f's such
that f(r) = 0 for every r that fails to minimize the sum in (16). More-
over, here the minimax f's (invariant or not) are all equivalent, as can
be argued thus: Any invariant minimax f is such that

(17 Lf;g) = L(f; &) = L*

for every g If any minimax f whatsoever failed to satisfy (17), it
would strictly dominate f; but according to Corollary 8 that is impos-
sible. Therefore in the very special situation at hand all minimax f's
satisfy (17) and are accordingly equivalent.

It is, of course, important to extend consideration of symmetry to
bilinear games with infinite sets of r's and i's, and infinite groups of
symmetries, but the task has not yet proved straightforward. Two key
references bearing on it are [L4] and [B17].



CHAPTER 13

Objections to
the Minimax Rules

1 Introduction

I have already expressed and supported my opinion that neither the
objectivistic nor the personalistic minimax rule can be categorically de-
fended (§ 9.7 and § 10.3). On the other hand, certain objections have
been leveled against the objectivistic rule (that being the well-known
one) that seem to me to call for reinterpretation, if not outright refu-
tation.

2 A confusion between loss and negative income

Some objections valid against the minimax rule based on negative
income are irrelevant to that based on loss. The notions that the mini-
max rule is ultrapessimistic and that it can lead to the ignoring of even
extensive evidence have already been discussed as examples of such ob-
jections.

Another example I would put in the same category has been suggested
by Hodges and Lehmann [H5]. In this example a person who has ob-
served n independent tosses of a coin for which the probability of heads
has an unknown value p is required to predict the outcome of the
(n + 1)th toss. Hodges and Lehmann here ifiterpret prediction in the
following somewhat sophisticated, but reasonable, sense. The person
is, in the light of his observation, required to choose a number p be-
tween 0 and 1 and to pay a fine of (1 — p)* or p* according as the
(n 4+ 1)th toss is in fact heads or tails. Thus the (expected) income
attached to the primary act p and event p is

(1) Ip;p) = —p(1 — p)* = (1 — p)p°
= —(p—p)? = p(l — p).

As Hodges and Lehmann show, the only derived act (mixed or pure)
that yields the minimax of the negative income is to set p = § irrespec-

tive of the observation. But it is, In common sense, absurd thus to ig-
200
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nore the observation of the first n tosses. In view of this absurdity,
almost everyone would agree that applying the minimax rule directly
to the negative of (1) is a foolish act for the person to employ.

The absurdity of minimizing the maximum of negative income in
this example is of course no wvalid argument against minimizing the
maximum loss. It is easy to see that the loss corresponding to (1) is

2) Lip;p) = (0 — P)*.

As Hodges and Lehmann happen to show in the same paper [H5]
(though in a different context), and as will be discussed in some detail
in §4, the uniqgue minimax derived act does use the observations to
advantage, resulting in a loss of

(3)

1
4(1 4+ n*)?

irrespective of p. The absurd act of setting p = 4 irrespective of the
observation results in the loss (p — 4)% which in any ordinary context
would be inferior to (3), especially for large n.

Incidentally; the minimax derived from (2), though not nearly so
bad as setting p identically equal to %, is itself open to a serious objec-
tion, which will be explained in § 4.

3 Utility and the minimax rule

Some objections to the objectivistic, and mutatis mutandis to the
group, minimax rule are in effect objections to the concept of utility,
which underlies the minimax rules. Criticisms of the eoncept of utility
have already been discussed in Chapter 5, particularly in § 5.6, but
certain aspects of the discussion need to be continued here.

It is often said, and I think with justice, that, even granting the
validity of the utility concept in principle, a person can seldom write
down hiz income function I{r; {) with much accuracy. This idea is
put forward sometimes with one interpretation and sometimes with
another, Of these, only the first is strictly an objection to the utility
concept.

That one is a dilemma raised by the phenomenon of vagueness.
Vagueness may so blur a person’s utility judgments that he cannot ac-
curately write down his income function. I suppose that no one wiil
seriously deny this; I would be particularly embarrassed to do so, for
it is almost a recapitulation of the very argument that leads me, though
in principle a personalist, to see some sense in the objectivistic decision
problem. On the other horn, if all meaning is denied to utility (or some
extension of that notion) no unification of statistics seems possible.




202 OBJECTIONS TO THE MINIMAX RULES {13.3

Three special circumstances are known to me under which escape from
the dilemma is possible. First, there are problems in which some
straightforward commodity, such as money, lives, man hours, hospital
bed days, or submarines sighted, is obviously so nearly proportional to
utility as to be substitutable for it. Second, there are problems in
which exact or approximate minimax decisions can be caleulated on
the basis of only relatively little, and easily available, information about
the income function, such as symmetry, monotoneity, or smoothness,
The possibility of cheap extensive observation, which (when it oecurs)
makes the minimax principle attractive, also tends to make many de-
cision problems fall into both of the two types in which the difficulty
of vagueness is alleviated. For example, in a monetary decision prob-
lem with cheap observation available, it often happens that the weak
law of large numbers, and the like, can be invoked to justify regarding
cash income as proportional to utility income.

Third, there are many important problems, not necessarily lacking
in richness of structure, in which there are exactly two consequences,
typified by overall success or failure in a venture. In such a problem,
as I have heard J. von Neumann stress, the utility can, without loss
of generality, be set equal to 0 on the less desired and equal to 1 on the
more desired of the two consequences.

The second sense in which it may, though not quite properly, be
said to be impossible to write down the income funetion is typified by
this example. A manufacturer of small short-lived objects, say paper
napkins, is faced with the problem of deciding on a program of sam-
pling to control the quality of his product. He complains that, though
for this problem his utility is adequately measured by money, he can-
not write down his income function because he does not know how the
public will react to various levels of quality—that, in particular, the
minimax rule does not tell him at all how much he ought to spend on
the sampling program, though it may say how any given amount can
best be employed. The manufacturer has a real difficulty, though he
expresses it inaccurately. He forgets that the lack of knowledge that
gives rise to the decision problem involves not only the state of his
product, but also the state of the public; taking the state of the public
into account, there is no real difficulty in writing down the income funec-
tion. But, if it 8 not practical for the manufacturer to make observa-
tions bearing on the state of the public as well as those bearing on the
state of the product, the minimax rule is not a practical solution to his
problem; for, rigorously applied, it would remove him from the paper-
napkin business, I believe that in practice the personalistic method
often is, and must be, used to deal with the unknown state of the pub-
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lie, while objectivistic methods, particularly the minimax principle, are
now increasingly often used to deal with the state of the product—a
sort of dualism having some parallel in almost all serious applications
of statistics. This is not to deny that relatively objectivistic methods
of market research can sometimes be used, nor that there are personal-
istic elements aside from those concerning the state of the public in
much of even the most advanced quality control practice.

4 Almost sub-minimax acts

Another sort of objection to the objectivistic minimax rule is illus-
trated by the following example attributed to Herman Rubin and pub-
lished by Hodges and Lehmann [H5]. An integer-valued random
variable z subject to the binomial distribution

mn
(1) P(z|p) = (;) Pl — p)"

is observed by a person who knowe n but not p. His deeision problem
is to decide on a function p of £ subject to the loss funection:

@ L; p) = B - p)*| p)
=3 (#() — p)? (:) (1 — ).

In other terms, he must estimate p on the basis of an observation of x
and subject to a loss equal to the square of his error. The traditional
estimate of p is defined by fo(z) = z/n. This estimate has many vir-
tues; it is the maximum-likelihood estimate, the only unbiased esti-
mate, and (as is shown in [G1]) the only minimax estimate for a some-
what different problem from that posed by (2). But for (2) the unique
minimax is (as is shown in [H5]) defined by

3 — po(z))
(3) Pi(z) = polz) + TE R
Aps it is straightforward to verify for every p,

] -
@ Lo ) = 2
and

1

(5) L; p) = AT

which constant is, therefore, L*. The ratio of the first of these functions
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to the second is

1 2
(6) 4p(1 — p) (1 + ;-;;) '

the maximum of whieh oceurs at p = 1/2 and is

{7) (1 + ﬂ—L)ﬂ

Thus, for large n, the maximum loss of §, is larger than L* by only a
slight fraction. Moreover, the loss of y is less than L* except when p
lies in the interval where

(8) ip(l = p) =2 (1 4+ n~H)72,
that is, where
) lp— 3| S 31— (0 + 0¥ 2o (4n) X,

To take a numerical example, consider n = 10° (which the practical
will note is rather big for a sample). The advantage of P, over Py at
p = 1/2 is then only 0.647,, and, once p departs by as much as 0.04
from 1/2 in either direction, the advantage is with fy. It amounts,
for example, to 3.59, 15.579;, =7, in favor of Py, when p is 0.6, 0.8,
1.0, respectively.

Many agree that in such an example good judgment will, under ordi-
nary circumstances, prefer py to the recommendation of the minimax
rule, p;. To my mind, this example constitutes a valid objection against
the minimax rule, in the sense that it demonstrates onee more that,
whatever value that rule may have, it is at best a rule of thumb.

The example is a good illustration of the role of personal probability
in ordinary statistical thinking, for the source of the dissatisfaction a
person would ordinarily feel for p, as opposed to Py stems from the fact
that he would not ordinarily attach enough personal probability to the
immediate neighborhood of p = 1/2 to justify preference for p,. It
follows from the numbers given above, for example, that, if the person
attaches a probability of less than 0.84 to the interval [0.4, 0.6)], he will
prefer Py to P ; the same conclusion can be derived from the supposition
that the standard deviation of the personal distribution of p is at least
0.04. Of course, situations can be imagined in which the personal! prob-
abilities would be so eoncentrated about 1/2 as to justify preference for
Py ; the point of the example is only that there are situations in which
that would clearly not be the case.

Interesting material and important references bearing on the phe-
nomenon illustrated by the decision problem under discussion are given
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by Wolfowitz in [W17]. It seems to be suggested there that the diffi-
culty can be met by postulating some small amount ¢ by which the
person does not mind having his income deereased. Taken literally,
this postulate implies on repeated application that all incomes are
equivalent for the person, but Wolfowitz makes it clear that he does
not mean to propose the postulate in a sense that allows repeated ap-
plications. The idea is reminiscent of those theories of probability
that permit the neglect of an occasional improbable event (mentioned
in the last paragraph of § 4.4) and seems to me open to an objection
similar to the one raised in connection with them. In particular, the
choice of the ¢ would be not only personal, but ill defined as well.

6 The minimax rule does not generate a simple ordering

Finally, an objection made by Chernoff [C7] to the objectivistic mini-
max theory must be discussed. This will entail statement and illus-
tration of the phenomenon on which the objection is based, and state-
ment and analysis of the objection itself.

The phenomenon pertains to the relation between two objectivistic
decision problems, to be ecalled for the moment the narrow and the
wide problems. The narrow problem is determined by certain primary
acts f.; and the wide one is determined by those primary acts and one
more, say fy. In other words, the wide problem presents the person
with one more choice than the narrow. Calling the two income func-
tions I{f; ©) and Iy{f; 1), it is to be understood, of course, that I{f; )
= Iy(f; ¢} for any f that does not use, that is, give positive weight to,
fs. The corresponding equation does not necessarily obtain for the
loss functions; indeed it clearly does so, if and only if the maximum of
Iy(f; 1) in f can be attained for each ¢ without using f;. Even in case
no minimax of the wide game uses f;, it is therefore to be expected that
the minimax f's of the wide game will be different from those of the
narrow game. In fact, it can happen that no minimax of the wide game
uses either fy or any f, used by a minimax of the narrow game; this is
the phenomenon to be discnssed in this section.

To see how the phenomenon can occur, suppose that Figure 12.4.1
represents the loss function of the narrow problem; and consider what
the corresponding figure is for the wide problem, supposing that f; is
such that

Ae=pelify; 2) — max I{f,; 2) > 0,

(1)
Z =psmax I{f,; 1) — I{fy; 1) > 0,
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It is clear that A and Z ean attain any positive values, irrespective of
the structure of the narrow problem. The figure for the wide problem
is constructed thus: The graph corresponding to each f, is left fixed at
its right end and raised by the amount A at its left, and f, is represented
by a line sloping up with slope Z from the lower left-hand corner. It is
easy to see that the raising of the left ends of the graphs of the f,’s can
make any f, with a positive slope horizontal. If, further, such an f,
minimizes L{f; g) for some g, it can be made a minimax by choosing Z
sufficiently large. Thus, speaking specifically of Figure 12.4.1, the f,
corresponding to the left segment of the heavy concave graph, which is
not used in the minimax of the narrow problem, can become the unique
minimax. Figure 12.4.1 is a little special in that the heavy concave
graph has only one vertex to the left of the maximin of the narrow prob-
lem. If there were more than one, the phenomenon could also be ex-
hibited by making the second vertex to the left the unique maximin,
which would occur for all A’s and 2's in & certain range. Thus the phe-
nomenon oecurs not only for isolated values of A and Z but typically
for whole domains of values.

Suppose, to take a striking case, that one f,, say f., is the unique
minimax for the narrow problem and a different one, f,, is the unique
minimax for the wide problem. It is absurd, as Chernoff says in effect,
to recommend f.. as the best act among the f.'s when only the f.'s are
available and then to recommend f,- as the best for an even wider
class of possibilities. Faney saying to the butcher, “Seeing that you
have geese, I'll take a duck instead of a chicken or a ham.”

It is absurd, then, to contend that the objectivistic minimax rule
selects the best available act. But that is not so devastating to the rule
as might at first appear, for it is not contended by anyvone known to
me that the rule does select the best. On the contrary, the rule is in-
voked only as a sometimes practical rule of thumb in contexts where
the concept of “best” is impractical--impractical for the objectivist,
where it amounts to the concept of personal probability, in which he
does not believe at all; and for the personalist, where the difficulty of
vagueness becomes overwhelming. To have a consistent concept of
“best,” that is, to have a mode of decision that does not exhibit the
phenomenon, amounts, as Chernoff himself points out, to the establish-
ment of a simple ordering of preference among acts. In so far as that
can be done consistently with the sure-thing principle, personal proba-
bility is practically defined thereby, If the sure-thing principle is vio-
lated, the ordering is absurd as an expression of preference. For ex-
ample, the rule of minimizing the maximum of the negative of income
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does not exhibit the phenomenon. It amounts to considering f < £, if
and only if

(2) m?xf{f; i) < max I(f; 7).

This establishes a simple ordering, but one that violates the sure-thing
principle by violating P2.

The phenomenon has a particularly natural interpretation for the
group minimax rule, It would not be strange, for example, if &
banquet committee about to agree to buy chicken should, on being in-
formed that goose is also available, finally compromise on duck.



CHAPTER 14

The Minimax Theory
Apphed to Observations

1 Introduction

In this chapter the concept of observation is re-explored from the
pmnt of view of the minimax rule. In principle, objectivistic and group
minimax problems should here be treated on an equal footing, But,
since mathematically the two theories are identical, it seems wisest to
focus on one, interjecting occasional digressions about the other, 1
have chosen o focus on the objectivistic problems. That choice, being
in accordance with other literature on the minimax rule, will facilitate
the reader’s further study of the subject, and it also renders more ob-
vious the intimate connection between the minimax rules and the theory
of partition problems presented in Chapter 7. The present chapter
can indeed be regarded largely as a paraphrase of Chapter 7, so there
will unavoidably be many references to the notations and conclusions
of that chapter,

2 Recapitulation of partition problems

Paralleling the treatment of observation im Chapters § and 7, an
objectivistic observational problem will be roughly defined to consist of
an objectivistic problem, regarded as basic; an observation; and a sec-
ond objectivistic problem, derived from the basic one and the obser-
vation.

More explicitly, the basic problem may be any objectivistic problem.
It will be characterized by the values of E{f| B;), where f ranges over
a set of acts F subject to the conditions laid down in § 9.3, and B;is a
partition.

The observation is & random wvariable x (confined, as usual in this
book, to a finite set of values), subject to the conditional distributions
P(:iB;), and so articulated with F that E[ft B;, z) = E[fiB;} for
every z such that P(z| B;) > 0. The last condition is (7.2. 7); as men-
tioned in connection with that equation, the condition will in particu-

208
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lar be met, if every f is constant on every B, a specialization costing
but little in real generality.

The derived problem (paralleling § 6.2) consists of F(x), the set of all
functions assigning elements f of the basic acts F to values z of the
observation x. The values of E(f(x) l B;) for f(x) « F(x) are computable
from the E(f | B;) and the P(z l B;) thus:

(1) E(f(x) | B;) = E(E(f(x) | B;, x))
= > E(f(z) | B;, z)P(z| B))

= 2 E(f(z) | B)P(z| By)

It will now be shown that the set of derived acts F(x) satisfies the
technical conditions imposed on the set of basic acts F, =0 that the
derived problem is also an objectivistic decision problem. In fact, if
every f ¢ F is expressible in the form Zf(r)f, (with the usual condition
on the f(r)'s), primary acts for F(x) analogous to the f,'s can be defined
by attaching to every function r = r(x) an element f(x; r) of F(x),
where

{2] f{I; l'} = Df frll:}l*

There are only a finite number of f(x; r)'s, and all elements of F(x) are
expressible as weighted averages of them: the first assertion is obvious,
and the second poses the problem of finding, for any system of proba-
bility measures ¢(r; ) on the r's, at least one probability measure on
the set of functions r with respect to which P(r{z) = r} = ¢(r; z) for
every r and r. The problem typically has many solutions; the simplest
is to let the r(z)'s, regarded for each z as functions of r, be independent
random variables on the set of r's considered as a probability space,
that is, to set
P(r) = II &(r(z);x).

Formally, this particular solution leads to the identity
(3) f(z) = 3 &(r; 2},

= Z 1]:[ -ﬁ[r(:’]; z’}} frt:l-
The identity and the fact that the coefficients in braces are non-nega-

tive and add up to 1, are easy to check analytically, if it is recognized
that summation with respect to r means multiple summation with re-
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spect to r(1), r(2), --- (the z's being for definiteness supposed to take
integral values). Equation (3) shows incidentally that it is immaterial
whether it is before or after the observation that mixed acts are intro-
duced.

Turn momentarily to the idea of observation in group decision prob-
lems. Here the E(f; B;)’s are replaced by I(f; i)'s, the expected income
of f in the opinion of the ith person. There is no partition B;, except
in a special, though theoretically important, case, namely that of the
tth person holding unequivoeally that B; obtains,

The P(z | B,)'s are here replaced by P(z; i)'s, the personal distribu-
tion of z for the ith person. It is postulated that, for each person, the
conditional expectation of f is unaffected by knowledge of z.

The derived acts are formally the same as for an objectivistic decision
problem, and the income function of the derived group decision prob-
lem is

(4) I(f(x); 9) = 2 I(f(z); )P(x; 9).

Returning to objectivistic problems, (9.4.1) defines the loss function
of the basic objectivistic problem and, mutatis mutandis, that of the
derived problem also, thus:

(5) Lif(x); 1) = max E(f'(x) | By) — E(f(x) | By).

The right side of (5) admits some simplification, for, if the person knew
which B; obtained, observation would be valueless to him. Accord-
ngly,

(6) Lif(z); ©) = max B(t'| B) — E@@) | By).

Analytically, the simplification is justified thus:
(7) max E(f | B) < max E(f(x) | By

= max 30 E(f(z) | B)P(z | B)
< m?x E(f| B).

In discussing application of the minimax rule to the basic and de-
rived loss funetions, it is doubly advantageous to introduce mixtures
of the 's, for thereby the theory of bilinear games presented in Chapter
12 and that of partition problems (with some reinterpretation) can
both be brought to bear. Letting 8 denote a generic system of weights
8(1), B(z) = 0 and Zg(7) = 1, and using the notation of Chapter 7, the
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bilinear games associated with the primary and derived problems are,
respectively,
(8) Lif; 8) = U(p) — E(f| B),
(9) L{f(x); 8) = I(8) — E(f(x) | 8)
= I(g) - ); ): E(f(z) | B;))P(z | B)8(7

= I(8) = L Elt(z) | 8, 2)P(z] B).

If necessary, (9) can be interpreted and verified by comparison with
(7.3.7) and (7.2.8), in that order.

In Chapter 7, (i) was generally required not only to be non-negative,
but also strietly positive; on examination, this slight difference from
the present context will be found innocuous. Again, in Chapter 7, the
statement and derivation of conclusions were, for simplicity, nominally
confined to twofold partition problems. Here the extension of those
conclusions to n-fold problems will be freely used, though some readers
may prefer here, as there, to focus on twofold problems.

Letting L* denote the minimax (and maximin) value of the basie,
and L*(x) that of the derived problem, it is obvious, since F(x) O F,
that L*(x) < L*; but there is some interest in viewing this inequality
as a consequence of (7.3.4):

(10) L*(x) = max min L(f(x); 8)
g Nz
~ mex (1(8) — o(F(x) | 8)]
< max (I(8) - o(F| 8)]
= max min L(f; §) = L*,

a f

It is clear that the maximin 8's for the basic and derived problems are
the 8's that maximize the concave functions

(11) h(8) =p¢ I(8) — v(F | B) = I(8) — k(8)
and
(12)  h(B; x) =psI(8) — v(F(x) | B) = U(B) — E(k(8(x)) | 8),

respectively. The search for minimax f(x)'s, for example, is greatly
narrowed by the consideration that, if f(x) is minimax, E(f(x) |8) =
#(F(x) | 8) for some B, indeed for every maximin 8. According to § 7.3,
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equality obtains in (10), if and only if there is a maximin 8y of the
basic problem such that
P(z | B))Bo(1)

(13) Bo(2) =1 [E e TEAG

is also a maximin of the basic problem for every z such that
ZP(z | B)Bo(s) > 0.

The most typical possibility, and the only one to be explored here, is
that the basic problem has a unique maximin 8; with 8g(s) > 0 for all
j. Under this assumption, L*(x) = L*, if and only if x is utterly ir-
relevant, as is easily shown.

In the same spirit, as can easily be shown, L*(x) = 0, if x is defini-
tive, but not typieally otherwise; and, if x extends y, then L* (x) <
L* (y) with equality if, and typieally only if, y is sufficient for x=.

3 Sufficient statistics

Digressing from the minimax rule for a moment, something more fun-
damental can be said about a sufficient statistic y of x. Namely, for
every f(x)e F(x), there exists an f(y) e F(y) such that I{f(y); 1) =
I(f(x); ©) for every i. Indeed f(y) = 2_ f(x)P(z|y) defines such an

T
act. Without appeal to so weak a step as the minimax rule, this re-
mark demonstrates that even an objectivist loses nothing by exchang-
ing knowledge of an observation for knowledge of a sufficient statistic
of it. The remark might as well have been expressed in § 7.4, except
that there it would have involved some cireumlocution, mixed acts not
yet having been introduced.

4 Simple dichotomy, an example

Much of what has been said thus far is well illustrated by the mini-
max counterpart of Exercise 7.5.2. The reader is accordingly asked to
review that exercise and continue it thus:
Exercises

1. For the problem in question:

(a) h(B) = 828(1) + 8:8(2) — | 8:8(2) — 8:8(1) |.

(b) h(s; x)

= 528(1) + 8,8(2) ~ ;i 81r28(2) — syriB(1) | {; P(r| Hﬂ]

= 5,[2P(r, < r,*(8, Bo)| B1) + P(r = r*(8, Bo) | B1)1B(1)
+ 8[2P(ry < r9*(8, Bo) | Ba) + P(r = r*(8, 8o) | B2)IB(2).
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2a. A 8 is maximin, if and only if #*(8, 8y) is such that

(1 82P(r; < r1%(8, Bo) | By) < 6:P(rs < 71*(8, Bo) | Ba)
and

(2) 82P(ry < ry*(8, Bo) | By) 2 8,P(ra < r,*(8, Bo) | Ba).

2b. There is typically only one maximin, but there may be a ¢losed
interval of them.

3. Though the acts of F and F(x) as defined by Exercise 7.5.2 do not
provide for mixed acts, it will suffice to consider mixtures of the f(x)'s.
Each of these will be determined by an i, and nothing will be lost by
requiring i to be of the form (r(z)).

4a. Any minimax will be equivalent to & mixture of f(x)'s each eorre-
sponding to a likelihood-ratio test associated with r*(8, 8,) for every
maximin 3.

4b. In view of Exercise 3, the only likelihood-ratio tests that need
be considered for a minimax § are:

#(r) = 1, if and only if r; < ry%(8, Ba).
t{r) = 1, if and only if r; < r,*(8, 8s).

These are not necessarily different tests.

5a. If the maximin 8 is unique, the minimax act is unique {except
possibly for equivalent acts) and is a mixture of exactly two f(x)'s corre-
sponding to the two likelihood-ratio tests defined in Exercise 4b.

This conclusion calls for some comment, for, in ordinary statistical
practice, one or the other of the extreme likelihood-ratio tests is used,
never a mixture. This practice is not in serious conflict with the mini-
max rule, because the maximum loss associated with either extreme is
typically only slightly greater than L*(x). Moreover, vagueness ahout
the exact magnitude of 8, and §; would usually frustrate any attempt
to calculate the coefficients of the mixture. Incidentally, mixture is
not cailed for at all when r is continuously distributed, for A(3, x) is
then smooth rather than polygonal; that is, if P(r = ¥ | B;) = 0 for
every r' and both s, then A(8; x) has a continuous first derivative in 8.
To show this and to show that the derivative is &P(r, < n*| By) —
51P(ry < ro* | By) may be taken as an exercise only slightly beyond the
usual mathematical level of this book.

5b. If there is more than one maximin 8, then any one that is not
extreme has only one likelihood-ratio test associated with it, and the
same one for all. The f(x) corresponding to that test is essentially the
only minimax.
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6 The approach to certainty *

In concluding the paraphrase of § 7.1-6 that has thus far been the
subject of the present chapter, it should be mentioned that the approach
to certainty studied in § 7.6 uhﬂuuﬂl]r implies that the corresponding
L*(x(n)) approaches zero with increasing n.

6 Cost of observation

A cost ¢ associated with an objectivistic observational problem di-
minishes the income by E(c l B;) for each 1, regardless of f; that is, al-
lowing for the cost, I(f; i) = E(f — ¢ | B;). But the cost, being un-
avoidable, does not affect the loss funetion, so the minimax problem
associated with the observation is independent of the cost. The costs
do intervene, however, in an essential way in the problem of deciding
which to choose of several available observations, say x, at cost ¢,; it
is important to bear in mind in connection with this problem that a null
observation at zero cost is typically among the choices available in real
life. The generic act of this compound problem can conveniently be
symbolized by EZX(a)f(x,), or sometimes simply by A. Here, of course,
Aa) > 0, Ex(a) = 1; for choice of A means choice, for each a, of the
probability A(a) that the ath observation x, will be made and also choice
of the derived act f(x,) to be adopted in case x, is made. It is intuitively
evident, and follows easily from (1) below, that the mixture of several
M\'s is also a A as far as income is concerned, so mixtures of A's do not
require explicit consideration. The income function can be written

(1) I(\; 1) = ZMa)E(f(xs) ~ ¢a | By).
Whence

(2) max I(h;4) = max E(f| B, — mjn E(c. | BJ).
The loss function is accordingly

(3) L(x; 8) = 22 Ma) {La(f(xa); 8) + da(B) ],
where ’

(4) da(B) = pi ; [B(ca | By) — min E(ce | B:)8G),

and L.(f(x.); 8) is the loss function of the observational problem de-
rived from the ath observation.

The compound minimax problem is intimately related to the concave
functions h(8; x,) and the linear functions d,(8), as is explained by the
following exercises.

+ Some recent references appropriate to this title are Blackwell and Dubins
(1962), Chao (1970), Fahius (1964), and Freedman (1965).



14.7] SEQUENTIAL PROBABILITY RATIO PROCEDURES 215

Exercises
1. Show that

(5) ha(8) 'mm}l:ﬂ L(x; 8) = min [A(3; xa) + da(8)].

2. If A = 1-f(x,), then L(); 8) = hx(8); if and only if: first,
(6) Lo (f'(xa0); B) = h(8; xa)
(in which case f'(x,-) will be called well adapted to x,- and 8); and, second,
(7) h(8; Xar) + do(8) = mjn [R(8; xa) + da(8)]

(in which case x,- will be called well adapfed to 8).
3a. Show that

(8) Ly =mmin m:x L{x; 8) = m:xh:.[ﬂ}

< min max [h({8; x.) + d.(8)].
8 g

3b. Under the important special condition that the d.(8) are equal
to constants d,, (8) specializes to

(9) L,* < min [L*(x,) + d,).

3c. When can equality hold in (8) and (9)?

3d. g’ is maximin, if and only if h(8") = Ly*.

4. A\ = Z\a)f(z,) is minimax, if and only if:

() For every a for which A(a) > 0, x,, is well adapted to every maxi-
min 8, and f(x,) is well adapted to x, and every maximin 3.

(8) L(\; &) < Ly* for every 1. (Of course {8) is alone necessary and
sufficient; the point of the exercise is that the necessary condition (a)
may conveniently confine the search for minimax A\'s to relatively few
candidates,)

5. Suppose that: (a) r and 7 are confined to the values 1 and 2, and
Lif.; 1) = |,r - il; (#) x is confined to the values 1 and 2, and P(1 | By)
= 1/2, P(1 | Bg) = 1/4; (v) a is confined to the values 1 and 2, and the
A's of the compound problem attach weight A(1) to a basic act at zero
cost and A(2) to an act derived from x at a non-negative constant cost
d. Compute and graph: h(8), h(8; x), and (for various values of d)
k(). Graph L,* as a funetion of d, and discuss the minimax A\'s for
various values of d.

7 Sequential probability ratio procedures

The type of decision problem that in §7.7 led to the concept of a
sequential probability ratio procedure has an intimate counterpart in
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an important type of compound objectivistic decision problem, for
which the concept was in faet originally developed by Wald [W2].
The x,'s of & problem of this type range over the enormous variety of
sequential observational programs associated with s sequence of (con-
ditionally) identically distributed random wvariables x(1), x(2), ---.
The technical assumption that the a's have a finite range is not fulfilled;
but, as in § 7.7, I proceed with some lapse of rigor, referring to Wald’s
book [W3] or [AT7] for the full details. Exercise 6.4 shows that atten-
tion may be confined to a’s that are well adapted to at least one 8, and
that for those a's it may be confined to f(x,)'s that are well adapted to
X, and the corresponding 8. The way is paved by § 7.7, which states
sharply restrictive properties of the x,'s and f(x,)'s that are so adapted.
In some cases, recognition of these properties contributes greatly to the
possibility of actually computing minimax, or nearly minimax, pro-
cedures for sequential problems.

8 Randomization

Another important type of compound problem is illustrated by the
second example of § 9.6. A generalization of part of that example is
presented here to show how the minimax rule explains, or implies, the
process called randomization, which is one of the most striking features
of modern statistics, and one long antedating the minimax rule. Ran-
domization represents the only important use of mixed acts that has
thus far found favor with practicing statisticians, as will be discussed
in the next section. The exact meaning of randomization seems a little
elusive; no sharp definition is attempted here. But, roughly, random-
ization is the selection of an observation at random; that is, of a A
with more than one A{a) actually positive, the choice of the A{a)’s and
of the derived actz being governed largely by symmetry. The follow-
ing example provides at least a fairly general illustration of the concept.

To set the stage and provide motivation for a formal statement, the
example will first be stated in language that is suggestive though a
little vague. The consequences of the basic acts in the example de-
pend on the composition of a population of n objects, which may be
thought of as numbered from 1 through #. It may be known of some
compositions that they cannot oceur; but, if a composition is considered
possible, all populations having that composition (irrespective of order-
ing) are also considered possible. Each observation in the compound
problem consists in the cost-free observation of some m of the objects,
every subset of exactly m objects being available for observation.

Formally, the index ¢ of the partition B; runs over a certain set I of
n-tuples, {1y, <+, iy}, of elements considered for definiteness to be in-
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tegers. If 1 = |1}, ---, 14| ¢ 1, then any permutation T7 of ¢ 1= also n
I. It is assumed that

(n E#| B) = E| Br)

for every f ¢ F, ¢ ¢ I, and permutation 7.

To every subset A of m integers, 1 < a;(A4) < as(d) <+« < ap_1(4)
< am(A) < n, there corresponds an observation x(A) the possible val-
ues of which are m-tuples |[z,(A), -+, z,({A)}. The conditional dis-
tributions of the x(A)'s are defined thus: If x,(4) = 1,4y, ete., then
P(zi(4), -+, 2n(4) | B) = 1.

It is obvious that L*(x(A4)} is the same for every A. In typical ap-
plications this common value is little, if at all, less than L*.

If & compound act ZX{A)f(x(A)) is to be chosen, statistical commaon
sense asserts that nothing is to be lost by:

=1
(a) Letting MA) be independent of 4, and therefore equal to (:)

for every A ; that is, letting every sample of size m have the same prob-
ability of being chosen, or randomizing, as it is said.

(b) Letting flz;{A), ---, .{A))} be symmetric in its m arguments
and independent of A.

It can in faet be shown, by the method illustrated in the second ex-
ample of § 9.6 and discussed more generally in § 12.5, that there is at
least one minimax satisfying (a) and (b), and even that there is an ad-
missible one. Typieally, if m is large, but small compared to n, Ly*
is much smaller than the common value of the L*(x(A4))'s.

The importance of randomization in applied statistics can scarcely
be exaggerated. From the personalistic viewpoint it iz one of the most
important ways to bring groups of people into virtual unanimity ; from
the objectivistie viewpoint it not only makes possible great reductions
in maximum loss, but it 15 seen as an invention by which the theory of
probability is brought to bear on situations to which probability on
first (objeetivistic) sight would seem irrelevant.*

9 Mixed acts in statistics

Many have commented that modern applied statistics makes one,
but only one, important use of mixed acts, namely in deciding, through
the process of randomization, what to observe. Thus, for example,
once the observation has been made, the derived act is in practice al-
most always chosen, without mixing, from a set of basic acts natural to
the problem. This might seem to imply a sharp conflict between the
minimax rule and ordinary statistical practice; but actually it reflects

+ 1 would express myself very differently today (Savage 1062, pp. 33-34).
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agreement, for mixed acts greatly reduce the minimax loss in decision-
problem interpretations of typical practical statistical situations, when
and only when ordinary practice calls for mixed acts of the same sort,
namely when randomization is ealled for.

There are certain mechaniams that systematically tend to make mixed
acts have relatively little, or even absolutely no, advantage over un-
mixed acts. In the following discussion of these mechanisms, let L{r; 1)
be the abstract game on which a bilinear game L(f; g) is based.

In the first place, supposing that L(r; ) is non-negative for every r
and i (as is appropriate to the context now at hand), (12.3.6) can be
completed, so to speak, thus:

(1) L* min (R, I) 2 min max L(r; 1),

where i and I denote for the moment the number of values of r and 1,

respectively, and min (R, I) is of course the minimum of the two inte-

gers R and I. An inequality stronger than (1) will actually be proved.
Consider a minimax f for which the smallest possible number R’ of

the f(r)’s are actually positive:

(2) R'L* = max R’ 3 L(r; i)f(r)
2 max L{r"; 1)

> min max L{r; 1)

F 1

where r’ 18 50 chosen that R'f(r") = 1, as can obviously be done. It is
known [B19] that R’ < min (R, I).

The important lesson of (1) is that, unless R and I are both large,
the introduction of mixed acts cannot reduce the minimax loss to a
very small fraction of the value it would otherwise have.

To mention a different mechanism, Figure 12.4.1 suggests that, if
there are many r's, the corners of the concave function emphasized in
that figure may well be very blunt, in which case a minimax mixed act
has almost as high & maximum loss as any one of its components. When
the number of r's is infinite, the concave function may well be differen-
tiable, in which case mixed acts have absolutely no advantage. The
remark appended to Exercise 4.5a is pertinent here.

This mechanism can be related to a certain large class of infinite ab-
stract (i.e., not necessarily bilinear) games, discovered by Kakutani
[K1], for which L* = Ls. Bilinear games are but a special case of
these, and numerous others seem to arise frequently in applications.
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If L* = Ly for an abstract game, nothing at all can be gained by ad-
joining mixed acts, as (12.3.5) shows.

Finally, it may be mentioned that in many cases where an observa-
tion x might be followed by a mixed derived act, the same, or nearly
the same, consequences can often be realized by a pure act. Speaking
a little loosely, this oceurs whenever x has a continuous or nearly con-
tinuous contraction y that is irrelevant, or nearly irrelevant, for then
y ean play the role in selecting a basic derived act that would otherwise
be assigned to a table of random numbers. If, for example, x is con-
tinuous, y(x) can be taken as the last few digits in the decimal expansion
of x to an extravagant number of places. Again if, conditionally, x =
x4, ==, X} 18 an n-tuple of continuously, identically, and independ-
ently distributed real random variables, y(x) may be taken as the per-
mutation that ranks the z's in ascending order, provided that n! is
fairly large: 10! should satisfy almost any need.

A recent technical reference on the superfluousness of mixed acts in
the presence of continuous observations is [D13].

I have occasionally heard it conjectured that any mixed act made
after the observation (in an observational decision problem) 1s wrong in
principle. I would argue that the conjecture is mistaken thus: Any ob-
servational problem that calls for randomization can be simulated, so
far as its loss function L(r; 7) is concerned, by & basic problem. A mixed
act will be as appropriate to the basic problem as it was to the obser-
vational problem from which the basic one was derived. In this way a
great variety of situations ealling for mixed acts having nothing to do
with choice of observation can be constructed, though they seem to be
atypical in practice. Morsover, any basic problem can obviously oc-
cur as the decision problem remaining after some particular value z of
an observation has been observed, so the situations just constructed
lead to closely related ones calling for mixed acts afier observation.

Less abstractly, consider & person choosing from a tray of assorted
French pastries. Even after extensive visual observation and interro-
gation of the waiter, the person might justifiably introduce considers-
ble mixture into his choice.

I think that the conjecture that mixed acts are necessarily inap-
propriate after observations stems partly from the mechanisms that do
tend to make such acts inappropriate or unimportant in many typical
eases and partly from justifiable dissatisfaction with specific mixed acts
that have from time to time been suggested by statisticians. For ex-
ample, the suggestion that ties in rank arising in non-parametric tests
be removed by ranking the tied observations at random may in many,
or perhaps all, cases fairly be regarded with suspicion.



CHAPTER 15

Point Estimation

1 Introduction

This chapter discusses point estimation, and the next two discuss the
testing of hypotheses and interval estimation, respectively. Definitions
of these processes must be sought in due course; but, for the moment,
whatever notions about them you happen to have will afford sufficient
background for certain introductory remarks applying equally well to
both kinds of estimation and to testing.

Estimating and testing have been, and inertia alone would insure
that they will long continue to be, cornerstones of practical statisties,
Their development has until recently been almost exclusively in the
verbalistic tradition, or outlook. For example, testing and interval
estimation have often been expressed as problems of making assertions,
on the basis of evidence, according to systems that lead, with high prob-
ability, to true assertions, and point estimation has even been decried
as ill-conceived because it is not so expressible.

Wald's minimax theory has, as was explained in § 9.2, stimulated in-
terest in the interpretation of problems of estimation and testing in be-
havioralistic terms; to objectivists this has, of course, meant interpre-
tation as objectivistic decision problems. For reasons discussed in
§ 9.2, it does seem to me that any verbalistic concept in statistics owes
whatever value it may have to the possibility of one or more behavioral-
istic interpretations.

The task of any such interpretation from one framework of ideas to
another is necessarily delicate. In the present instance, there is a par-
ticular temptation to foree the interpretation, namely, so that eriteria
proposed by the verbalistic outlook are translated into applications of
the minimax theory, that is, of the minimax rule and the sure-thing
principle (as expressed by the eriterion of admissibility), for these are
the only general criteria thus far proposed and seriously maintained
for the solution of objectivistic decision problems. Of course it is to
be expected, and I hope later sections of this chapter and the next dem-

onstrate, that unforced interpretations do often translate verbalistie
220
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eriteria into applications of the behavioralistic ones, In evaluating any
such interpretations, it must be borne in mind that an analogy of great
mathematical value may be valueless as an interpretation; correspond-
ingly, what is put forward as mere analogy should not be taken to be
an interpretation, much less branded as a foreed one. For example,
attention has already been called {in § 11.4) to the danger of regarding
the analogy between the theory of two-person games and that of the
minimax rule for objectivistic decision problems as an interpretation.
In fact, minimax problems are of such mathematical generahty that
they arise, even within statistics, in contexts other than direet applica-
tion of the minimax rule to objectivistic decision problems; a striking,
though technical, example is Theorem 2.26 of Wald's book |[W3).

The literature of estimation and testing iz vast; indeed it has, |
think, been seriously contended that statistics treats of no other sub-
jects. This chapter and the next two cannot, therefore, pretend to
present a complete digest of that literature, even so far as it pertains to
the foundations of statistics. For further reading certain chapters of
Kendall's treatise [K2] may be recommended as a key reference to the
verbalistic tradition (Chapters 17 and 18 for peint estimation; 19 and
20 for mterval estimation; 21, 26, and 27 for testing). Many newer
aspects are treated in Wald's book [W3]; and a recent review of testing
by Lehmann [L4] is recommended.

2 The verbalistic concept of point estimation

Abstractly and very generally, but in verbalistic language (which is
necessarily vague), the problem of point estimation is this: Knowing
P(z | B;) for every i and having observed the value z, guess the value
A of a preseribed function, or parameter as it is often called, X({) with
values in a =et A. Semi-behavioralistically this is, I think universally,
understood to mean that a function 1 associating a value I(z) ¢ A with
each z {or possiblvy a mixture of such functions) is to be derided on, the
function 1 being called an estimate (or, to be complete, a point esti-
mate} of the parameter . A problem of point estimation has, thus,
some of the structure of an objectivistic observational problem: but,
gince nothing has yet been said about the income, or consequence, re-
sulting from the act [ in case B, obtains, it is at the moment impossible
to advance criteria for the choice of L

3 Examples of problems of point estimation

It will now be well to present some examples after a few words of
preparation. For simplicity, A will henceforth generally be supposed
to be an interval (possibly unbounded) of real numbers. If A7) =
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A{7") implies ¢ = 4, then A rather than 1 can be used to index the par-
tition; such an estimation problem is said to be free of nuisance param-
eters. This usage corresponds to the fact that the 1's can typically be
represented as ordered couples (A, 8), where ) is of course A(¢) and 8 is
called the nuisance parameter; if # in turn happens to be represented
as an ordered n-tuple, ordinary usage calls # an n-tuple of nuisance
parameters. It must be recognized as atypical in estimation problems
for © or X to be confined to a finite set of values, and often z is not so
confined either. It will therefore be necessary to proceed heuristically
into domains where the mathematically limited theory developed in
this book does not rigorously apply.

The specific estimation problems most commonly cited as examples,
and most important in practice, are summariged in Table 1, together
with their maximum-likelihood estimates, that is, estimates constructed
in accordance with a rule to be defined in § 4. All but the last two ex-
amples of Table 1 are free of nuisance parameters.

4 Criteria that have been proposed for point estimates

As a matter of fact, verbalistic treatments typically do give some
inkling of the consequence of the act ! when B, obtains. Thus, in the
examples commonly cited, such as those in Table 3.1, A is a set of real
numbers or a set of n-tuples of real numbers and, therefore, a set of
objects between which the notion of proximity. has some meaning.
Work in the verbalistic tradition has made it clear in connection with
such examples that, if | = A{i) for the B; that obtains, the guess is
considered perfect and that, roughly speaking, it iz considered rather
poor if [ is far from A.

In spite of the apparently hopeless indefiniteness of estimation prob-
lems even as thus formulated, various criteria, or desiderata, for esti-
mates have been suggested. A list of these criteria, intended to be es-
sentially complete, is now presented. FEach item is annotated and il-
lustrated to make its meaning clear, and sometimes to call attention
to related criteria not explicitly listed; motivation and criticism are,
however, deferred until later sections, where they are treated in connec-
tion with explicit hypotheses about the consequences of misestimation.

No attempt is made to include eriteria like intellectual simplicity or
facility of eomputation that depend not only on the estimate but also
on the eapabilities of the people who contemplate using it. The list
i8 in a sense logically inhomogeneous. For example, no one really con-
siders it a virtue in itself for an estimate to be a maximum-likelihood
estimate (Criterion 4); rather, it is believed that such estimates do
typically have real virtues,
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It has, to begin the list of eriteria, been suggested by one person or
another that:

1. If y is sufficient, nothing is to be lost by requiring the estimate 1
to be a contraction of y.

It will be instructive to bear in mind that necessary and sufficient
statisties of the examples (a)—(f) in Table 3.1 are, respectively, z, z,
220 (5 2%, (£, 2%

2. If, of two estimates 1 and I',
(1) EQ@ - 2P| B) < BQV — X&) | B)
for every 1, with strict inequality for some 7, then 1 is better than I’

There are countless variants of this idea. In particular, the square
of the difference may be replaced by any other positive power of the
absolute difference. Again, (1) may be imposed at only one value of 1,
if 1 and 1’ are subjected to some other condition, freedom from bias
(Criterion 6 below) being the popular one.

Example (f) gives rise to a good illustration of this criterion, which
is also interesting in a later connection. Letting Q =pf 2 2° — M’,+
it is well known that E(Q |, ¢*) = (n — 1)¢* and that E(Q®| u, o7
= (n® — 1)¢*. Therefore

(2) E(laQ — o®P | u, o¥) = {a®(n® — 1) — 2a(n - 1) + 1}¢*

{ Ly g : 4
= (a_ ){n—i',l-l- }cr
n+1 n-+1

E_n;l
>
n+ 1

for all real @, with equality if and only if @ = (n + 1)7', omitting the
pathological but trivial case that n = 1. By the criterion in question,
Q/{n + 1} is therefore better than any other estimate of the form a@,
including the maximum-likelihood estimate §/n and the unbiased es-
timate Q@/{n — 1).

3. If, of two estimates 1 and 1',
B) Pl—e¢ €liz) = Ai) € &|B) = Pl—¢ €V —A{) € a|B)

for every non-negative ¢ and e and for every ¢, with strict inequality
for some &, ¢, and some i, then 1 is better than 1".

+ This example was given by Leo A. Goodman (1953).
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Acceptance of this eriterion is obviously implied by acceptance of
Criterion 2, of which it may therefore be regarded as a skeptical coun-
terpart; formal demonstration of & much more general assertion will be
given in connection with (5.2—4). The criterion implies, for example, in
connection with (¢) of Table 3.1 that # is superior to any other weighted
average of the rs. A more interesting example will be mentioned in
connection with Criterion 5.

That modification of Criterion 3 in which it is concluded only that
1 is at least as good as 1" is of some technical interest. Incidentally, if
equality held identically in (3), there would presumably be nothing to
choose between the two estimates by any reasonable criterion, for they
would then both have the same svstem of conditional distributions,

4. A maximum-likelihood estimate is often a rather good estimate,

A maximum-likelihood estimate is an estimate | such that, for some
function i of z, l(z) = AMi(zx)) and

(4) P(z| Byn) = P(z| B)

for every i and z. In manyv natural problems there is only one maxi-
mum-likelihood estimate. Taking into account the analogy between
probabilities and values of probability densities, the reader should verify
that the estimates listed in Table 3.1 are indeed the unique maximum-
likelihood estimates of the problems to which they refer. When there
s a unique maximum-likelihood estimate, it is obviously a contraction
of the likelihood ratios and, therefore, of any sufficient statistic; which
fits neatly with Criterion 1.

5. A good estimate should have the same symmetry as the problem.

More precisely, if a permutation T of the i's and the z's is such that
{5} P{TI | B!'l':|I = P{Ii BI'L

and such that Ai) = A{") implies A(T%) = AMT7'); then 1 should be
such that, if I(z) = A7), {Tz) = MT5).

For example, adopting also Criterion 1, a good estimate for u in {¢)
may be sought of the form I(£). Symmetry then dictates (£ + a) =
(&) + a and [(—%) = —I(Z); in short, I(Z) = £.

The same conelusion can be drawn for (e}, though with a little more
trouble. The criterion applied to (f) leads to estimates of the form o).
The constant « might be fixed by appealing, for example, to Criterion
2, 4, or 6. These alone give three slightly different determinations—

a~! = (n+ 1), n, and (n — 1), respectively.
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Again, it can be shown for Examples (¢) and (e) that, among all es-
timates satisfying Criterion 5, # is best according to Criterion 3.

6. It 1s desirable that the estimate be unbiased.
An estimate 1 18 called unbiased, if and only if
(6) EQl| B) = \#)

for every 1.

It 18 easy to verify that the maximum-likelihood estimates of (a)-{e)
in Table 3.1 are all unbiased; that of (f), however, is not, for E(Q/n | &,
o) = (1 — 1/n)e" instead of ¢°. Again, if 1 is & maximum-likelihood
estimate of A, ¢ is a maximum-likelihood estimate of ¢*. But, if 1 is
not definitive, and 1 is an unbiased estimate of ), ¢' is not an unbiased
estimate of ¢*, as Theorem 1 of Appendix 2 implies.

7. 1t P(1 =\ | *:11’—1(1}'[3;] > 1/2 for every i, then 1 is
better than I'.

Any resemblance between this eriterion and Criterion 3 seems to be
dispelled by the following example. SBuppose that, for every 7, P(l1 — Ali)
= a, I' — A7) = b| B;) equals 2/11 if @ and b are integers such that
0<a<b<2 equals 5/11 if a and b are 2 and 0 respectively, and
equals 0 otherwise. According to Criterion 7, 1 is better than l', be-
cause 6/11 > 1/2; but, according to Criterion 3, 1" 15 better than 1,
because 5/11 > 4/11 and 7/11 > 6/11. The example can easily be
modified to suit any taste for symmetry and continuity. But, if 1 and
' are conditionally independent (which is not a natural assumption),
and | is better than 1" according to Criterion 7; then, as may easily be
shown, ' cannot be better than 1 by Criterion 3,

The list of eriteria is here interrupted by several paragraphs of ex-
planation in preparation for two concluding criteria.

The approach to certainty treated in §§ 3.6 and 7.6 has its counter-
part in the theory of estimation. In particular, if x(n) = [x;, ---, Xa}
is an n-tuple of conditionally independent and identically distributed
observations, there will typically exist sequences of estimates 1(n) based
an x(n), such that

(7 lim P(| i(x(n), n) = M3) | < e| B) =1

| = =

for every positive ¢ and every 7. A sequence of estimates satisfving (7)
relative to any sequence of observations x(n) (not necessarily n-tuples
of conditionally independent observations) is called consistent.
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The condition of consistency is often realized in a very special way,
namely that the error [l(z{n); n) — A(¥)] is, for every B; and for large
n, practically normally distributed about zero with variance inversely
proportional to n. More formally, a sequence of estimates may be
such that

IR C D Sy
) .h-{ﬂ-.P( (@) SalBi) = o5R f_: &

for every 1 and «, where ¢(7) is some positive function of ¢; it is then
said that n*9l(z(n); n) — A(¢)] is asymptotically normal about zero with
asymptotic variance (7). If, in addition, for every i, ¢"*(i) is not less
than a certain function, the differential information, to be defined in
§ 6, then the sequence 1, is ealled efficient.

There is a possible pitfall in connection with the idea of asymptotic
normality. Though (8) implies that, for large n, the distribution of
the error is, in a sense, almost the normal distribution with zero mean
and variance ¢°(f)/n, it does not imply that the mean of the error is
close to zero, or even finite or well defined. Similarly, the variance of
the error may be much larger than ¢*(7)/n, infinite, or ill defined; but
it cannot, for large n, be smaller than #°(#)/n by a fixed fraction or less.

Much literature on estimation has concentrated on sequences of es-
timation problems in which x{n) is an n-tuple consisting of the first n
elements of an infinite sequence of conditionally independent and con-
ditionally identically distributed random wariables or, as it will be
called in the present chapter, a standard sequence; because these are
the simplest examples of sequences of increasingly informative ohser-
vations. Examples (¢)—(f) in Table 3.1 refer directly to standard se-
quences; the binomial distributions (a) can be regarded as the distri-
bution of the sufficient statistic 2 x; of the standard sequence x(n)
in which each x; takes the values 1 and 0 with probabilities pand 1 — p,
respectively (cf. Exercise 7.4.1); again, if each x; is Poisson-distributed
with parameter u, then ¥ x; is sufficient for x(n) and is itself Poisson-
distributed with parameter ng. Thus, all the examples in Table 3.1
give rise more or less directly to examples of standard sequences.

In speaking of standard, and occasionally of other, sequences the
ellipsis of referring to a sequence of estimates simply as “an estimate”
has been widely adopted, so one reads recommendations that “an es-
timate” should be consistent or efficient. This ellipsis, though often
convenient, sometimes proves dangerous. It distracts from the fact
that a person is called upon to make an estimate, not a sequence of es-
timates; so that the question of what constitutes a good sequence does
not arise, Again, it makes one feel that if an estimate, say l;3, has been
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defined for x(13), then the definition of 1;4 is thereby implied. One for-
gets, for example, that “‘the” average of n observations is a whole se-
quence of statistics, a sequence singled out by human tastes and in-
terests, rather than by any mathematical necessity. In short, the
ellipsis establishes the atmosphere of the logically nonsensical (though
perhaps psychologically revealing) questions on intelligence tests such as:
“What are the two missing terms in the sequence . __ 182818287 ¢

The recommendations of consistency and efficiency quoted above can
he added to the numbered list of suggestions, in a form that avoids the
ellipsis:

8. If each l(n) is a good estimate for the corresponding x(n) of a
standard sequence, then the sequence l{n) is consistent.

The sequence of maximum-likelihood estimates of the sequences of
problems (a), (¢)—(f) are consistent; and, for the sequence of problems
of estimating from an observation y, Poisson-distributed with parame-
ter nu, the maximum-likelthood estimates y,/n are consistent.

If there is one consistent sequence of estimates, for a sequence of
problems there is a plethora. Each term of a consistent sequence can,
for example, be multiplied by (1 + n™"%) without destroying consist-
ency. Again, the sample medians { are in (¢) a consistent sequence
different from the sequence of maximume-likelihood estimates,

9. Under the hypothesis of Criterion 8, the sequence I{n) is efficient,
at least if any efficient sequence of estimates exists.

The six sequences of maximum-hikelihood estimates mentioned under
Criterion 8 are all well known to be efficient, as sequences of maximum-
likelihood estimates for standard sequences typically are. The asvmp-
totic variances and certain other interesting quantities associated with
these six sequences are presented in Table 1. It is remarkable that,
for each of the examples in Table 1, the expected values of the estimates
approach the estimated parameter; n times the variance of the esti-
mate, and n times the expected squared error, both approach the asymp-
totic variance of n’* times the error. For the first five examples the
relations mentioned hold, indeed, not only in the limit, but exactly,
for all n. All six examples are rather special, or magical, but the limit-
ing relations just mentioned may fairly be expected to hold in some
generality, though they are not (as has already been mentioned) really
implied by the asymptotic normality of the sequence of errors times
n*, To illustrate the exceptions that can oceur, | # |1 is, in (¢), the

te = 2. 7182818285 to eleven significant figures.

$ See any statistics text for definition, if necessary.



15.5] BEHAVIORALISTIC REVIEW OF ESTIMATION 220

maximum-likelihood estimate of | u |~! for x # 0; this sequence of es-
timates is efficient; and n*(| £|™' — | x|™") is asymptotically normal
about zero with asymptotic variance u™*; but the other three entries
for Table 1 are infinite in this example.

TasLE 1. EXAMPLES OF BEHAVIOR OF MAXIMUM-LIKELIHOOD ESTIMATES

Asymp-
n x expected  totic
Sequence Mean n X variance square of  variance
error of n'? X
error
(a) P Y Pq Pe
Poisson pn r B H "
(e) p 1 1 1
(d) a? 2 %0 %t
{e) m e g* ot
1 1 1
® (-3 20-5) (2-5) 2

As in the case of consistency, where there is one efficient sequence,
there are many, but efficiency is, of course, a much more restrictive
property than consistency. For example, multiplication by (1 4+ n~%)
typically destroys efficiency, though multiplication by (1 + n™"') never
does. Again, the consistent sequence of medians mentioned under Cri-
terion 8 is not efficient, Indeed, it is well known of that sequence that
the sequence of errors times n'* is asymptotically normal about zero
with asymptotic variance /2 rather than 1.

6 A behavioralistic review of the criteria for point estimation

It is time now to introduce the notion of consequences, or (equiva-
lently, I believe} of loss, thereby interpreting estimation problems as
decigion problems. Let it be said then that an estimation decision prob-
lem is an observational decision problem with the following distinguish-
ing feature. There is a one-to-one correspondence between the basiwe
acts f and the values attained by a real-valued function A7), such that
Lif; i) = 0, if f is the act that corresponds with A(f). It is simpler,
more suggestive, and harmless to let the number I that corresponds to
f replace f itself in all further discussion of estimation decision problems.
To illustrate the new notation, it may be said that L{l:1) = 0,1f [ = A(1).

I believe that any situation ordinarily said to call for (point) estima-
tion can be analyzed as an estimation decision problem. For example,
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estimating how much paint will cover a wall may, depending on ecir-
cumstances, mean deciding: how much paint to buy, what to bid for a
contract, or what number to enter in a guessing pool. Under each of
those interpretations there will be zero loss, if and, typically, only if
the estimate is “correct,” as one says.

The consequences of an estimate may, like those of many real lhife
decisions, be difficult to appraise. It is hard to say even in relatively
concrete situations what it will cost to misestimate the speed of light,
a particular mortality rate, or the national income. If, to revert to an
example already discussed, the estimate is to be published somewhere
for the use of whoever has a use for it, the consequences of publication
may seem beyond all reckoning. None the less, [ reaffirm the convie-
tion that the concept of consequence measured in income or loss is
valuable in dealing with such situations, as I hope the present treat-
ment of estimation will illustrate™ Incidentally, it seems indifferent,
as I have already said, whether loss or income is taken as the starting
point. It is easily shown that the decisions of the idealized person of
the personalistic probability theory will be the same in two problems
having possibly different income, but the same loss, functions. This
feature I would expect to be acceptable even to objectivists, and I
also think it appropriate to theories of group deecision.

1 know of nothing interesting that distinguishes estimation decision
problems as & class from observational deecision problems generally.
But actual estimation situations suggest certain relatively wide classes
of estimation decision problems about which interesting and valuable
conclusions can be drawn. Indeed, it will be shown in this and the next
two sections that seven of the nine listed eriteria for estimation can be
justified to some extent as flowing from application of the prineciple of
admissibility and the minimax rule to such classes of estimation de-
eision problems,

Before making any real specislization, it may be most syetematic to
mention that Criterion 1 is simply an instance of the general principle,
which we have now studied from several points of view, that nothing
is lost by confining attention to sufficient statistics, at least if mixtures
are allowed.

It is clear in almost any estimation situation, even in those for which
the notion of loss is vaguest, that if two errors have the same sign the
larger entails at least as great a loss as the smaller. Analytically,

(1) L{l; ) < L(I'; 1)

for Az) €1 < and for A7) = 1 > I'. Situations to which (1) fails
to apply ean readily be imagined. William Tell, for example, in esti-

+ This idea was expressed by Gauss (1821, Seetion 6).
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mating the angle by which to elevate his cross-bow for the apple shot
might have preferred a downward error of 10° to one of 1%; but such
circumstances seem exceptional. Furthermore, it is usually justifiable
to assume that strict inequality holds in (1), though there are many
exceptions in which, for example, “a miss is as good as a mile” or one
hit is as good as another.

As is, I think, intuitively evident, when strict inequality holds in
(1), Criterion 3 is simply an application of the principle of admissibility.
That conclusion can be shown in complete generality without serious
difficulty, but, in compliance with the usual mathematical limitations
of this book, it will here be shown only under the assumption that x
is confined to a finite number of values.

What is to be shown is this: If ] and 1" are a pair of estimates satisfy-
ing the hypothesis of Criterion 3, and if (1) holds with strict inequality ;
then L{l; 1) — L{I'; ¥) < 0 for every ¢, with strict inequality for some
i. To begin the proof calculate thus:

2 L(l;4) — L{';1) = ;Ltz; DIP((x) = 1| By) — P(I'(z) = 1| By}
= ;ch;aja{r: 1)
= Y L;0QU; 0 + X Li; 9Qu; 1),

1< ki) L >niiy

where the definition of Q(I; 1) is clear from the context, and where it
has been taken into account that L{A(z); i) = 0. It will be shown that
both sums in the last part of (2) are non-positive and that for some 1 at
least one of them is negative. Focus, for definiteness, on the second
sum. Let Il = A({) and [;, I3, - -+ be, in order of increasing magnitude,
the values of { > M) for which Q(I; ©) # 0. With the abbreviations
L(k) = ps L{l; 1), A(k) = pe L(k) — L(k — 1), and Q(k) = ps Q(L; 1),
the sum to be investigated is

(3) S LQUE) = X Q) X AK)
<k <k <k <k
=3 AlK) X Q).
0 <k’ k= k'

(This rearrangement may seem bizarre on first encounter, but it is
widely used in mathematics generally and is in fact an exact analogue,
for sums, of the more familiar integration by parts, for integrals.) It
follows from (1) read with strict inequality that A(k) > 0; and it fol-
lows from the hypothesis of Criterion 3 that Q(k) < 0, and that some
Q(k)—or an analogous term associated with the first sum in the last
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line of (2)—is strictly negative for some 1. This completes the dedue-
tion of Criterion 3 from the striet form of (1) and the principle of ad-
missibility. Essentially the same argument leads from (1) as actually
written to the modification mentioned in the note under Criterion 3.

A very slight strengthening of (1), together with the minimax rule,
provides a widely applicable justification of Criterion 8 (consistency),
as will now be explained. Suppose that (1) not only holds but also is
strict, if [ = A(f); that is, in addition to (1) suppose only that L{l'; 1)
> 0 for all I' # A1), In this context, let x(n) be a sequence of obser-
vations such that the minimax L*(n) of the corresponding estimation
problems approaches gero with increasing »; then any sequence of mini-
max estimates 1{n) is consistent. Indeed, if the sequence 1{n) is not
consistent, then, for some 1, and some positive ¢ and 8,

(4) P lzn;n) — MG} | > €| B) > 8
for some arbitrarily large values of n. This implies
(8) L*(n) 2 L(l(n); 1) 2 dmin [L(A(i) + ¢ 1), LAMZ) — ¢ 4)| > 0,

which contradiets the hypothesis,

Turn next to Criterion 5 (symmetry). Suppose that the estimation
decision problem has symmetry in the sense defined under Criterion 5.
That does not in itself really call for estimates with the same symmetry.
But, if L also has the symmetry, that is, if L{A("); ) = LO(TY"); Th)
for all appropriate T, then the discussion of symmetry in § 12.5 sug-
gests that typically there is, at any rate, a symmetrical, admissible,
minimax estimate. Whether L has the requisite symmetry 18 a ques-
tion that can often be answered without detailed knowledge of L.

It is often justifiable to suppose that the function L(l; ¢) i8 smooth
enough to be differentiated twice with respect to [, at least when [ is
near A{f). This condition, though verv often met, is not quite so de-
void of content as it may seem to a reader brought up in the tradition
that it makes no practical difference whether a function has a few sharp
corners because they can always be rounded off with almost no change
in the function. If, for example, L{l; ¢} is for all practicable purposes
equal to |1 — A|; then L cannot be regarded as differentiable even
once when [ = A, and the theory to be developed here for twice differen-
tinble L(l; 1)'s in the presence of extensive observation does not apply.
It will therefore be useful to digress to the consideration of an example,
illustrating how corners can arise and the phenomena that tend to round
them off.

Suppose that a person must estimate the amount A of shelving for
books, priced at £1.00 per foot, to be ordered for some purpose. It is
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possible that the following economic analysis of the situation would be
sufficiently realistic. The person holds every foot of shelving less than
the number of feet, A, uf books to be shelved to be worth $a, a > 1,
but superfluous shelving he holds to be worthless. Formally,

(6) LGN =(@=1DA—-0 forl <A
= (1 =) for I > \.

There iz then a corner, or kink, at [ = ); so differentiation, even once, is
impossible.

But the following analysis is much more likely to be sufficiently real-
istic. The urgency of the shelving of the books is variable. Some would
be worth shelving, even if the cost of shelving were very high; at the
other extreme, there are some that would not be worth shelving unless
the cost were very low. More fully, the value of [ feet of shelving is &
function (l) that presumably has the following features. It is mono-
tonically inereasing, strictly concave, and twice differentiable in [;
i(0) = 0; i(=) < =; ¥(0) > 1. The income sttached to ordering L
feet of shelving, at the price 81.00 per foot, is clearly

(7) I ) = i) — L

It is maximized at the one and only value A for which di(d)/dh = 1, s0
that

(8) L{l; 1) = [i(x) — A = [«() = 1),

which is of course twice differentiable in I.

The moral of these two possible economic analyses of one exampile is
of wide applieability, as is well known among economists. Where a
superficial analysis suggests a kink, or even 4 discontinuity, in an in-
come funection, deeper analysis will often show that the function is
smoothed out by various economic phenomena such as the inhomo-
geneity and the mutual substitutability of commeodities,

To return from the digression, if L is twice differentiable in [ (at
least when [ is close to A}, L can be expanded in a Taylor series thus:

9 L{la) =L+ U—N) ﬂ% L{l; 1)

Tk (0}
} 1 2 - [ I 2
— — —— ¥ ! — 1 ¥

where, following standard usage, o((l — A)*) is a funetion of ! and 7, not
necessarily the same from one context to another, such that o((I — A)*) +
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(1 — A)? approaches zero as [ approaches \(¢) for fixed . The first term
on the right side of (9) vanishes by the definition of estimation; the
second must vanish also, for otherwise L could be negative. Therefore,

a=tacawm e R
10 L) =g @ =N LD |+ el =N

-
= (I = @) %a() + o((l = N)?),

where (i) 15 defined by the eontext.

In view of (10), it is plausible that L may, in many problems where
estimates of great accuracy are possible, be supposed to be practically
of the form

(11) L{t; 9) = (1 = Mi)%a(s),

where «(i) > 0 for every i. This does not exactly mean that a reason-
able L can be closely approximated by functions of the form (11) for
all I. In particular, the absurd assumption that L is unbounded (which
such approximation would typically imply) is not to be made. It means,
rather, that under favorable circumstances (11) may lead to a reason-
ably good evaluation of L({l; ). In so far as the form (11) can be sup-
posed adequately to represent L, Criterion 2 is obviously an applica-
tion of the prineciple of admissibility, An interesting discussion and
application of (11) is given by Yates [Y2].

6 A behavioralistic review, continued

Thus far, Criteria 1, 2, 3, 5, and 8 have been discussed in behavioral-
istic terms. In fact, under suitable hypotheses, each has been found to
have considerable behavioralistic justification. Criteria 4 and 9 also
have such justifieation, but my discussion of them is so bulky it had
better be isolated in a special section. As for Criteria 6 and 7, the only
ones remaining, they do not seem to me to have any serious justifica-
tion at all, as will be discussed in still another section.

Criterion 4, the recommendation of maximum-likelihood estimates, is
of extraordinary interest, for, of all the cnteria of the verbalistic tradi-
tion, it is essentially the only one that selects a unique estimate in al-
most every estimation situation of practical importance, The present
section demonstrates that, in the presence of extensive observation,
maximum-likelihood estimates are often almost minimax estimates; it
also gives some analysis of Criterion 9, which refers to efficiency. The
way to these goals is roundabout; it begins with a study of information
in the technical sense mentioned in § 3.6. In this section it will be as-
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sumed for mathematical simplicity that each observation under discus-
sion is confined to a finite number of values, each having positive prob-
ability for every element of whatever partition is under discussion.

If B; and B; are elements of a partition, not necessarily finite, and x
is an observation, say, in the spirit of (3.6.11), that the information of
7 relative to 1 for the observation x is

3¢)~

The expression of J in terms of likelihood ratios is important, especially
for the extension of the discussion to more general observations than
those contemplated here. The reader should, therefore, try to bear in
mind that the whole discussion eould be carried on in terms of likeli-
hood ratios; I refrain from so doing only for momentary reasons of no-
tational convenience. The theory of J can conveniently be presented
in & series of exercises.

P(z| By)
P(z| By)

Ty
B;)= —E[log-

Ty

(1) J(i,j;x) =pr —E (lﬂE

Exercises

la. If y isa contraction of x, then J (1, 7;x) = J(1,7;¥). With equality
when? Hint:

_ P(zlﬂﬂl ) . PW|By
@ E(l"“ P(z | B) Bov)2 —log P(y| B

1b. J(i, j;x) > 0. With equality when?
2a. If xy, ---, 2, are conditionally independent, then

(3) J(, 5%, -+, %) = 2 J(, i %)

2b. If in addition the x,’s are conditionally identically distributed,
then

(4) J(I, 7 x, 00, X)) = nd (L, 7; x).

It is interesting to evaluate the information J(A, A + AX\; x) where A
and X + A\ are two closely neighboring values of the parameter of an
estimation problem, supposed, for simplicity, to be free of nuisance
parameters. If P(z|)) is continuous in ), it is almost obvious that
J{\, A+ A\; x) approaches zero as A\ approaches zero. If P(z |, A) 18
differentiable in }, it is easy to show further (considering that J is non-
negative) that even J(A, X 4+ A\; x)/A\ approaches zero as A\ ap-
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proaches zero. But in this case much more can and will be shown,
namely,

5)  lim st AND) %H(h; 1)

AN = O Ax2
1 a log P 2
_E_E[( og (:I:a}) 1].
2 dA
The function H is generally, following Fisher, called information, but
here we had better call it differential information. Chronologically, as
explained at the end of § 3.6, the concept of differential information is
older than that here called simply information and of which it is, ac-
cording to (5), a limiting case,
The demonstration of (3) begins with the consideration that

(6) log (1 4+ #) =t — 3 + o(8).
Therefore,
) P(J:il+ﬁh)_l {1 P(:|L+M}—P{:!1}]
P(x| ) P(z| N
P(z| )+ Ax) — P(z|))
"[ P | N }
1 [P(z| X+ a\) — P(z|2))?
2 P(z |\ ] + o(ax?.

Since the expected value given A of the term in the second line of
(7] 1s easily seen to be exactly szero, it will be tactful to leave that term
alone; but the second may be approximated thus:

P(z| X + an) —P(:ix]r {a:uaP(:th }'
®) [ P(z|A) P(z|\) ax + o(ay)
o2 {a log P(z | A)
a\

|+ ofar

Therefore,
(9) J(\, X 4+ A\; x) = FH(A; x)AN + o(AN?),
which establishes (5).

More exercises

3. If the kth derivative (k > 0) with respect to A of P(z|\) exists
for every z, then
k

. ( 1 a*
P(z LX) ank

Pz N |A)=—(2P(z|N]) =0
)= 5(ZPei)

(10) ank
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4. If the requisite second derivative exists, then

aﬂ
(11} H(\; x) = —E(EIDEP{J;IL}H)-
5. If y is a contraction of x {and H(\; x) is well defined), then H(A; y)
< H(x; x).

Remark: The inequality is obvious in the light of Exercise 1a and the
first part of (5). But it can also be derived from the following applica-
tion of Theorem 1 of Appendix 2, which is useful in the next exercise.

]
a { 1 aP{yln}_E,( 1 aP[rlh}[y,h)
P(y|n) an Piz|n) ar
y.l).

({ ] aP(:imr
< E
- P(z|x) ax

with equality for every y and ), if and only if &% log P(x | ) can be ex-

pressed as a function of y and A alone.

Ga. If y is a contraction of x, H(A\; x) = H(\; y) for every X; if and
only if v is sufficient for x.

6b. H(\; x) = 0 for every A, if and only if x is utterly irrelevant.

7a. If x;, - -+, X, are independent given A, then

(13) H;xy, -+, %) = 2 H(QA; x,).

Th. Ii, in addition, the x,’s are identically distributed given ), then
(14) H(\;xy, -, x,) = nH(); xy).

8. If 1 is a real-valued contraction of x, and H()A; x) is well defined,
then

(a)
d d log P(i(x) [ A) )
1 — EQ = Kl .
(16) ~EA|) (r;-::r . |a
(b)
d F |
(16) E(l = \F | NHQ; 1) > {E EQ| m} .
with equality if and only if
d
(17) —log P(t| M) = (1 = Mk

for some constant k. Hint: Use Exercise 3 and apply the Schwartz in-
equality to (15).
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(e} If H(x; x) > 0, then

2
(18) E( - AP 2> {%Eﬂll}} JH(A; x).

Exercise 8¢ is an important, and now famous, inequality. It, together
with its n-dimensional generalization, has been called the Cramér-Rao
mequality because of its independent publication by Bao and Cramér
in 1945 and 1946 respectively (see [H6]). But the name is not at all
well justified historically. Fréchet presented the inequality in 1943
{F8], and Darmois extended Fréchet's inequality to n dimensions, at
least for unbiased estimates, in a publication [D1] not later than Rao's.
The inequality has also, though I think erroneously, been attributed to
an early paper by Aitken and Silverstone [Al], and to one by Doob
(D10]. My point is, of course, not to give a definitive history of the in-
equality, but merely to suggest that for the time being an impersonal
name would be better. 1 tentatively propose calling it the information
inequality, Some recent references pertinent to the information in-
equality and other topics treated thus far in this section are [W135],
[M5], [C6], and [H6]. The techniques used in the remainder of this
section, which revolve around the information inequality, were pub-
lished posthumously by Wald [W5].

The information inequality has an important bearing on application of
the minimax rule to estimation, of which the following theorem may,
in view of (5.11) be taken as a first illustration.

TueoreEM 1

Hrye. 1. For every M\ in a closed interval of length 3, H(\; x) < H,
where H is a constant.
2. 118 a real-valued contraction of x.

—3
CoNcL. For some X\ in the interval, E{(1 — \)* i A) = (H” + %) i

Proor. Suppose that the theorem is false. Then according to Ex-
ercise 8c,

=] d.
19 1 HH(H q r—-EI}.‘
(19) > H+& ::-ﬂtli

for every X in the interval. Therefore,

2
(8H* + 2)

Iff -1
20) —Ix = EQ| A }I—H”(H“ Z)
(20) ﬂ[ RN +3



15.6) BEHAVIORALISTIC REVIEW OF ESTIMATION 239

for every A in the interval, Therefore, at one end of the interval or
the other,

2 8 PAN
— = | g _) .
a =B > o = (043

This leads to a contradiction through the well-known inequality
(22) EU= 2PN 2 {EQA =X [N} =|x=EQ[N) [}

which can be derived as a direct application of Theorem 1 of Appendix
2, or of the Schwartz inequality, or of the useful identity

(23) E(=2P|[N) =va|N+ EQ -2 [N @
In the remaining portion of this section, let it be understood that:

1. The x,’s are an infinite sequence of observations that are, given A,
identically distributed and independent.

2. x(n) = {xy, +++, Xl formn=12 -+,

3. I(n) is a real-valued contraction of x(n),

The contraction I(n) is to be thought of a= an estimate of A based on
observation of x(n). In the spirit of the minimax theory it is really
mixed, rather than ordinary, estimates that should be treated here
But this entails no essential change in the following discussion once it
is recognized that a mixed estimate is, in effect, an ordinary estimate
based on observation of y(n) = p¢ (1(n), x(n)), where x(n) is sufficient
for y(n), so that H(\; y(n)) = H(\; x(n)) for all A.

4. ¢ and § are positive numbers.

5. Ap is & closed interval of length 4 contained in the range of A and
meluding & given value Ag.

The next theorem shows that, if L{I; }) is of the form (5.11), L{l(n);
A) cannot ordinarily be kept much smaller than a(lg)/nH(Ay; x;) for
large n, even in a small interval about Ag.

THEOREM 2 If H(\; x;) is continuous and positive at Ay, and if
a(A) is a non-negative function continuous at Ay, then, for sufficiently
large n, E((I(n) — \)*a(\)|2) 2 (1 — Qa(ho)/nH(Ao; x,) for some
AE .ﬁ.u..

Proor. There is no loss of generality in supposing that « < 1 and
Ap such that, for A edo, ald) > alp)(l — & and H(; x)"* <
H(o; x)¥ [1 4+ (1 — €~ ")/2. Using Exercise Tb,

b5
(24) HQ;x()% = n"HO; x)% < %Hm;:m‘[l + (1= o
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for A ¢eAp. By Theorem 1, if n 2> 16/8H(\g; xy)[(1 — &~ = 1P,
then

b 2 -2
(25) E(((n) = M| %) 2 %Huﬂ; )L + (1 - '}*HHE}

(1 — e
>
nHAg; xy)

for some A ¢ Ay, @

The next theorem extends Theorem 2 to practically any loss function
that is twice differentiable in ! for [ and A close to A;.

THEOREM 3
Hyp. 1. H(\; x;) is positive and continuous at Ag.
3?
2. afr) =ps—— Lil; X 18 continuous at Ag.
a()) Df?ﬂ!’( }I—Ju. Ag

3. Inequality (5.1) holds for A in A,.

ConcL. For sufficiently large n, L(1(n); A) 2 ({1 — e)aldo)/nH (Xp:X;)
for some \ & Ay.

Proor. It may be supposed without loss of generality that ¢ < 1;
and that, for [, A e Ao, L{I; A) > (1 — " a(A)({ — A

It may also be supposed that [{z; n) e Ag. This is so, because it would
suffice to prove the theorem for a new estimate 1'(n), where l'(z; n) is
defined to be the number in Ay closest to I(x; n), which in turn follows
from the fact that L{l'(n); A) < L{l(n); X) for X e Ay.

These suppositions having been made, the theorem is a direct con-
sequence of Theorem 2. ¢

CoOROLLARY 1 If L({I; ») satisfies (5.1) and has two derivatives with
respect to [ continuous in A for every A and for every [ sufficiently close
to A, and if H()\; x,) is continuous and positive, then, for sufficiently
large n,

(26) L*(n) 2 (1 — € sup a(d)/nH(\; Xa),

where L*(n) is the minimax value of the estimation decision problem
derived from L(l; A) and x(n), unless the supremum in question is in-
finite, in which case nL*(n) approaches infinity.

Of course, it would be enough to assume only that L{{; \) and H(A; x;)
are well behaved at some sequence of values of A on which the supremum
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in question is approsched. In particular, if the supremum is sctually
attained at some )\, they need only be well behaved there.

Now, tuming to the sequence of maximum-likelihood estimates, let
them be denoted for the moment by 1(n). It is known that under
rather general hypotheses n**(i{n) — A) is asymptotically normal about
zero with asymptotic variance 1/H(\; x;).f This suggests, and ex-
amples tend to confirm, that, under some supplementary conditions,

27 lim nB({(n) — \)?) = .
27) e () ") H{\;xy)

Indeed, one set of conditions implying (27) is stated in [W3], but one
that seems difficult to apply. It can be shown that (27), together with
the usual asymptotic behavior of 1(n), implies

(28) lim nL(i(r); 3) =
nl—?:u {ﬂ ' H{A;I;}j
provided, for example, that L({l; )) is bounded for each A and that the
second derivative of L(I; A} with respect to [ exists when { = A. Easily
applied rigorous theorems implving (28) much less (27) do not seem to
have been formulated yet; but examples suggest that, under conditions
general enough for many applications, (28) actually does hold uni-
formly, in the sense that, for n sufficiently large,
I - A . 1 A
(29) €= 92 o Liim;n) < L9
nH(\; xq) nH(\; x1)
for all A simultaneously. 1f (29) holds, then, in view of Corollary 1,
1(n) is nearly minimax for large n, in the sense that

(30) L*(n) 2 (1 — ¢ sup L{l(n); \).
&

Good examples can be based on (a) of Tables 3.1 and 4.1, letting
L(l; p) be any loss function having two continuous derivatives in [
throughout 0 €1, p < 1. In particular, the example discussed in
§ 13.4 arises, if L{l; p) = (I — p)*. It can be argued that the phenome-
non discussed in connection with that example is probably not rare;

t Bome key references for the asymptotic behavior of T(n) are [K2], [C9], [L3],
[W16), [N4). The litersture on this subject is extraordinarily complicated. There
are acknowledged mathematical mistakes in some of its most sophisticated publica-
tions; others prove much less than any but the most attentive reader would be led
to suppose; few give an adequate statement of their relations to their predecessors;
and those that make serious pretentions to rigor involve complicated hypotheses.
For documentation of this lament see [N4], [W4], and [L3]
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because, for minimax I(n), L({l(n); A\) is, judging from examples, often

constant and, therefore, nearly equal to sup a(A)/nH(\; zy), but L{1; )
by

closely follows the rise and fall of «(\)/nH(A; x,).

Turn now to Criterion 9, efficiency. It seems difficult to defend the
eriterion as it has been defined in connection with (4.8); for what vir-
tue is there in the asymptotic normality required by (4.8)7 It is per-
haps noteworthy that the sequence of minimax estimates, §,(n), aris-
ing in conneetion with § 13.4 does not satisfy (4.8). Indeed, (13.4.3)
implies that n*(,(n) — p) is asymptotically normal not about zero,
but about (3 — p).

It is my impression that the essence of the efficiency concept resides
not in asymptotic normality, but in the overall behavior of the mean
square error of a sequence of estimates. I therefore propose tentatively
to modify the definition and to call a sequence of estimates l(n) effi-
cient, if and only if its mean square error behaves at least as well as
can typically be expected for a sequence of maximum-likelihpod esti-
mates.

Formally, I propose to call 1(n) efficient, if and only if, for n suffi-
ciently large,

(31) E(itn) — N £

for every )\ simultaneously.

I think the main objection that is likely to be raised to this proposed
definition is associated with the possibility that in some problems of
theoretical, and perhaps also of practical, importance (31) is not satis-
fied by any sequence of estimates whatsoever, though the maximum-
likelihood sequence is efficient in the “official” sense. In such a prob-
lem, are the maximum-likelihood estimates not as good for all practical
purposes for sufficiently large n as though their variances were actually
equal to those of the normal distributions to which they approximate?
It is natural to think so by analogy with other contexts in the theory
of probability, but approximate normality is actually no substitute for
(31) in the present context. The next paragraph is devoted to an ex-
ample illustrating the inadequacy of asymptotic variance as a measure
of asymptotic loas. It can be skipped without loss by anyone not in-
terested in such technicalities.

The best example I have been able to construct is derived from a se-
quence of observations that is not a standard sequence. Whether the
interesting features that it exhibits can actually be realized by standard
sequences, 1 do not know; but the example will do to illustrate the is-
sue. Let y{n) be any real random wvarisble subject to the density

{1+ €
nH(A; xp)
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n*e((y — A)n*f; n), defined thus: ¢(z; n) is the standard normal density
inside the interval [—&(n), 8(n)], 8(n) being such that the standard
normal probability of this interval is (1 — n™"); &(z; n) = 27°5(2n)/4
for 3(2n) < | z| < n*; ¢(z; n) is so defined elsewhere as to be a sym-
metric positive probability density with the first two moments finite,
with a bounded derivative approaching zero like 2™ with increasing z,
and with unique absolute maximum at z = 0. It is evident that n'
(y(n) — A) is asymptotically normal sbout zero with unit variance.
The information H(X\; y(n)) is well defined (even according to the strict
conditions imposed by Cramér, Lemma 1, Section 32.2 of [C9]). The
maximum-likelihood estimates of A are y(n), and these are also (acecord-
ing to Theorem 3.3 of [G1]) minimax for the simple quadratic loss
function (I — ). But

(82) E(ly(n) — AP |A) = E(y(n)? | 0)

1
> 2n' f yé(yn's; n) dy

H2nin~H
= dn"H[1 — 5(2n)n~%] 5(2n),

which does not satisfy (31). Ewven for the bounded, and therefore more
realistic, loss funetion,

(33) L(l; \) = min {1, I — AP},

it follows easily from Theorem 3.3 of [G1] that every estimate must
somewhere incur a loss at least as great as the lower bound established
by (32). To summarize, there are no estimates efficient in the sense
of (31), nor even in the sense that would arise from (31) on replacing
the simple quadratic loss function by a bounded loss funetion; the se-
quence of estimates y(n) is efficient in the official sense, so to speak,
but does not, of course, result in losses of the order of n™".

What can be said in positive Justification of the eriterion of efficiency
as defined by (31) or the like? Roughly, the elements of such a se-
quence nearly dominate every estimate for every smooth loss funetion.
A hittle more precisely, for large n, the loss associated with an element
of a sequence efficient in the sense of (31) is at most larger by a small
fraction than that of any other estimate, except possibly in some short
intervale.f The maximum loss of such an element is at most larger by
& small fraction than the minimax loss, so the elements of the sequence
are typically nearly minimax. Moreover, they typically have consid-

1 It has actuslly been demonstrated that the total length of these exceptional
intervals {within any fixed interval) is small [L3].
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erably smaller losses than any minimax estimate, except in short inter-
vals that are typieally very improbable a priori in the personal sense.
Thus the principle of admissibility, the minimax rule, and the personal-
istic concept of probability eombine to suggest that efficiency as de-
fined by (31) is a promising guide in the search for good estimates.

An extensive critique of the concept of efficiency, including much
material on its history, has been given by LeCam in [L3], which unfor-
tunately was not available to me in its entirety as [ wrote this section.

R. A. Fisher's name is the most prominent in the history of maximum-
likelihood estimation and efficiency. Some historical details are given
in [N4] and on p. 45 of Vol. IT of [K2].

T A behavioralistic review, concluded

Criteria 6 (unbiasedness) and 7 are now the only ones in the list for
which I have not suggested some justification in terms of the theory of
decision problems, and, indeed, I cannot. Unbiased estimates fascinate
many theoretical statisticians, including myself, and the study of them
undoubtedly has certain valuable by-produects. Yet it iz now widely
agreed that a serious reason to prefer unbiased estimates seems never
to have been proposed.

Three weak defenses are sometimes heard. TFirst, unbiasedness is as-
serted to have an intuitive appeal; whether it does or not depends, of
course, on the experience of the intuiter. Second, averages of increas-
ingly many unbissed estimates are typically consistent. If this is a
virtue, it is a limited one and pertains to the unbiased estimate not as
an estimate, but as a step in the definition of other estimates. Third,
an allusion is made to equity. If, for example, it has been agreed that
one party will buy a sack of sugar from another at so much per pound,
it seems fair that the nominal weight of the sack be determined by un-
biased estimate., This ethical conclusion eould perhaps be given some
justification in terms of approximately linear utility functions or a long-
run argument, though there is danger of falling into such pitfalls as the
conclusion that accuracy is unimportant for equity; and it might find
some application in the theory of barter; but it seems, at best, tangen-
tial to estimation in the sense of the present chapter.

For a proper appraizal of the eriterion of unbiasedness it should be
realized that, even if A admits an unbiased estimate, many not-at-all
pathological functions of A (which can in turn be regarded as parame-
ters), may fail to do so and that such unbiased estimates as A does admit
may be preposterous. These phenomena are both illustrated by the
following simple example. Let x be confined to two values, say 1 and
2;let P(1|A) =1 — P(2|)\) = \; and let A be confined to the interval
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[1/3, 2/3]. Then, by definition, 1 is an unbiased estimate of ¢(0), if
and enly if I{1)\ + U(2)(1 — X) = (2) + (I(1) — 2Z))\ = ¢{\)—a con-
dition that can be met, if and only if ¢ is linear. Suppose, for example,
@A) = A for every X, then [(1) = 1, [(2) = 0 defines the only unbiased
estimate of ¢(A). This estimate is worse, according to an emphatic
variant of Criterion 3, than the biased estimate |’ such that I'(1) = 2/3
and I'(2) = 1/3; for I (when it errs at all) errs in the same direction as
1, but never nearly as far.

As for Criterion 7, it is on first encounter appealing to postulate that,
if 1 is usually closer to A than 1’ is, then 1 is better than 1. But, speaking
at least for myself, the initisl appeal of Criterion 7 seems to have been
bound up with the conjecture that Criterion 7 is in some sense of the
same sort as Criterion 3. The example given under Criterion 7 almost
entirely evaporates the conjecture, and with it the appeal.

In the paper [P5] in which the eriterion 15 put forward for considera-
tion and exploration, Pitman mentions that the criterion seems ac-
ceptable in contexts where “the devil takes the hindmost.” This allu-
sion to the devil seems to offer no justification for the eriterion as a eri-
terion of estimation, for I understand the allusion to refer only to the
following kind of decision problem, which is quite remote from estima-
tion as ordinarily understood and is hardly ever encountered: A person
must choose between | and l', winning a prize if the estimate of his
choice falls closer to A than does the other one.

According to Pitman, the relationship of “better than,” or “closer
than” as he calls it, defined by Criterion 7, is not necessarily transitive,
He argues, I think with some justice, that this breakdown of transitivity
does not in itself invalidate the criterion when the criterion is applied
to select the “best’” from some prescribed class of estimates; but “best”
cannot here be taken literally.

Criterion 7 is unusual in that it depends on the joint conditional dis-
tributions of pairs of estimates rather than on the distributions of each
estimate considered separately. On any ordinary interpretation of es-
timation known to me, it can be argued (as it was under Criterion 3)
that no criterion need depend on more than the separate distributions.



CHAPTER 16

Testing

1 Introduction

In principle, this chapter on the statistical proeess of testing (often
referred to more fully as making tests of hypotheses or significance
tests) might have been organized on the pattern of the preceding chap-
ter on point estimation: a statement of verbalistic ideas, followed by
motivation and criticism in terms of behavioralistic ideas. But I am
dissuaded from repeating that pattern by several considerations. It
would, in the first place, be needlessly repetitious. Thus, in the pres-
ence of the preceding chapter I need mention only in passing that suffi-
vient statistics and symmetry play the same role in testing as in other
observational decision problems, and that a certain scheme of testing,
closely related to maximum-likelihood estimation, has asymptotie, or
large sample, virtues, Again, the pattern of the preceding chapter is
less attractive here, because the criteria for tests developed in the ver-
balistic tradition do not on the whole seem to have such satisfying be-
havioralistic motivation as do their counterparts in the theory of point
estimation. Finally, it is inappropriate to attempt anything like a
complete list of verbalistic criteria for tests here, especially in view of
the availability of two excellent and mutuslly ecomplementary key rei-
erences (Chapters 21, 26, and 27 of [K2]; and [L4]).

The organization actually adopted is this: First, testing and criteria
for tests are discussed from a frankly behavioralistic viewpoint. In
thie discussion ideas stemming from the verbalistic tradition are used
freely, and some criteria of the verbalistic tradition are eriticized. Sec-
ond, an attempt is made to analyze some of the important statistical
situations to which the theory of testing is ordinarily applied. It is
becoming increasingly recognized that many of these applications are
very crude, and that their replacement by sounder procedures consti-
tutes some of the most important and provoeative statistical problems
of today.

Terms introduced in boldface in this chapter are among the most
frequent in ordinary statistical usage. The definitions given are in-
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tended to be in reasonable accord with that usage, but some small con-
cessions are made to the particular form in which the theory of testing
is expressed here.

2 A theory of testing

Verbalistically, the problem of testing means to guess, on the basis
of observation, which of two disjoint and mutually exhaustive hypoth-
eses obtains. Behavioralistically, this would generally be agreed to
point to the definition: A f-afing problem is an ohservational decision
problem derived from exactly two basic acts f, and f,. These two basic
acts are called (for a reason that will soon be clear) accepting and re-
jecting the null hypothesis, respectively.

Considered abstractly as bilinear games, testing problems may, so
far as 1 know, have no special feature beyond the uninteresting one
that one of two f's is appropriate to each 1. But, considered as obser-
vational problems, testing problems do present some interesting special
features. In the first place, since at least one of the two basic acts is
appropriate to each 4, the set I of all s can be partitioned into three
sets, Hy, H;, and N, defined thus:

Lifg;9) =0 and L{f;;1) >0 forieH,,
(1) Lifo; 1) >0 and L(f;;4) =0 foricH,,
L{fs;9) =0 and L(f;;1) =0 foriehN.

When it is recalled that the i's correspond to a partition B; of S, the
sets Hy, Hy, and N may, with a slight clash of logical gears, be regarded
as three events partitioning 8. The traditional names of Hy and H;
are the null and the alternative hypothesis, respectively; N, being quite
unimportant and often either ignored or made vacuous by some trick
of definition, has no such name. Rejecting the null hypothesis when it
does in fact obtain and accepting it when it does not obtain are called
errors, more specifically errors of the first and second kind, respec-
tively.

A test is a derived act of a testing problem. A test may conveniently
be identified with the real-valued contraction z of the observation x,
such that z{x) is the probability prescribed by the test for rejection of
the null hypothesis in case r is observed, An unmixed test (which was
until recently the only kind contemplated) corresponds to a 2z confined
to the two values 0 and 1, which respectively imply outright acceptance
and rejection of the null hypothesis,
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The loss associated with the test z when ¢ obtains is clearly

2) L(z; 1) = L{fo; )E(1 — z| 1) + L{fy; )E(z | 1)
= L(f;; E(z |1 fori e Hy
= L{fy; 91 — E(z I 1)] for i « Hy
=0 forieN.

The functions E(z | i) and [1 — E(z | 4)] are, respectively, the proba-
bility of rejecting and accepting the null hypothesis with the test z
when ¢ obtains. There is obviously nothing to choose between them
in importance or convenience, each being equivalent to the other.
They are commonly called the power function, and operating charac-
teristic, respectively.

In view of (2), one test z dominates another z', if and only if

Ez|i) <E@|7) forieH,
E@z|é) > E@z |9 forieH;;

or, again, if and only if the probability of error with 2z’ is at least as
great as with z for every . Thus, dominance, admissibility, and equiv-
alence depend on the basic loss function, L{f,; 1), only in so far as that
function determines Hy and If,. This is not only remarkable but also
useful; for Hy and H; may well be clearly defined in contexts where
the basic loss is vague, or otherwise ill determined.

If z is admissible in the spirit of (3) relative to a pair of sets Hy and
Hy, then (if = is for the moment admitted as a possible value for a loss)
there exists a basic loss function leading to Hy and H, and having z
as its essentially unique minimax. Indeed, let

(3)

Lifo;9) =[1 — E@|9)™ forieH,

=0 elsewhere;

@ L(f,; 1) = E(z|4)™ for i ¢ Hy
=0 elsewhere.,

With this loss and reckoning 0-= = 0 (as is appropriate here), L(z | 1)
= 1 or 0, according as there is or is not positive probability of making
an error at ¢ with 2. In view of (2) and (4), any minimax z’ not equiva-
lent to z would strictly dominate z, contrary to the assumption that z
is admissible. The moral of that conclusion can be put thus: Without
special assumptions about the basic loss, the principle of admissibility
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and the minimax rule lead to no ecriteria expressible solely in terms of
Hy, H,, and the conditional distributions of the observation x other
than that of admissibility itself. Whether some other objeetivistic prin-
ciple could justify such eriteria may be considered an open question,
but, as I have already said (in § 15.1), no other general objectivistic
principles have been seriously maintained.

It is natural, for example, to demand that z have the same symmetry
as P(z |I 1) and Hg and H;; but that criterion ean surely not be justified
at all, unless the basie loss is also assumed to have the same symmetry,
the justifiability of which in turn depends on the case,

To take another important example, it is often proposed that a satis-
factory test must be unbiased,t that is, its power function must never
be higher in Hy than in H,. More formally, the test z is unbiased, if
and only if

(5) E(zli) < E(z|1))

for every 1, ¢ Hy and every 1, ¢ H,.

Assuming that L(fy; 1) and L{f;; {) are constant in H; and H,, re-
spectively, it will be shown that any minimax must be unbiased. Asa
step toward that demonstration, consider a testing problem as a mini-
max problem, without any special assumption about the basic loss.
It is possible that L* = 0, in which case the minimax tests are all equiv-
alent and all unbiased. Putting that possibility aside, I assert, and will
show, that (under the usual mathematical simplifications)

(6) max L{z; 1) = max L{z; 1) = L*
g Hg 1e My
for any minimax z. It is obvious that neither maximum exceeds L*,
and also that one or the other must equal L*. But suppose, for exam-
ple, that the second maximum were actually less than L* and consider
2’ = oz with 0 < a < 1. According to (2), if z' is substituted for z,
the first maximum in (6) will be depressed, and, for « sufficiently close
to 1, the second would remain actually less than L*, which contradicts
the assumption that z is minimax, establishing (6).
Now make the special assumption that

Li{fo;7) = A fori e Hy
Lifj;i) =B for ¢ e Hy,
and suppose that £ could be minimax but biased. There would then

t A definition unifying the various concepts of unbissedness in statistics is put
foreard in [L5].

@)
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exist 19 8 Hy and 1y € Hy such that

(8) L*= L(z;ip) = BE(z|ig) = A — AE(z | ;) = L(z; 1)),

and such that E(z; 15) > E(z; #;). But consideration of the test that
simply assigns to every z the number 8 midway between E(z; 1y) and
E(z; 1;) shows that z could not be minimax.

The condition (7) 1s a reasonable assumption in some testing problems,
and, where (7) is satisfied, the criterion of unbiasedness has such sup-
port as the minimax rule can give. In many other typical testing prob-
lems, however, there are borderline errors that hardly matter at all but
can scarcely be prevented, and serious errors that can largely be pre-
vented. The following example, which can be varied to suit diverse
tastes, shows that it can be folly to insist on unbiasedness in such
problems.

Let 1 take the three values 0, 1, 2, and let x take the values 0 and 1
with conditional probabilities defined thus:

(9) P(0|0) = 90/100, P(0|1)=0, P0|2) =1.

Let the basic loss be defined by the condition that ¢ e Hy or 7 ¢ Hy, ac-
cording as ¢ = 0 or not, and by

(10} Lif;;0) = 1, L{fo; 1) = 1,  L{fy; 2) = 1/101.

Then
L(z; 0) = [892(0) + 2(1)]/100

(11) Liz:1) = 1 — 2(1)
L{z; 2) = [1 — 2(0)]/101.

It is easily verified that the only minimax z* is defined by z*(0) = 0,
£*(1) = 100/101, and that L(z*; 1) = L* = 1/101 for every i. But it
is also easily verified that the only unbiased tests are absurd in that
they ignore the observation x; they are in fact just those for which
2(0) = 2(1).

It has until quite recently been said by many that attention should
be confined to tests such that there is a fixed probability « (called the
size of the test) of making an error of the first kind for every ¢ ¢ Hy.
Indeed, the eriterion of size has often been taken so seriously as to be
incorporated into the very definition of a test. Though many impor-
tant tests happen to have a size, others equally important do not; so
it now seems to be recognized [L4] that the possession of a size cannot
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be taken seriously as a eriterion.t To take an everyday example, con-
sider the binomial distributions

1M
(12) P(z|p) = ( . )F’(l — p)i—s,

where the parameter p confined to [0, 1] plays the role of 7 and x = 0,
«++, 101; and suppose that H, is the hypothesis that p < 1/2. A test
of size a is a test for which

100
(13) }:ar:r}( . )p'n — PO = g
for all p < 1/2, This obviously implies
101 #
(14) S —al( ) (=) =0
z T 1 =17

for all p < 1/2, whence 2(z) = a for every z. 5o only absurd tests
have size, in this example, though there are clearly tests here that are
quite satisfactory for many applications, for example, let z(z) equal 0
or 1 according as z < 50 or z > 50.

In view of the eriticism just made, there is a tendency to redefine
size s0 that any test has a size &, namely,

(15) a = pemax E(z I| i).
ig Hg

In terms of this definition of size, & concept of testing somewhat differ-
ent from that proposed in this section has been defined and defended
(Wald, p. 21 of (W3], and Lehmann, pp. 17-18 of [L4]; namely, it is
postulated that a test is to be chosen not from among all possible tests,
but only from among those having a size a (in the sense of (135)) given
as part of the testing problem.} This coneept of testing is not defended
to the exclusion of the one proposed here, but it is asserted by the
authors cited to be more realistic for some problems. The arguments of
both authors on this point are similar and, I think, quite weak in two
erucial places, for the advantage is supposed to flow in some unspeci-
fied way from the undemonsirated impossibility of comparing prefer-
ences for consequences of qualitatively different kinds. It seems, if 1
may be allowed such a conjecture, that the concept of testing under a

t Btatisticians interested in the Behrens-Fisher problem may be interested in pp.
36.173a-b of [F), which hinge on the question of size as a eriterion.

f The constraint actually imposed, especially by Lehmann [L4), is that the size
be at most . But, as Lehmann explains, this difference is more apparent than real.
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constraint of size represents a Procrustean attempt to fit the (older)
Neyman-Pearson theory of testing hypotheses too closely with the
(newer) minimax theory. It is not to be denied, of course, that there
may sometimes be a mathematical advantage in studying and compar-
ing tests of given size.

It should be mentioned, before concluding the subject, that any the-
ory taking size seriously introduces an asymmetry of the theory with
respect to Hy and H, an asymmetry that is surely not always appropri-
ate.

Significance level, or level of significance, is a synonym (neglecting
a slight distinetion made in [L4]) of size, probably more widely used
than sige itself.

3 Testing in practice

The theory of testing admits some fairly realistic applications, but
the present state of statistics is such that the theory of testing is in-
voked more often than not in problems on which it does not bear
squarely. This section discusses typical applications of the theory,
pointing out the shortcomings I am aware of.

The development of the theory of testing has been much influenced
by the special problem of simple dichotomy, that is, testing problems
in which Hy and H; have exactly one element each. Simple dichotomy
is susceptible of neat and full analysis (as in Exercise 7.5.2 and in
§ 14.4), likelihood-ratio tests here being the only admissible tests; and
simple dichotomy often gives insight into more complicated problems,
though the point is not explicitly illustrated in this book.

Coin and ball examples of simple dichotomy are easy to construet,
but instances seem rare in real life. The astronomical observations
made to distinguish between the Newtonian and Einsteinian hypotheses
are a good, but not perfect, example, and I suppose that research in Men-
delian genetics sometimes leads to others. There is, however, a tradi-
tion of applying the concept of simple dichotomy to some situations to
which it is, to say the best, only crudely adapted. Consider, for ex-
ample, the decision problem of a person who must buy, f,, or refuse to
buy, f;, a lot of manufactured articles on the basizs of an observation x.
Suppose that ¢ is the difference between the value of the lot to the per-
son and the price at which the lot is offered for sale, and that P(z ! i) is
known to the person. Clearly, Hy, H;, and N are sets characterized
respectively by ¢ > 0,1 < 0, ¢ = 0, This analysis of this, and similar,
problems has recently been explored in terms of the minimax rule, for
example by Sprowls [S16] and a little more fully by Rudy [R4], and by
Allen [A3]. It seems to me natural and promising for many fields of
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application, but it is not a traditional analysis. On the contrary, much
literature recommends, in effect, that the person pretend that only two
values of 1, i; > 0 and 4, < 0, are possible and that the person then
choose a test for the resulting simple dichotomy. The selection of the
two values iy and ¢, is left to the person, though they are sometimes
supposed to correspond to the person’s judgment of what constitutes
good quality and poor quality—terms really quite without definition.
The emphasis on simple dichotomy iz tempered in some acceptance-
sampling literature, where it is recommended that the person choose
among available tests by some largely unspecified overall consideration
of operating characteristics and costs, and that he facilitate his survey
of the available tests by foeusing on a pair of points that happen to in-
terest him and considering the test whose operating characteristic
passes (economically, in the case of sequential testing) through the
pair of points. These traditional analyses are certainly inferior in the
theoretical framework of the present diseussion, and I think they will
be found inferior in practice.

To make a small digression, there is a complication in connection with
testing whether to buy that is not ordinarily envisaged by statistical
theory; namely, the economic reaction between the buyer and the sup-
plier. If, for example, the supplier knows the test the buyer is going
to apply, that knowledge will influence the quality of the lot supplied.
There seems to be little, if any, successful work oh the economie prob-
lem thus raised about the game-like behavior of the two people involved
(ef. pp. 331, 340, and 346 of [W6]).

The problem whether to buy a lot obviously has many formal coun-
terparts in other domains. In some of them it is particularly clear that
purely objectivistic methods do not suffice. To illustrate, imagine two
experiments: one designed to determine whether it is advantageous to
add a certain small amount of sodium fluoride to the drinking water of
children, the other to determine whether the same amount of oil of
peppermint is advantageous. Granting that each of the two additions
can be made at the same cash cost for labor and material and that the
designs of the two hypothetical experiments differ only in the inter-
change of the roles of sodium fluoride and il of peppermint, the corre-
sponding testing problems are objectivistically completely parallel, that
is, the same with regard to loss function and conditional probability of
the observations. But it must be acknowledged, I think, that the people
actually charged with the decision in either of these two cases would
and should take into aceount opimions they had before the observation.
For example, they might originally have considered it nearly impossible
that the oil of peppermint could result in any hygienic advantage large
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enough to compensate for even the small cost of its administration, but,
in view of recent dental researches on the subject, they might not have
considered it at all unlikely that the sodium fluoride should have an
overall advantage. In that case, parallel observations in the two ex-
periments would not always lead to parallel decisions. Objectivists
typically admit such a possibility but go on to say that it is unreasonable
to isolate the experiment and that it is the totality of information bear-
ing on the subject that should be treated objectivistically. If objeetiv-
ists could give a more detailed discussion of how to deal with such a
totality of information, it might do much to clarify their position.

I turn now to a different and, at least for me, delicate topic in connec-
tion with applications of the theory of testing. Much attention is given
in the literature of statistics to what purport to be tests of hypotheses,
in which the null hypothesis is such that it would not really be accepted
by anyone. The following three propositions, though playful in con-
tent, are typical in form of these extreme null hypotheses, as I shall call
them for the moment.

A The mean noise output of the cereal Krakl is a linear function of
the atmospherie pressure, in the range from 900 to 1,100 millibars,

B The basal metabolic consumption of sperm whales is normally
distributed [W11].

C New York taxi drivers of Irish, Jewish, and Scandinavian extrac-
tion are equally proficient in abusive language.

Literally to test such hypotheses as these is preposterous. H, for ex-
ample, the loss associated with f, is zero, except in case Hypothesis A
is exactly satisfied, what possible experience with Krakl could dissuade
you from adopting f,?

The unacceptability of extreme null hypotheses is perfectly well
known; it is closely related to the often heard maxim that science dis-
proves, but never proves, hypotheses. The role of extreme hypotheses
in science and other statistical activities seems to be important but ob-
seure. In particular, though I, like everyvone who practices statisties,
have often “tested” extreme hypotheses, | cannot give a very satisfac-
tory analysis of the process, nor say clearly how it is related to testing
as defined in this chapter and other theoretical discussions. None the
less, it seems worth while to explore the subject tentatively; I will do
so largely in terms of two examples.

Consider first the problem of a cereal dynamicist who must estimate
the noise output of Krakl at each of ten atmospheric pressures between
000 and 1,100 millibars, It may well be that he can properly regard the
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problem as that of estimating the ten parameters in question, in which
case there is no question of testing. But suppose, for example, that
one or both of the following considerations apply. First, the engineer
and his colleagues may attach considerable personal probability to the
possibility that A is very nearly satisfied—very nearly, that is, in terms
of the dispersion of his measurements. BSecond, the administrative,
computational, and other incidental costs of using ten individusal esti-
mates might be considerably greater than that of using a linear formula.
It might be impractical to deal with either of these eonsiderations very
rigorously, One rough attack is for the engineer first to examine the
observed data x and then to proceed either as though he actually be-
lieved Hypothesis A or else in some other way. The other way might be
to make the estimate according to the objectivistic formulae that would
have been used had there been no complicating considerations, or it
might take into account different but related complieating considera-
tions not explicitly mentioned here, such as the advantage of using a
quadratic approximation. It is artificial and inadequate to regard this
decision between one class of basic acts or another as a test, but that
is what in current practice we seem to do. The choice of which test
to adopt in such a context is at least partly motivated by the vague
idea that the test should readily accept, that is, result in acting as though
the extreme nuil hypotheses were true, in the farfetched case that the
null hypothesis iz indeed true, and that the worse the approximation of
the null hypotheses to the truth the less probable should be the ac-
ceptance.

The method just outlined is erude, to say the best. It is often modi-
fied in accordance with common sense, especially so far as the second
consideration is concerned. Thus, if the measurements are sufficiently
precise, no ordinary test might accept the null hypotheses, for the ex-
periment will lead to a clear and sure idea of just what the departures
from the null hypotheses actually are. But, if the engineer considers
those departures unimportant for the context at hand, he will justifiably
decide to neglect them.

Rejection of an extreme null hypothesis, in the sense of the foregoing
discussion, typically gives rise to a complicated subsidiary decision
problem. Some aspects of this situation have recently been explored,
for example by Paulson [P3], [P4]; Dunecan [D11], [D12]; Tukey [T4],
[T5]; Schefié [87); and W. D. Fisher [F7].

To summarize abstractly, I would say that, in current practice, so-
called tests of extreme hypotheses are resorted to when at least a little
eredence is attached to the possibility that the null hypothesis is very
nearly true and when there is some special advantage to behaving as
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though it were true. One other illustration will make it clear that point
estimation is not essential to the situation and that belief in the approxi-
mate truth of the null hypothesis alone does not always justify testing.

Consider the personnel manager of a great New York taxi company.
Wishing, of eourse, that his drivers should be as proficient as possible,
he would, under simple eircumstances, hire exclusively from the na-
tional-extraction group that had obtained the highest mean scores in a
standard proficiency examination; for why should he not be guided by
a positive indication, however slight? A statistical test of the extreme
Hypothesis C would not, therefore, be called for, as has been pointed
out in general terms by Bahadur and Robbins [B3]. Even strong be-
lief that ethnie differences are extremely small in the respect in question
would not alone be any reasom for departing from this simple policy,
dictated by the principle of admissibility—gquite in contrast to the ex-
ample framed around Hypothesis A. If, however, public opinion, &
shortage of labor, or administrative difficulty militates against any dis-
erimination at all, the manager may resort to a test based on the ex-
amination seores.

In practice, tests of extreme hypotheses are typically chosen from a
relatively small arsenal of standard types, or families, each family con-
sisting of one unmixed test at every significance level (as size is always
called in this context). In publications, it is standard practice not
simply to report the result of a test, but rather to report that level of
significance for which the corresponding test of the relevant family
would be on the borderline between aeceptance and rejection. The
rationale usually given for this procedure is that it enables each user
of the publication to make his own test at the significance level he deems
appropriate to his particular problem. Thus the significance level is
supposed to play much the same practical role as a sufficient statistic.

An interesting contribution to the theory of extreme hypotheses is
given by Bahadur [B1] in the special context of the two-sided i-test.



CHAPTER 17

Interval Estimation
and Related Topics

1 Estimates of the accuracy of estimates

The doctrine is often expressed that a point estimate is of little, or
no, value unless accompanied by an estimate of its own aceuracy. Tl:us
dur:tnne, which for the moment I will call the doctrine of accuracy esti-
mation, may be a little old-fashioned, but I think some eritical discus-
sion of it here is in order for two reasons. In the first place, the doctrine
is still widely considered to eontain more than a grain of truth. For
example, many readers will think it strange, and even remiss, that I
have written a long chapter (Chapter 15) on estimation without even
suggesting that an estimate should be accompanied by an estimate of
its accuracy. In the second place, it seems to me that the concept of
interval estimation, which is the subject of the next section, has largely
evolved from the doctrine of accuracy estimation and that diseussion
of the doctrine will, for some, pave the way for discussion of interval
estimation.

The doctrine of aceuracy estimation is vague, even by the standards
of the verbalistic tradition, for it does not say what should be taken
as a measure of accuracy, that is, what an estimate of accuracy should
estimate. Any measure would be rather arbitrary; a typical one, here
adopted for definiteness, is the root-mean-square error,

(1)  E¥(Q—=x@F|B) = {V(Q|B) + [EQ| B) — A},

using (15.6.23). The root-mean-square error reduces to the standard
deviation, V*(1| B;), in case the estimate 1 is unbiased.

Taking the doctrine literally, it evidently leads to endless regression,
for an estimate of the accuracy of an estimate should presumably be
accompanied by an estimate of its own accuracy, and so on forever,

Even supposing that the doctrine were somehow purged of vagueness
and endless regression, it would still be in clear eonflict with the be-
havioralistic concept of estimation studied in Chapter 15. If a decision

2567
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problem consists in deciding on & number in the light of an observation,
the person concerned wants to adopt an | that is, in some sense or
other, as good as possible; but, since he must make some decision, it
could at most satisfy idle curiosity to know how good the best is—
idle, I say, because, his decision once made, there is no way to use knowl-
edge of its accuracy.

Since it seems to me that the kind of problem envisaged in Chapter
15 is of frequent oecurrence and may properly be ealled estimation,
I am inclined to say that the doctrine of accuracy estimation is errone-
ous. However, it is possible that someone should point out a different
class of problems, also properly called problems of estimation, with re-
spect to which the doectrine has some validity ; though, so far as I know,
this has not yet occurred.

One sort of situation that might, through what I would consider
faulty analysis, seem to support the doctrine of aceuracy estimation is
illustrated by the following, highly schematized example. A person
has to estimate the number n of replacement parts of a certain sort
that should be carried by an expedition. He can conduet a trial the
outcome of which will, let us say, be an observation x distributed in
the Poisson distribution with mean equal to «en; that is,

(2) P(z|n) = e~*(acn)*/z),

where « is a known constant and ¢, which the person can choose, is the
cost (beyond overhead) of the trial. Under reasonable hypotheses,
once ¢ has been chosen and the value x observed, n(x) = z/ac is a good
estimate of n; and in so far as the problem is of the type envisaged in
Chapter 15, that is the end of the matter.

But there may be features of the problem that have not yet been
stated, though in principle they should have been. In particular, it
may be that the person is free to conduet a second trial, though there
will typically be a high penalty for doing so. One rough, but sometimes
natural and practical, step toward deciding whether a second trial is
called for is to remark that (n/ac)® isa good estimate of the root-mean-
square error of n and may give a fairly good basis on which to judge
whether the risk of misestimation warrants the expense of a second
trial.

My own conviction is that we should frankly regard such & problem
as has just been described as a special problem in sequential analysis
and treat it as an organic whole. Viewed thus, ¢ is to be chosen in the
light of the possibility of making a second trial. The decision to be
based on z is the complex one of whether to go to the expense of a second
trial; if so, of what magnitude; and, if not, what estimate of n to adopt.
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Another sort of situation that seems to have stimulated the doctrine
of accuracy estimation is the following. Suppose that a research worker
has observed xy, - - -, X,, which are independent and normally distributed
about the mean p with variance ¢° given u and ¢. If he wishes to pub-
lish the results of his investigation for all concerned to use as their own
needs and opinions may dictate, he should, ideally, publish a sufficient
statistic of his observation, stating how it is distributed given g and o,
Any other course may deprive some reader of some information he
might be able to put to use. So far as the primary aim is conecerned, all
sufficient statistics are equivalent, but secondary considerations greatly
narrow the research worker's choice. To illustrate, consider the five

sufficient statistica the values of which for {z;, - - -, z.} are:
[I.} ixlr '*'.I.}+
(b} The n order statistics of [z, + -, z.].

(¢) 3 x;and 2z
(d) £ =y Z-‘l-'i.u"'ﬂ and & =y (EI-'E —Z Zii}fﬂ - L
(e) £ and &/n’%,

If n is at all large, (¢), (d), and (e) are cheaper to publish than (a)
and (b). Moreover, for almost any use to which a reader might wish
to put the data, (¢), (d), and (e) will save him a considerable amount
of computation. In so far as it is true that almost any reader who has
a use for the data at all will use £, but not necessarily E:.;, statistics
like (d) and (e) are slightly preferable to (¢). There is something to be
said both for (d) and for (e), in view of the ready availability of certain
tables; but, at least when n is very large, there is a slight advantage to
(e) for those calculations a reader is most likely to perform. In par-
ticular, & reader using (e) can, when n is large, often ignore the actual
value of n. Even if the distributions of the x,, - - -, x, are not exactly
normal, (¢), (d), and (e) often can play almost the same role as suffi-
cient statistics. It is no wonder then that (e) is often chosen as a con-
venient way to present data. But, in my opinion, it 13 a mistake to
lay great theoretical emphasis on the fact that (e) happens to consist
of what is ordinarily a good estimate of u, namely £, together with what
is ordinarily a good estimate of the root-mean-square error of that es-
timate, namely s/n’.

2 Interval estimation and confidence intervals

The verbalistic tradition has suggested a procedure different from
point estimation but somehow related to it. This other procedure, here
called inferval estimation, can be defined as follows, though the defini-
tion is necessarily vague. Where X is an observation subject to the
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conditional distributions P{r] B;) and A(i) is a function of 1, guess
that A(i) lies in some set M(x) (to be called an interval estimate) de-
termined for each value of x. It is almost a part of the definition {o
say that the function M(z) is to be =0 chosen that P(A\(z) ¢ M(z) I B;)
shall be nearly 1 for every ¢ and that M (z) should tend to be small and
“elose knit” in a geometrical sense, some compromise being effected be-
tween these two conflicting desiderata. The parameter A(f) could in
prineiple be a very general funetion, but it will here be enough to sup-
pose for definiteness and simplicity that A(¢) 18 real. Though more
general possibilities are contemplated in principle, the set M(z) is in
practice typically a bounded interval, which corresponds with what I
meant in saying that M (z) is supposed to be “close knit.”

The idea of interval estimation is complicated ; an example is in order.
Suppose that, for each A, x is & real random variable normally distrib-
uted about A with unit variance; then, as is very easy to see with the
aid of a table of the normal distribution, if M (z) is taken to be the in-
terval [xr — 1.9600, = 4 1.9600], then

(1) PreM(z) | )) = o,

where « 18 constant and almost equal to 0.95.

It is usually thought necessary to warn the novice that such an equa-
tion as (1) does not concern the probability that a random variable X
lies in a fixed set M(z). Of course, ) is given and therefore not random
in the context at hand; and, given )\, a is the probability that M(x),
which is a contraction of x, has as its value an interval that contains A.

Why seek an interval estimate? Omne sort of verbalistic answer runs
like this: At first glance, the problem of estimation seems to require
that a person guess, on observing that x takes the value z, that A{s)
has some particular value I(z); but, since it is virtually impossible that
such a guess should be correct, it seems better to try something else,
In particular, it is often possible to assert that A7) is in a comparatively
narrow interval M (z), chosen according to such a system that it is very
improbable for each 1 that the assertion will be false. Less extreme ver-
balistic explanations tend to give the impression that point estimation
need not be altogether rejected, but that interval estimation satisfies
a parallel need.

The first part of the explanation just cited is specious, since no one
really expects a point estimate to be correct, and since, when one really
is obliged by circumstances to make a point estimate in the behavioral-
istic sense, there is no escaping it. None the less, that part of the ex-
planation does seem to give some insight into the appeal of interval es-
timation. The second part of the explanation is a sort of fiction; for it
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will be found that whenever its advocates talk of making assertions that
have high probability, whether in connection with testing or estima-
tion, they do not actually make such assertions themselves, but end-
lessly pass the buck, saying in effect, *““This assertion has arisen accord-
ing to a system that will seldom lead you to make false assertions, if
you adopt it. As for myself, I assert nothing but the properties of the
system.”’

From the behavioralistic point of view, I maintain that point estima-
tion fulfils an important function. On the other hand, T can cite no
important behavioralistic interpretation of interval estimation. More-
over, in such direct and indirect contact as I have had with actual sta-
tistical practice, ] have—with but one extraordinary exception, which
will soon be discussed—encountered no applications of interval estima-
tion that seemed convincing to me as anything more than an informal
deviee for exploring data or crudely summarizing it for others. In
short, not being convinced myself, I am in no position to present con-
vincing evidence for the usefulness of interval estimation as a direct
step in decision. The reader should know, however, that few are as
pessimistic as I am about interval estimation and that most leaders in
statistical theory have a long-standing enthusiasm for the idea, which
may have more solid grounds than I now know.

The following is a schematized example of one sort of decision prob-
lem that does call for something like interval estimation. An observa-
tion x bears on the position A of a lifeboat, the occupants of which will
be saved or lost according as the boat is or is not sighted by a search-
ing aircraft before nightfall. The decision problem is, therefore, to
choose, from all the domains that the airplane could search in time, one
domain M (z); and the loss must, in effect, be reckoned as 0 or 1 accord-
ing as M{z) does or does not contain A. This type of problem seems,
however, too rare and too special to be taken as representative of those
for which interval estimation is so widely advocated.

Many ecriteria have been put forward for interval estimation, but I
am of course in no position to discuss them ecritically. J. Neyman has
gone about the search for eriteria systematically, setting up a parallel-
ism between the theory of interval estimation and of testing. In par-
ticular, paralleling the eriterion of fixed size for tests, he has emphasized
interval estimates such that

(2) PA(#) e M(z) | B)) =

for a fixed a (typically close to 1) and for every <. Such interval esti-
mates are called confidence intervals at the confidence level . The
interval estimate mentioned in connection with (1) is obviously a con-
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fidence interval. Wald [W3)] sought to include the theory of confidence
intervals in the minimax theory, but in my opinion he did not succeed
in giving interval estimation a behavioralistic interpretation.

Though I am in no position to eriticize any eriterion of interval es-
timation, I venture to ask whether (2) is not gratuitous, as I have more
positively asserted of its analogue in the theory of testing.

Chapters 18 and 20 of [K2] will serve as key references for interval
estimation.

3 Tolerance intervals

There has recently been considerable study of what are called toler-
ance intervals (or limits). They are related to the problem of guessing
the actual value of a real random wvariable y, on the basis of an obser-
vation of x. A tolerance interval for y at tolerance level « and confi-
dence level 2 is an interval-valued funetion ¥(z) such that

(1) PlPlyeY(z)|B,z) > a|B] =8

for every 1.

The coneept expressed by (1) is a slippery one; perhaps it will help
to express it in words thus: For every B;, there is probability 8 that x is
such that y will fall in ¥ (x) with probability at least «, given B; and
r. In typical applications y is independent of z; this permits a slight
simplification of the definition. The notion of tolerance interval seems
to me at least as unamenable to behavioralistic interpretation as that
of confidence interval, and I therefore venture no discussion of it here.
Key references are [B22] and [W7].

4 Fiducial probability

This is not really a section on fiducial probability, but rather an
apology for not having such a section. The concept of fiducial proba-
bility put forward and stressed by R. A. Fisher is the most disputed
technical concept of modern statistics, and, since the concept is largely
concerned with interval estimation, I wanted to discuss it here. I
have, however, been privileged to see certain as yet unpublished manu-
seripts of B. M. Williams [W12] and J. W. Tukey which convince me
that such discussion by me now would be premature.

Some key references to fiduecial probability and to the Behrens-Fisher
problem, which is the most disputed field of application of fidueial
probability, are Fisher's own papers, especially [F5], and Papers 22,
25, 26, 27, and 35 of the collection [F6); Kendall [K2], Chapter 20;
Yates [Y1]; Owen [O1]; Segal [S9]; Bartlett [B@); Schefié [S6], [85];
Walsh [W9)]; and Chand [C5)."

+ And I ean now add Barnard (1963), Dempster (1964}, Fisher (1956, See-
tions I1T 3, IV 6, V5, V 8§ VI 8 VI 12), Linnik (1968, Chapters VIII-X}),
Patil {1965), Scheffé (1970), Tukey (1957), and Williams (1966).
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Expectﬂd Value

This appendix, & brief account of some relatively elementary aspects
of the badly named mathematical concept, expected value, is presented
for those who might otherwise be handicapped in reading this book.
No proofs are given here, but the reader who needs this appendix will
probably be willing and able to accept the facts cited without proof,
especially if he acquires intuition for the subject by working the sug-
gested exercises. The requisite proofs are, however, given implicitly
in any standard work on integration or measure (e.g., Chapters I-V of
[H2]).

Throughout this appendix, let S be a set with elements s and subsets
A, B, C, --- on which a (finitely additive) probability measure P is
defined. Bounded real random variables, that is, bounded real-valued
functions, defined for each s ¢ 8, will here be denoted by x, y, - -+, and
real numbers by z, y, 2, and lower-case Greek letters.

The expected value of x, generally written E(x), is characterized as
the one and only function attaching a real number to every bounded
random variable x, subject to the following three conditions for every
X, ¥, p, o, and B:

(1) E(px + oy) = pE(x) + oE(y).
(2) E(x) > 0 whenever P(z(s) <0) = 0.
(3) E(c(| B)) = P(B).

In (3), ¢(| B) is the characteristic function of B, that is, ¢(s| B) = 1,
if seB, and e(s| B) = 0, if s e ~B. In mathematical contexts remote
from the topics in this book, the term “characteristic function™ has at
least two other meanings virtually unconnected with the one at hand,
one in connection with linear operators on function spaces, and another
in connection with the Fourier analysis of distributions.

Often the expected value of x is referred to as the integral of x over
8, in which case it is generally written [z(s) dP(s).

263
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Exercises

1. If x takes only a finite number of values, z,, ---, z,, except on a
set of probability zero; then

(4) E(x) = 2, xiP(z(s) = ),
o]

that is, the average of the s, each weighted by the probability of its
oceurrence.

2. If Plz(s) < y(s)) = 0, E(x) > E(y); and if, in addition, P(z(s) >
#(8) + €} > 0 for some ¢ > 0, then E(x) > E(y).t

3. If x is a real random variable, B; a partition, p; and ¢; real numbers
such that p; < z(s) < ¢; for s ¢ B;, then

(5) Zp:P(B)) < E(x) < Za,P(B)).
4, ¢(| A N B) = e(| A)e(] B),
(| ~4) = 1 = c(4),
¢(| A U B) = ¢(| 4) + ¢(| B) — ¢{| A)e{| B).

As is explained in texts on measure theory, the expected value can
(at least for countably additive measures), and in praetice must, be ex-
tended to many unbounded random variables.

Since, provided P(B) > 0, the conditional probability, defined by
P[CIB} = P(C" 1 B)/P(B), is itself a probability measure, the ex-
pectation of X with respect to a conditional probability is a meaningful
concept. This conditional expectation is written E(x| B) and read
“the expected value of x given B.”

More exercises

5. E(x| B) = E(xc(| B))/P(B). Hint: It suffices to verify that the
expression on the right satisfies the three conditions parallel to (1-3)
that define E(x | B).

6. If B; is a partition of S, then

(6) 2 :{3! B;) =1 for every s.
7. E(x) = 2_ E(x| B)P(B;). Hint: Use x = Ix.

t Technical note: In the event that P is countably additive, Pizis} > gls)) > 0
impliea the existence of a suitable ¢, so then « need not be mentioned at all.
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Suppose ¥ is a (not necessarily real) random wvariable that takes on
only a finite number of values. It will be understood that E(x | y) is
the expected value of x given that y(s) = y, provided y is such that
this event has positive probability. Furthermore, it will be understood
that E(x|y) is a bounded real random variable that for each s takes
the value E(x|y(s)). The definition leaves E(x|y) undefined on the
null set of those points s where y(s) is a value that y takes on with prob-
ability zgero. It is immaterial how this blemish is removed; in particu-
lar E(x | y) may as well be set equal to 0, where it has not already been
defined.

Still more exercises

8. E(Em|y)) = E(h).
8. If f is a real-valued function defined on the values of y; then f(y)

is & bounded real variable, and

(7) E(f(y)x) = E(f()E(x| y)).
10. If k(x) is such that, for all f,
(8) E(fy)x) = E(fy)h(y)),

then kiy(s)) = E(x ] y(s)), except possibly on & set of #'s of probability
ZETO.

Exercise 9 and its corollary, 8, present the most frequently used prop-
erties of conditional expectation. Exercise 10 shows that the property
presented in 9 characterizes conditional expectation. Through this
characterization Kolmogoroff [K7] extends the ideas of conditional ex-
pectation and also of conditional probability (for countably additive
measures) to random variables y not necessarily confined to a finite or
even denumerable set of values; though the definition in terms of ordi-
nary conditional probability then breaks down completely, the proba-
bility that y(s) = y often being 0 for every y.
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Convex Functions

This appendix gives a brief account of convex functions in the same
spirit as the preceding one gives an account of expected value. Reason-
able facsimiles of the proofs omitted here are scattered through [H4),
where they may be found by anyone not content to skip them.

An interval is a set J of real numbers; such that, if z, ze fand z < y
< z, then y « I. It is not difficult to see that intervals can be classified
according to Table 1, where it is to be understood that z < 2.

Tante 1. THE VARIOUS TYPER OF INTERVALS

The set of
Symbolie real ¥'s
designation such that Verbal deseription
(_ml -[-nn} =y The infinite interval (thﬂﬂﬂ-f
all real numbers)
(z, 4-=) <y ]
(—m=, 1) x>y Open
hali-infinite intervals
[z, +) zZy
(=—oz, z] zZ ].p'} Cm.
(z, 2) z<y<z Open
:[:: fi =2 »: :} Half-open } bounded intervals
[z, 2] z<y<s Closed
Iz, z] IT=y One-point intervals
<y The vacuous interval (the vacu-
ous set)

A real-valued function t defined for z in an interval I is convex, if
and only if the graph of the funetion never rises above any chord of it~
self. Analytieally, if p and o are positive, p + ¢ = 1, and z, y ¢ I'; then

(1) tpz + oy) < pl(x) + ol(y).
266
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If equality holds in (1) for some p; then, as is easily verified, it holds
for every p, and t is linear, ie., of the form az + 8, in the closed
interval [z, y]. An interval in which t is linear will here be called an
interval of linearity. If and only if there are no intervals of linearity
other than the one-point and vacuous intervals, t is strictly convex.

Exercises

1. Verify, at least graphically, that the following functions are con-
vex in the indicated intervals; discuss their intervals of linearity; and
say which are strictly convex.

I = (o, +):

(a) €* for every p, (b) z* + pz + ¢ for every p and o,
ORE2T @ |zl forp > 1,

(e) =

I = (0, =):

(f) —logz, (g) z°for — < p <0,
I=(-1,+41):

(h) (1 = 2", (i) 1 — cos (v2/2).

2. In an interval where t is convex, if d%i(z)/dz® exists at z, then
d®(z)/dz* > 0; and if, for every z in an interval I, d%(z)/dz® exists and
is non-negative, then t is convex in I.

3. Re-explore Exercise 1 in the light of 2.

4. Let T be a non-vacuous set of functions, t, t', --+, convex in 7,
and let
(2) t*(s) = sup i(s).
t

In (2), as always in mathematies, the sup, or supremum, of a set of
numbers is the least number, possibly «, that is not less than any ele-
ment of the set. If (*(s) < = for every & ¢ I, then t* is convex in I,
Explore the proposition just stated, first graphically, especially for a
finite set of linear t's, and then analytically. What if the elements of
T are all strictly convex?

5. In an open interval where t is convex, it is also continuous. What
are the facts for closed and half-closed intervals?
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6. Iftisconvexin I, zgel, pp > 0,and Zp;, = 1, where k =1, -+ -,
r; then
(3) ;pﬂ{n} > I(Z Fﬂt)-
&
Equality obtains, if and only if all the z3’s are in a single interval of
linearity of t.

(a) Interpret the propositions above in terms of probability.
(b) Prove them by arithmetic induction on r.
(¢) What if t is strictly convex?

Exercise 6 suggests, and indeed proves a special case of, the following
well-known and most useful theorem, which eannot be proved here in
full generality.

TeEOREM 1 If t is convex and bounded in the interval I, and z(s) ¢ I
for all s ¢ 8, then

(4) E(t(x)) =2 E(x)).

Equality obtains, if and only if the values of x are with probability one
contained in a single interval of linearity of t. Here and throughout this
appendix, such conditions for equality are to be understood to apply
only in the event that either P is countably additive or the random
variable is with probability one confined to a finite set of values; the
general situation for finitely additive measures is a little more compli-
cated.

More exercises
7. The variance of x, often written V(x), is defined thus:

(5) V(x) = E(x — E(®)]).
Show that
(6) Viz) = E(x*) — E*x) 2 0,

with equality if and only if P(z(s) = E(x)) = 1.
8. Show that, if x is never smaller than some positive number,

(7) log E7'(x™") < E(log x) < log E(x).

When can either equality obtain? Write the analogue of (7) suggested
by (3), and show thereby that (7) i3 a generalization of the familiar
fact that the arithmetic mean (of positive numbers) is at least as great
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as the geometric mean and the geometric mean is at least as great as
the harmonic mean.

One of the most famous of all inequalities is the Schwartz inequality,
which can, though not quite obviously, be derived from Theorem 1,
and which can be stated in terms of expected values thus:

(8 E(xy) < EGx*)EQyY),

with equality obtaining if and only if for some numbers p» and ¢ not
both zero

(9) P(px(s) = oy(s)) = 1.

Note that (9) expresses (perhaps too compactly) that, except on some
set of probability zero, either x or y vanishes identically or else each is
a fixed multiple of the other.

Btatistically speaking, the Schwartz inequality expresses, in effect,
the familiar fact that any correlation coefficient must lie between 41
and —1, one of the extremes oceurring if and only if at least one of the
two random variables involved is a linear funetion of the other,

The concept of convex functions and its implications ecan easily be
extended to real-valued functions defined on vectors in an n-dimensional
vector space, the role of intervals there being replaced by convex sub-
sets of the vector space; but an understanding of this extension, though
desirable, is not absclutely essential in reading this book.

One good introduction to convex subsets of vector spaces is Sections
16.1-2 of [V4], and another especially adapted to statistieal applica-
tions is incorporated in [B18]. The standard treatise on the topic is
that of Bonnessen and Fenchel [B20].
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Bibliographic Material

The bibliography of about 170 items that terminates this appendix
lists not only all works referred to in this book but also some others,
for it is intended to serve not only as a mechanical aid to reference but
also as a briefly and informally annotated list of suggested readings in
the foundations of statistics. In addition to the notes incorporated
into the bibliography, information about many of the works listed there
18 given in other parts of the book, where it can be found by referring
to the author’s name in the author index. References that have come to
my attention since the first edition are in Appendix 4: Bibliographie
Supplement. They are eited by the convention aceording to which the
first of them is called { Aezél 1966 ).

Todhunter has abundant references scattered in chronological order
through [T3], emphasizing the mathematical aspects of probability up
through the period of Laplace. Keynes, in [K4], gives a formal bibli-
ography which purposely does not overlap Todhunter's material very
extensively, the emphasis being on more philosophical aspects of prob-
ability and on the period between Laplace and Keynes. Cammap in
[C1] also gives a formal bibliography, which emphasizes publications
since Keynes. Carnap promises an even fuller bibliography in the
projected second volume of his work, and he recommends the bibliog-
raphy of Georg Henrik von Wright in [V3].

Bibliographies of statisties proper are of some, though diluted, rele-
vance. Of these, the most useful is that of M. G, Kendall in Vol. II
of [K2], Carnap at the beginning of his bibliography gives reference to
some other statistical bibliographies. The enormous work of 0. K. Bu-
ros in statistical bibliography, [B23], [B24], and [B25], should also be
mentioned. His volumes bring together pointed excerpts from reviews
of statistical books. Buros also directed a bibliographic department,
entitled “Statistical Methodology,” in the Journal of the American Sta-
tistical Association from September 1945 to September 1948, listing cur-
rent articles, books, theses, and chapters dealing with statistics. In

270
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Volume 20 (1949} of the Annals of Mathematical Stafisiics, an important
journal of statistical theory, there are two cumulative indexes of Vol-
umes 1-20, one arranged by author, the other by subject.

Bibli I
Aitken, A. C., and H. Silverstone
[Al] “On the estimation of statistical parameters,” Proceedings of the Royal Sociely
of Edinburgh, 61 (1941—43), 186-194 (issued separately April 2, 1942),
Allais, Maurice
[A2] “Le comportement de 'homme rationnel devant le risque: Critigue des pos-
tulats ot axioms de I'dcole Americaine,” Ecomometrica, 21 {1953), 503-5646.
Allen, 8. G., Jr.
[A2] “A class of minimax tests for onesided composite hypotheses,” Annals of
Mathematical Statistics, 24 (1053), 205-298.
Anscombe, F. J.
[A4] “Mr. Kneale on probability and induction,” Mind, 60 {1851), 206-304.
Says much of general interest on the foundations of statistics, in the course
of commenta on [K5)].
Arrow, Kenneth J.
[A5] Social Choice and Individual Values, Cowles Commission Monograph No. 12,
New York, John Wiley & Sons, 1951. (Second edition, 1963.)
[AG] “Alternative approaches to the theory of choice in risk-taking situations™
Econometrica, 10 (1051), 404-437.
Arrow, K. J., David Blackwell, and M. A. Girshick
[AT] “Bayes and minimax solutions of sequential decision problems,” Econometrica,
17 (1949), 213-243.
Bahadur, Raghu Raj
[B1] “A property of the {- statistic,” Sankhpd, 12 (1852), TO-88,
[B2] “Bufficiency and statistical decision functions,” Annals of Mathematical
Siatistics, 25 (1954), (to appear).
Bahadur, Raghu Raj, and Herbert Robbins
[B3] “The problem of the greater mean,” Annals of Mathemalical Statistics, 21
(1950}, 460487,
Banach, 8.
[B4] Théorie des opérations linfaires, Warsaw, Fundusz Kultury Narodowej, 1932.
Banach, 8., and A. Tarski
[B5] “Bur la décomposition des ensembles de points en parties respectivement
congruentes,” Fundamenta Mathematicae, 6 (1924), 244-277.
Bartlett, M. 8.
[B6] “Completely simultaneous fiducial distributions,” Annals of Mathematical
Statistics, 10 (1939), 128-138.
Baumol, William J.
[B7] “The Neumann-Morgenstern utility index—an ordinalist view,” Journal of
Political Economy, 59 (1851), 61-66.
Bayes, Thomas
[B8] Facsimiles of Two Papers by Bayes: i. An Essay Toward Selving a Froblem in
the Doctrine of Chances, With Richard Price's Foreword and IMscussion; Phil.
Trana. Boyal Soc., pp. 87T0-418, 1763. With ¢ Commeniary by Edward C. Molina.
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ti. A Letier on Asymplotic Series from Bayes lo John Canlon; pp. 265-271 of the
Same Volume. With a Commentary by W. Edwards Deming, ed. W. Edwards
Deming, Washington, D). C., The Graduate School, The Department of Agri-
culture, 1940; republished as {( Bayes 1058),

The first of these two papers, in which a special case of what is now called
Bayes' rule is introduced, figures prominently in controversies about the foun-
dations of probability, for this paper first put several of the major issues in the
limelight.

Bell, E. T.
[BY] Men of Mathematics, New York, Bimon and Schuster, 1937.
Bernoulli, Daniel

[B10] "Specimen theoriae novae de mensura sortis," Commentarii aeademioe scien-
tiarum imperialis Peiropolitanas (for 1730 and 1731), 5 (1738), 175-192.

[B11] Die Grundlage der modernem Wertichre, Versuch einer neuen Theorie der
Werthestimmung von Glicksfdllen (German translation of [B10] by Alfred Prings-
heim, with introduction by Ludwig Frick), Leipzig, Duncker V. Humblot, 1806,

[Blla] “Exposition of & new theory on the measurement of risk" (English trans-
lation of [B10] by Louise SBommer), Econometrica, 22 (1954}, 23-26.

Bernoulli, Jacob {=James)

[B12] Ars conjectands, Basel, 1713.

|B13) Wahracheinlichkeitsrechnung (German translation of ([B12] by R. Hausaner),
Ostwald’'s Klassiker der Exakten Wissenschaften, Nos. 107 and 108, Leipzig,
W. Engelmann, 1899,

Contains, besides much of primary mathematical interest, what I understand
to be the first extended discussion of the application of probability to the prob-
lem of inference. Unfortunately, the German translation is said to be incom-
plete.

Birkhoff, (3., and 8. MacLane
[B14] A Survey of Modern Algebra, New York, The Macmillan Co., 1941.
Bizley, M. T. L.

[B15] “Some notes on probability,” Jowrnal of the Institute of Actuaries Sludents’

Society, 10 (1951), 161-203.
Blackwell, David

[B16] “Comparison of experiments,’” pp. 93-102 of Proceedings of the Second
(1950] Berkeley Symposium on Mathemahical Statishics and Probalility, ed. Jersy
Neyman, Berkeley, University of California Presa, 1951.

[B17] “On the translation parameter problem for discrete variables,” Annals of
Mathematical Statistics, 22 (1951), 393-399.

Blackwell, David, and M. A. Girshick
[B18]) The Theory of Games and Statistical Decisions, New York, John Wiley &
Bong, 1954,
Bohnenblust, H. F., 8. Karlin, and L. 8. Shapley
[B19] “Solutions of discrete two-person games,” pp. 51-72 of [K13].
Bonnessen, T., and W. Fenchel

[B20] Theorie der konveren Kérper, Ergebnisse der Mathematik und ihrer Grens-
gebiete, Vol. ITI, Part I, Berlin, J. Springer, 1934; reprinted, New York, Chelsea
Publishing Co., 1048.

Borel, Emile

(B21) “The theory of play and integral equations with skew symmetric kernels;

On games that involve chance and the skill of the players; On systems of linear
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forms of skew symmetrie determinant and the general theory of play (trans-
lated by Leonard J. Savage),” Econometrica, 21 (1953), 97-124.
Bowker, A. H.

[B22] “Tolerance limits for normal distributions,” Chapter 2, pp. 95110 of Tech-
niques of Statistical Analysis, by the Statistical Research Group, Columbia
University, New York, MeGraw-Hill Book Co., 1047,

Buros, 0. K. (ed.)

[B23] Research and Siatistical Methodology, Books and Reviews (1938-55), New
Brunswick, New Jersey, Rutgers University Presa, 1038,

iB24] The Second Yearbook in Research and Methodology, Books and Reriews,
Highland Park, New Jersey, The Griffin Press, 1941.

[B25] Statistical Methodology Reviews 1841-1850, New York, John Wiley & Sons,
1951.

Carnap, Rudolf

[C1] Legical Foundalions of FProbability, Chicago, University of Chicago Press,
1950.

This is the first of a projected pair of volumes designed to demonstrate me-
ticulously the author's contention that a certain almost necessary view of prob-
ability is essential to science—not denying the meaningfulness of the objec-
tivistic concept. Reviewed by me in [84].

[C2] The Nature and Application of Inductive Logic, Chicago, University of Chicago
Press, 1951.

A reprint of selected sections of [C1].

[C3] The Continuum of Inductive Methods, Chicago, University of Chicago Press,
1952.

Essentially a chapter of the second volume of the projected pair referred to
under [C1].

Centre National de Recherche Scientifique

[C4] Fondemenis e applicalions de la théorie du risgue en lconometrie, Paris,
Centre National de la Recherche Scientifique, 1954,

Report of an international econometrie colloquium on risk, in which there was
much discussion of utility, held in Paris, May 12-17, 1952

Chand, Uttam

[C5] “Distributions related to comparison of two means and two regression coeffi-

cients,” Annals of Mathematical Statistics, 21 (1950), 507-522.
Chapman, Douglas G., and Herbert Robbins

[C6] “Minimum variance estimation without regularity assumptions,” Annals of

Mathematical Statistics, 22 (1051), 581-586.
Chernoff, Herman

[C7] “Remarks on a Rational SBelection of a Decision Funetion,” Cowles Com-

mission Discussion Paper, Statistics, No. 326 (January 10, 1949). Unpublished.
Churchman, C. West

[C8] Theory of Ezrperimenial Inference, New York, The Macmillan Co., 1948,

A discussion of current statistics from the viewpoint of technical philosophy.

Cramér, Harald

[C9] Mathematical Methods of Slatistics, Princeton, Princeton University Press,
1946,

By far the most comprehensive rigorous book on mathematical methods of
statistics.
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Darmaois, G,

[ID1] “Sur les limites de la dispersion de certains estimations,” Revue de I Insfitul
Inlernational de Statistique, 13 (1945), 9-15.

de Finetti, Bruno

[D2] “La prévision: ses lois logiques, ses sources subjectives,”” Annales de I'Institul
Henri Poincaré, T {(1937), 1-68. (Translated in (Kyburg and Smokler 1964 ).}

The first two and the final chapters of this paper give a statement, which I
have found particularly stimulating, of the suthor's view (a personalistic one) of
the foundstions of probability. The three intervening chapters are mathe-
matically rather technical. A bibliography of the author's work on the founda-
tions of probability up to sometime in 1937 is included.

[D3] “Le vrai et le probable,” Dialectica, 3 (1949), T8-93.

[D4] “Sull’ impostazione assiomatica del caleolo delle probabilitd,” Annali Tries-
tini, Beriea 2, 19 (1949), 20-81.

[D5] “La ‘logiea del plausibile’ secondo la concezione di Polya” At della XLIT
Riunione della Socield ltaliana per il Progresso delle Scienze (Novembre 15439),
Rome, Societd Italiana per il Progresso delle Scienze, 1951 (10 pages).

[D6] “Recent suggestions for the reconcilistions of theories of probability,” pp.
217-226 of Proceedings of the Second [1950] Berkeley Sympogium on Mathematical
Statistics and Probabilily, ed. Jerzy Neyman, Berkeley, University of California
Presa, 1951,

Especially through the suggestions it makes about multipersonal problems,
an early manuscript of [D6] has had much influence on this book.

[D7] “Bulla preferibilitd,"” Giornale degls Economisti ¢ Annali di Eeonomia, 11
{1852), 685-T00.

[D7a] “La notion de ‘distribution d'opinion’ comme base d'un essai d'interprétation
de la statistique,” Publications de U'Institul de Slalistique de 'Univermité de
Paris, 1 (1852), 1-18.

Delorme, 8. (ed.)

[DB] Collogue de calcul des probabilités (Actualités scientifigues el indusirielles 1148),
Paris, Hermann et Cie., 1951.

A collection of papers by several authors, mostly on the philosophy of prob-
ability, read in a colloguium held under the 13th International Congress of the
Philosophy of Science, in Paris, 1949, There is an overall review by M. Fréchet,
president of the colloquium. All papers are in French, except one in English,

Dhialectica

[D9] Dnalectica, Vol, 3 (1949), Nos, 8-10,

This issue of Dialectica, a quarterly “international review of the philosophy
of knowledge,” is devoted to probability, and mainly to its foundations. It is
composed of papers by several authors, each in English, French, or German.

Doob, J.

[D10] “‘Statistical estimation,” Trensactions of the American Mathematical Society,

39 (1936), 410421,
Duncan, D. B,

[D11) “A significance test for differences between ranked treatments in an analysis
of variance,” Virginia Journal of Science, 2 (1951), 171-189.

[D12] “On the properties of the multiple comparisons test,”"” Virginia Journal of
Science, 3 (1952), 40-57.
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Dvoretaky, A, A. Wald, and J. Wolfowits
[D13] “Elimination of randomization in certain statistical decision procedures and
gero-sum two-person games,”” Annals of Mathematical Statistics, 22 (1951),
1-21,
Elfving, G.
[El] “Sufficiency and completeness in decision function theory,” Annales Aca-
demiae Scientarum Fennicae, Series A.1., 135 (18562), 9 pages.
Feller, William
[F1] An Introduction to Probability Theory and Iis Apph’mﬁm:, Vol. 1, New
York, John Wiley & Sons, 1950, (Third edition, 1968; Vol Z, 1966 and 1971.)

A mphutlmtud introduetion to the mathematica of probability, Certain
relatively advanced mathematical techniques are avoided by a severe restrie-
tion of the material treated, which is none the less extensive and varied. A
second volume, removing the restriction, is promised.

Férand, D.
[F2] “Induction amplifiante et inférence statistique,” Dialectica, 3 (1949),
127-152.
Fisher, R. A.
[F3)] Statistical Methods for Research Workers, Edinburgh and London, Oliver and
Boyd, 1925; and later editions.

The author is the outstanding member of the British-American Behool, and
this book of his has had far more influence on the development of statistics in
the current century than any other publication.

[F4) The Design of Experiments, Edinburgh and London, Oliver and Boyd, 1935;
and later editions.

Sscond only to [F3] in the extent of its influence.

[F5] “A note on fiducial inference,” Annals of Mathematical Statistics, 10 (1939),
383-388.

[F6] Coniributiona lo Malhematical Statistics, New York, John Wiley & Sons,
1950.

A collection of Fisher's papers selected and annotated by himself. With a

biography of Fisher by P. C. Mahalanobis. Reviewed in [N4].
Fisher, Walter D.
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Bibliographic Supplement

Sinee the publication of the first edition of this book, the literature
of the foundations of statisties, like that of all seience, has heen grow-
ing with awesome rapidity. The relatively short list of about 180 items
below ineludes a few older references overlooked in the first edition,
but most are more recent. They are chosen in the spirit of those in the
first edition, Appendix 3: Bibliographic Material. Some support new
assertions made in this edition, some bring up to date reading lists and
key references for certain topies, and some are selected for their quality
and originality,

Pages in this edition that cite a given entry in the list below are
shown by italic numbers following the entry—a meglected invention
going back at least to {Coolidge 1940). Where there is neither such &
page number nor a comment, the entry is supposed to speak for itself.

Some of the new entries are special bibliographies (Edwards 1969
George 1968 ; Greenwood et al. 1962 ; Joiner et al. 1970 ; Lancaster 1968,
1969, 1970; Miller 1969 : Savage 1970; Wasserman and Silander 1958,
1964 ).

Bibliographies of statistics itself, not to mention those of related
fields, have 8o proliferated that Lancaster (1968, 1969, 1970) has al-
ready published three bibliographies of statistical bibliographies, one
of book length. Several important journals have published eumulative
indexes as shown by the table below.

Journal Years Prineipal types of coverage
(and Volumes)

Annals of Mathematical 1930-1960  Citation, author, subjeet, tables
Statistics (1-31)

Biomeirika 1001-1850 Suhbject
{1-37)

Biometrika 1601-1961 Author
(1-48)
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Journal Years Prineipal types of coverage
{and Volumes )
Econometrica 1832-1952  Awuthor, subjeet, book reviews indexed
(1-20) by author of book

Journal of the American  1888-1039  Author, subject
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Statistical Association (35-50) by anthor of book and by subjeet
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Method Abstracts (1-7) bhook reviews indexed hy author of
book
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1859 “Ttility, risk, and linearity,” Jowrnal of Political Economy, 67,
437-450, 104
Barnard, George A,
1947 “A review of ‘Sequential Analysis’ by Abraham Wald,” Journal
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Villegas, C.
1964 “On qualitative probability s-algebras,” Annals of Mathema-
tical Statisties, 35, 1T87-1796,
von Mises, Richard
1842  “Omn the eorrect use of Bayes' forwula,” Awnals of Mathematicul
Statistics, 13, 156-165,
Tllustrates an approach unusual for a frequentist.
von Wright, Georg Henrik
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339 in (Nagel, Suppes, and Tarski 1962).
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Statistical Society, Series B, 19, 3547,
Whittle, Peter
1058 “On the smoothing of probability density funetions,” Jowrnal
of the Royal Statistical Society, Series B, 20, 334-343.
These two references are suggestive for personalistic technigue.
Williams, .J. 8.
1966 “The role of probability in fidueial inference,” Samkhya,
Semes A, 28, 271-296.
Winkler, Robert L.
1888 “The consensus of snhjective probabihty distributions,” Man-
agement Seience, 15, 2, B61-B75.
Wolfowitz, J.
1962 *“Bayvesian inference and axioms of consistent deeision,” Eco-
nometrica, 30, 471-479.
Wolfowitz, J.
1970 “Reflections on the future of mathematical statisties,” pp. 739-
750 in Essays in Probability and Statistics, eds. R. C, Bose et al,,
Chapel Hill, University of North Carolina Press,
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Technical Symbols

This index is intended to lead to the definitions of all technical symbols that are
defined in the text and used extensively. Some symbols have more than one page
reference, corresponding to their use in more than one sense, depending on context.

A, B, C, 11, 203

B, B), 85

els | B), (] B), 263
E(x), 263

E(x| B), 264
E(x|y), Ex|y), 265
F, 14

5o b 14,

F.],0 k85

F, 14

i, g b, 14,
f,1,85

i g b 71

GLB, 80

Hy, Hy, 247

H(x; x), 236

inf, 80

Itt; 4), 163, 173

I, 75

J(F; %), J, 143

J, 235

k, 123

LUB, 80

L*, 164, 174, 180, 184
L, 180, 184

Lir; 1), L, 178

Lit; g), 179, 180, 184, 186
Lit; +), 183, 174, 180, 187
Lir; g), 187

s, 127

L L2

T(ﬂ:’- 241

mir), 140

N, 247

o(F | 8), 123
w(F |8, z), "[l] z), 125

B, 8(s), 121
B*, 149
B(z), 125
Bli| ), 124
g5 11

= o, 47

J, 263
=2C 1
~, 11

U, N, n

<, 18, 25, 31, 72
<- 18

2, <, >, & 19
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Author Index

This index is intended to lead to every reference made in the text to an author’s
works or opinions. Only a few of the authors referred to do not have works listed in

the bibliography (p. 271).

A few examples illustrate the use of this index: F. J. Anscombe iz not referred to
in the text proper, but there is a reference to him, beyond the mere listing of his

name, in the bibliography under [A4].

A paper of which David Blackwell is a co-

author, but whose first listed author is Kenneth J. Arrow, ia somewhere referred to
without mention of Blackwell's name, but only a bibliographic symbol of the form
[An]. A work of 8. R. Searle is listad in the bibliography, but not otherwise mentioned,

Aitken, A. C., 238

Allais, Maurice, 29, 97, 101, 102

Allen, 8. G., Jr., 252

Anscombe, F. J., [Ad]

Arrow, Kenneth J., 01, 142, 146, 175,
216

Bahadur, Raghu Raj, 131, 134, 140, 256

Banach, 8., 41, 42, 78

Baumol, William J., 97

Bayes, Thomas, [B8]

BelL E.T., 93

Bernoulli, Daniel, 63, 81, 91, 92 and ff,,
99, 102, 155

Bernoulli, Jacob (= James), 1, 92, [B13]

Bernoulli, Nicholas, 93

Birkhoff, G., 193

Bizley, M. T. L., 64

Blackwell, David, 149, 153, 178, 184, 187,
199

see also Kenneth J. Arrow
Bohnenblust, H. F., 148, 180, 191, 218
Bonnessen, T., 121, 260
Borel, Emil, 178, 179
Boulding, Kenneth E., ses Stigler in
bibliography
Bowker, A. H., 262
Brambilla, Francesco, 90
Buros, 0. K., 270

Carnap, Rudolf, 56, 61, 62, 160, [C1],
[C2], IC3]
Chapman, Douglas G, 238

Chernoff, Herman, 205, 206
Churchman, C. West, [C8]

Coombs, Clyde H., see Robert M. Thrall
Cramer, Gabriel, 81, 92, 94, 95

Cramér, Harald, 131, 238, 241, 248, [C8]

DY Alembert, Jean le Rond, 65

Darmois, G., 238

Davis, Robert L., see Robert M. Thrall

De Finetti, Bruno, 4, 7, 28, 33, 38, 40, 43,
51, 52, 58, 60, 62, 175, 177, [D2], [DE)

Delorme, 8., {DS8]

Deming, W. Edwards, [BS]

Daoob, J., 238

Dunecan, I, B, 255

Dvoretzky, A., 219

Eliving, (5., 134

Feller, William, viii, 49, [F1]

Fenchel, W., ze¢ T. Bonnessen

Féraud, D., 62

Fisher, Irving, 06

Fisher, R. A., 50, 116, 134, 236, 244,
251, 262, [F3], (F4], [F8]

Fisher, Walter D., 255

Fréchet, Maurice, 178, 238, [D§]

Frick, Ludwig, [B11]

Friedman, Milton, 83, 97, 104

Fry, Thornton C., 30

Girshick, M. A., 203, 243
see also David Blackwell
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Good, L J., 60, [G2]
Graves, Lawrence M., 73

Halmnos, Panl R, ix, 41, 131, 134, 263,
[H1]

Hammer, P. C., 35

Hardy, G. H., 266

Haussner, R., [B13]

Hildreth, Clifford, 175

Hodges, J. L., Jr., 200, 201, 203, 238

Hume, David, [H7]

Jeffreys, Harold, [J1]
Jenks, James, Jr., see Paul D, White

Kakutani, 8., 218

Karlin, 8., 180
see also H. F. Bohnenblust

Kendall, Maurice G., 67, 140, 221, 241,
246, 262, 270, [K2]

Keynes, John Maynard, 1, 39, 56, 61,
270, (K4]

King, Robert L., see Paul D. White

Kneale, William, [A4]

Kolmogoroff, A. N., 3, 52, 264, [KS8]

Koopman, B. 0., 88, 39, 43, 44, 56, 60,
62, (K11}, [K12]

Kuhn, H. W, [K13], [K14]

Kullback, 8., 50, 134

Langford, Cooper Harold, 12
Laplace, Pierre Simon de, 95, [L2]
Le Cam, Lucien, 241, 243, 244
Lehmann, E. L., 131, 134, 140, 200, 201,
203, 221, 246, 240, 250, 251, 252
see alsgo J. L. Hodges, Jr.
Leibler, R. A., 50, 134
see also 3. Kullback
Leibniz, 1
Lewis, Clarence Irving, 12
Lindley, D. V., L8]
Littlewood, J. E., s2¢ G. H. Hardy

MacLane, 8., 183

see also (. Birkhoff
Mahalanobis, P, C., [F6]
Markowitz, Harry, 104
Marshall, Alfred, 95
MeKinsey, J. C. C., 178, 184
Molina, Edward C., [BS]

AUTHOR INDEX

Morgenstern, Oskar, 5, 15, 69, 75, 94,
96, 97, 98, 99, 121, 260
ge¢ aleo John von Neumann

Morlat, Georges, 101

Morrison, Nathan, [KS]

Mosteller, Frederick C., 28

Mourier, Edith, 238

Munroe, M. E., viii, [M6]

Nagel, Ernest, 56, 62

Neyman, Jerzy, 140, 156, 150, 240, 241,
244, 261, [Fe], [N3]

Nogee, Philip, 20

Nunke, R. J., 35

Pareto, Vilfredo, 06
Pascal, Blaise, 81
Paulson, Edward, 255
Pearson, E. 8., 140, 156
Pitman, E. J. ., 245
Polya, G., T

see also G. H. Hardy
Price, Richard, [BS]
Pringsheim, Alfred, [Bi1]

Ramsey, Frank P., 7, 60, 96, 97, [R1]
Rao, C. R, 288

Reichenbach, Hans, 58, 61, [R2]
Richter, Hans, (R2a)

Robbins, Herbert, 256

Rubin, Herman, 253

Rudy, Norman, 252

Samuelson, Paul A., 97, 101

Savage, L. J., 100, 186, [B21)]
see alse Milton Friedman, M. A,
Girshick, Paul R. Halmos, and R. J.
Nunke

Bcheffé, Henry, 265
se¢ also E. L. Lehmann

Bearle, 8. R., bibliography

Shackle, G. L. 8., libliography

Shannon, Claude E., 50

Shapley, L. 8., 148, 188, 180
see also H. F. Bohnenblust

Sherman, 8., 148

Shohat, J. A, 53, 55, 152

Silverstone, H., 238

Smith, Cedrie A. B., 140
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Sprowles, K. Clay, 252
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University, 142, 146

Stigler, George J., 91, 986

Tamarkin, J. D., see J. A. Shohat
Tarski, A., se¢ S, Banach

Thrall, Robert M., bibliography
Tintner, Gerhard, 97

Tippett, L. H. C., vii, [T2]
Todhunter, 1., 65, 270

Tucker, A. W_, zee H. W, Kuhn
Tukey, John W., 255, 262

van Dantzig, D. 62
von Mises, Richard, 3
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94, 97, 98, 99, 178, 179, 184, 187, 202
von Wright, Georg Henrik, 270

Wald, Abraham, viii, 26, 61, 114, 116,
138, 142, 146, 156, 159, 162, 164, 165,
168, 169, 170, 182, 108, 216, 220, 221,
238, 241, 251, 262
zee also A. Dvoretzky

Wallis, W. Allen, xi, 20, 253, 262

Weaver, Warren, ses Clande E. Shannon

White, Paul D., 254

Wiener, Norbert, 50

Williams, R. M., 262

Wisdom, John Oulton, [W13]

Wold, H., 97, 100

Wolfowitz, J., 142, 205, 238, 241
see also A. Dvoretsky
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General Index

See also Technical Symbols, p. 200, and Index of Authers, pp. 301-3,

Acceptance sampling, 253
Accapting, 247
Accuracy estimstion, doctrine of, 257
Act, definition of, 14
examples of, 14
generic symbols for, 14, 15
proper interpretation of, 15
Acts, constant, 25
equivalent (or indifferent), 19
generic symbol for sets of, 14
infinite sets of, 18
Actuarial value, 94
Admissibility, 115
in theory of games, 107
of a test, 148
principle of, 26, 165, 231
group, 174
Agreement between acts, on events, 22
Agreement between a probability meas-
ure and a quantifative prob-
ability, 34
Agreement between people, 26, 66, 114,
126, 127, 217
a8 to judgment, 156
as to utility, 155
complete, 7
Almost equivalent events, 37
Almost exact science, 101
Almost uniform partition, 34
Alternative hypothesis, 247
Analysis of variance, 116
Annals of Mathemalical Statistics, 272
A posteriori probability, 47
Approach to certainty, 141, 176ff, 214,
226
A priori probability, 47
Aristotle, 1
Ars conjeclands, 1, 2, 92
Asymptotie normality, 227
Asymptotic variance, 227

Banach-Tarski paradox, 42
Basic act, 106
definition of, 110
Basic decision problem, 106, 208
Bayes' rule (or theorem), 45
Behavioral interrogation, 28
strictly empirics!, 28, 20
Behavioralistic and verbalistic outlooks,
17
Behavioralistic outlook, 60, 1594, 220,
261
applied to point estimation, 220f
Behrens-Fisher problem, 251, 262
Bets, 63, 64
Betweenness, 10
Bibliographies, 270, 271
Binomial distribution, 131, 146/, 222
definition of,
Boolean algebra, 10, 11
duality prineiple of, 12
exercizes in, 116
Borel field, 42
Bounded act, 79
Bounded utility, 81, 82
British-American School, 3, 4, 26, 154,

155, 150
Certainty, approach to, 141, 176M, 214,
226

Characteristic function, 263
Cogent reason, principle of, 64
Communication, 68
Complement of an event, 11
Compound problem, 214
Concave function, B4
Conditional expectation, 264
Conditional preference, 22
among consequences superfluous, 25,
26
Conditional probability, 43
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Conditional probability, wide sense, 52
Confidence interval, 261
Confidence level, 261
of a tolerance interval, 262
Consequence, 13, 14
generic symbols for, 14
variety of, 14
Consequences, ignorance of, 15
symbol for set of, 14
Consideration, cost of, 30
Consistent sequence of estimates, 226
Constant acts, 25
Containing eventa, 11
Contraction, 1281
of an observation, 112
of & set of acts, 113
Convex function, 4, 266{
strietly, 267
Convex set of gambles, 75
Convex seta, 260
Correct act, 104
Correct estimate, 230
Cost of consideration, 30
Cost of observation, 116, 118, 214, 215
Countable additivity, 40, 48, 78
Cramér-Rao inequality, 238

Dacision, 13
after observation, 23
logie and, &
Decision problem, group, 172
and observation, 210
objectivistic, 1726
Decisions, consecutive, 15, 16
Definitive observation, 127, 133, 212
Degree of conviction, 30
Demoeracy, 175
De Morgan's theorem, 13
general, 13
Derived act, 108
definition of, 111
Derived decision problem, 106
Derived problem, 209
Design of experiments, 16, 105, 116
Dichotomy, 121
Disagreement between people, 67, 68
Dominanca, 115
in theory of games, 197
of one test by another, 148

GENERAL INDEX

Duslistic views on probability, 2, 51, 62,
63
Duality principle, 185
of Boolean algebra, 12
of personal probahility, 78
of theory of games, 185, 186

Efficient sequence of estimates, 227,
2421
Empirical interpretation of postulates,
19, 20
Epsilon, Porson, 11
vertical, 11
Equal events, 11
Equity, 63, 92
Equivalence, of sets of acts, 113
of tests, 148
Equivalent acts, 19
Equivalent observations, 112
Equivalent sequence of events, 52
Error, mean square, 224
gee also Root-mean square error and
Bquared error
of an estimate, definition of, 227
Errors of first and second kind, 140,
247
Estimation, interval, 250
point, 220
definition of, 221
Estimation decision problem, 220§
Event, complement of, 11
definition of, 10
examples of, 10
generic symbols for, 11
null (or virtually impossible), 24
universal, 10
vacuous, 10
Events, almost equivalent, 37
containing, 11
equal, 11
intersection of, 11
union of, 11
Expectation, conditional, 264
Expected value, 263ff
definition of, 263
Experience, 44, 46, 55, 62
Experiment and observation, 117, 118
Extension, of an observation, 112
of a set of acts, 113
Extrems 8, 120



GENERAL INDEX

Factorability ecriterion for sufficiency,
13048

Fair ¢oin, 33

Fiducial probability, 262

Fine, 37, 40

Foundations of sciences, role of, 1

Foundsations of statistics, deep, 5

history of, 1§

shallow, 5

Gamble, 70, 71
Gambling, 63, 64, 91, 94
Gambling apparatus, 66
Game, abstract, 184ff
bilinear, 186
standard, 1786
two-person, 1788
Games, in relation to minimax theories
of decision, 1804f
mathematics of, 1841
theory of, 156, 1788
Given, 22, 44
Girand world, 84
Greek fonts, 11
Group, mathematical, 183
Giroup action, 105
(Group decision problem, 172
and observation, 210
Group minimax rule, 207

Hausdorff moment problem, 53, 55, 152
Homogeneous coordinates, 136
Hyper-utility, 75
Hypothesis, alternative, 247

extreme null, 254

null, 247

Income, 163

negative, 164, 160, 170

and loss, 182, 200
173
Inconsistency, 20, 21, &7
Indecision, 21
Independence in qualitative probability,
44, 91

Independent events, 44
Independent random variables, 46
Indifference, 17, 59

difficulty of testing, 17
Inductive behavior, 150

307
Inductive inference, 2
Inexact science, 59
Infimum, 80
Infinite sets in applied mathematics, 39,
i

Infinite utility, 81
Information, 50, 153, 235
differential, 2366
Information inequality, 238
Insufficient reason, principle of, 64, 65,
193
Integral, 263
Interrogation, behavioral, 28
intermediate mode of, 28
strictly empirical, 28, 20
Intersection of events, 11
Interval, 268
Interval estimation, 257
definition of, 259, 260
Interval of gambles, 75
Interval of linearity, 267
Invariance of a game, 1941
Invanant minimax, 197, 198
Irrelevant, 126
utterly, 126
Irrelevant event, 44

Journal of American Slalislical Associa-
tiom, 270
Judgment, 156

Large numbers, strong law of, 54
weak law of, 49, 54, 91
Learning, 44, 55
see also Experience
Lebesgue measure, 41
Likelihood ratio, 48, 135, 225
Likelihood-ratio test, 130, 213
Linear function, 267
Logie, 3
decision and, 6
empirical interpretation of, 20
criticism of, 20
incompletenesa of, 50
normative interpretation of, 20
Logical behavior, implications of, 7, 8, 20
“Look before you leap principle,” 16
eriticiam of, 16, 17
Loss, 163, 164, 169, 170
personal, 174



Loss, uniformity of, 1646, 174
Loss and negative income, 182, 200

Marginal utility, 103, 104
Mathematical expectation, principle of,
91, 92
Maximin, 184
Maximum-likelihood estimate, 140, 203,
220, 241
definition of, 225
Mean-square error, 224
see also Hoot mean-square error and
Squared error
Measurable random variable, 45
Median, 228
Microcosm, 88
Minimax, 184
Minimax act, 164
Minimax equality, 179, 187
Minimax rule, 157, 180ff
and simple ordering, 205
group, 174ff, 207
objectivistic, 164
definition of, 164
illustrations of, 164
objectivistic motivation of, 168, 160
Minimax rules, eriticism of, 200ff
Minimax test, 240, 250
Minimax theories, mathematics of, 18461
Minimax theory, 156
objectivistie, definition of, 165
objectivistic approach to, 1581
Minimax theory and observation, 208
Minimax value, 164
Mixed act, 162, 163
in group decision problem, 173
Mixed acts in statistics, 213, 216, 2178
Mixture of gambles, T1
Moment problem, Hausdorff, 53, 55,
152
Moral expectation, 93, 04
Moral worth, 93ff
Multipersonal considerations, 122, 124,
126, 127, 148, 1544, 1726
see also Agreement, Certainty, and
Disagreement
Multiple observation (or statistic), 111
counting of, 183

GENERAL INDEX

Necessary statistic, 137, 224
Necessary views of probability, 3, 80, 61,
67
Negative income, 164, 160, 170
and loss, 182, 200
Neyman-Pearson school, 140
Neyman-FPearson theory of testing, 252
non-Archimedean probability, 30
Normal distribution, 132, 222
Normative interpretation, of postulates,
1941
of theory of utility, 97
Normative theory, 102
Nuisance parameter, 223
Null event, 24, 26
Null hypothesis, 247
extreme, 254
Null observation, 112

Objectivistic observational problem, 208
Objectivistic views of probability, 3, 60,
61, 67, 253, 254
central diffieulty of, 4
probability of isolated propositions
under, 4
Observation, 1066, 1258
cost of, 116, 118, 169, 214, 215
decision after, 23
definition of, 110
Observational problem, objectivistic, 208
Observation and experiment, 117, 118
Observed value, 110
Obtains, 10
Operating characteristic, 248
Optimism, 68
Order statistic, 132

Parameter, 221
nuisance, 223
Partial ordering, 21
Partition, 24
almost uniform, 34
Partition formula, 45
Partition problems, 1206
Personalistie view, 56
difficulties with, 57
possible incompleteness of, 50
Personalistic views of probability, 3, 67
Personal probability, 27, 30



GENERAL INDEX

Personal probability, eriticism of verbal-
istic approach to, 27, 28
other terms for, 30
Person a8 economic unit, 8
Pessimism, 68
Plan as & single decision, 16
eriticism of, 16, 17
Point estimation, 2206f
definition of, 221
Poisson distribution, 222
Power function, 248
Preference, 17
as simple ordering, 18
as partial ordering, 21
conditional, 22
superfluous for consequences, 25, 26
irreflexivity of, 17
transitivity of, 18
Preference among consequences, 25
dwtl;npﬁnhad from preference among

Pm-ltltiltiu,ﬁ
Primary act, 163
Prize, 31
Probabilities of higher order, 58
Probability, mathematical properties of,
2,3
unknown, superfluousness of in person-
alistic theory, 50, 51
views on, dualistic, 2, 51, 62, 63
necessary, 3, 60, 61, 67

objectivistie, 3, 60, 61, 67, 253, 254
personalistic, 3, 67
Probability measure, 33

Propositions, probability of, under ob-
jectivistic views, 4, 27, 61, 62

Pseudo-microcoam, 86

Psychological probability, 30

Qualitative probability, definition of,
example, 28
fine but not tight, 41
neither fine nor tight, 41
tight but not fine, 41
Quantitative probability, 33

Randomization, 66, 163, 216, 217
Random numbers, 67

Random wvariable, 45
real, 263
Rational behavior, T
Ray, 135
HRegret, 163
Rejecting, 247
Root-mean-square error, 257
see also Mean-square error and Squared
error

8t. Petersburg paradox, 93

Behwarts inequality, 268

Science, almost exact, 101

Sequential analysis, 116, 1426, 215, 216

Sequential observational program, 142
146

Significance level, 252
mpm-tmgoiﬂﬁ
tests, 2461
Simple dichotomy, 138, 145, 146, 148,
212, 213, 252
Simple ordenng, 18
and the minimax rule, 205
exercises on, 19
Size of a test, 250
Small world, 9, 16, 82
Squared error, 81, 234
see glso Mean-square error and Root
MEAN-SUATe ETTOT
Standard deviation, 257
Standard game, 1780
Standard sequence of observations, 227
State, 9
true, 9
Statea, generic symbols for, 11
Statistie, 128
Statistics, other names for, 2
scope of, 2
Btatisties proper, 5, 105, 114, 121
definition of, 154
Strategy function, 111
Btrictly convex function, 267
Subjective probability, 30
Sufficient statistie, 1206, 212, 224, 230,
237, 246, 256, 250
factorability criterion for, 1304
Supremum, 80, 267
Sure personal probabilities, 57, 58, 66
Sure-thing principle, 211, 114, 207
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Svymmetric dual, 78
Symmetric sequence of events, 50ff
Symmetry, 232, 246

in probability, 631

of games, 193

Tastes, 155

Team mate, 132

Test, definition of, 247

of hypotheses, 2466

Testing, 221

Tesating problem, 347

Ties in rank, 218

Tight, 37, 40

Time in theory of decision, 10, 17, 23,
44

Tolerance interval, 262

Tolerance level, 263

Topological assumptions possible for a
simple ordering, I8

Transitivity, 19

True state, 9

Unbiased estimate, 203, 224, 244, 245
definition of, 226

Unbiasad test, 249
criticism of, 250

Uniform distribution, 131

Union of events, 11

Universal event, 10
aymbol for, 11

Utile, 82

GENERAL INDEX

Utility, 68
and the minimax rules, 201§
bounded, 95
criticism of, 918
definition of, T3
history of, 911
logarithmic, 94, 85
Utterly irrelevant observation, 126, 212,
237

Yacillation, 21
Vacuous event, 10
symbol for, 10, 11
Vagueness, 59, 168, 160
Value of observation, 151
Variance, 268
Venn diagram, 12
Verbalistic and behavioralistic outlooks,
17
Verbalistic outlook, 1506, 220, 260, 261
inadequacy of in definition of personal
probability, 27, 28
Virtual extension, 148
Virtually equivalent acts, 148
Virtually impossible event, 24

World, choice of, 6
definition of, 9
examples of, 8
grand, 84
gmall, 9, 16, 8211
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CATALOG OF DOVER BOOKS

Astronomy

BURNHAM’S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel-
lation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo o
\ﬁﬂpﬂﬂﬂliﬂ\ﬂﬂ.ﬂ“ﬁﬂ]ﬂﬁlﬂlﬂ-[ﬁﬁﬂhﬂl%ﬁilﬂ

I: 23567-X
Vol. I1: 23568-8
Vol. 111: 23673-0

EXPLORING THE MOON THROUGH BINOCULARS AND SMALL TELE-

SCOPES, Emest H. Informative, illustrated to locat-
Ty el
and updated with special section of new photos. Over 100 photos and

240pp. Bx x 11. 24491-1

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael |. Crowe. First
detailed, scholarly study in English of the many ideas that developed from [750 to
19060 regarding the existence of intelligent extraterrestrial life. Examines ideas of
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus-
trations. /04pp. 5% x B4 40675-X

THEORIES OF THE WORLD FROM ANTIQUITY TO THE COPERNICAN
REVOLUTION, Michael |. Crowe. Newly revised edition of an accessible, enlight-
ening book recreates the change from an earth-centered to a sun-centered concep-
tion of the solar system. 242pp. 5% x 8% 41444-2

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned

study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, Newton,

Eddington’s work on stars, much more. [llustrated. References. 521pp. 5% x 8%
653994-1

A COMPLETE MANUAL OF AMATEUR ASTRONOMY: Tools and Techniques
for Astronomical Observations, P. Clay Sherrod with Thomas L. Koed. Concise,
highly readable book discusses: selecting, setting up and maintaining a telescope;
amateur studies of the sun; lunar topography and cecultations; observations of Mars,
Jupiter, Saturn, the minor and the stars; an introduction to

tometry; more. 1981 ed. 4%26%?%3&5@55!91

42820-6
AMATEUR ASTRONOMER'S HANDBOOK, |. B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, drives, microm-
eters, spectroscopes, more. 189 illustrations. 576pp. 5% x 8. (Avai in U.S. only.}
24034-7

STARS AND RELATIVITY, Ya. B. Zel'dovich and I D. Novikov. Vol | of
Mwwﬁmﬂmm General relativity, properties of
matter under astrophysical conditions, stars, and stellar systems. Deep physical
insights, clear presentation. 1971 edition. References. 544pp. 5% x 84 69424-0
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THE SCEPTICAL CHYMIST: The Classic 1661 Text, Robert Boyle. Boyle defines
the term “element,” asserting that all natural phenomena can be explained by the

motion and organization of primary particles. 1911 ed. viii+232pp. 5% x 8%
428257

RADIOACTIVE SUBSTANCES, Marie Curie. Here is the celebraled scientist’s
doctoral thesis, the prelude to her receipt of the 1903 Nobel Prize. Curie discusses
establishing atomic character of radioactivity found in compounds of uraniom and
thorium; extraction from pitchblende of polonium and radium; imhhnna[pmtndr
umchlm‘ide determination of atomic weight of radium; plus electric,

lmmmtﬁethafrlﬂmﬁﬂty i+94pp. H:B‘i 42550-9

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
12Bpp. 5% x B4 67628-5

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron |. Thde. Authorita-
mhmdﬂmmﬁﬂmlnumﬂﬂrﬂkﬂumymiﬂﬂrmﬂrym

major chemists and their discoveries. 209 illustrations. 14 tables.
Elhﬁnwhiﬂlndlm Appendices. 851 pp. 5% x BY. 642356

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.

Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution,

carbonyl- and acyl-group reactions, practical kinetics, more. Bidpp. 5% x 8%
A5460-5

ELEMENTS OF CHEMISTRY, Antoine Lavoisier. Monumental classic by founder
of modern chemistry in remarkable reprint of rare 1790 Kerr translation. A must for
every student of chemistry or the history of science. 530pp. 5% x 8% 646246

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a coher-

ent set of chemical laws. 260pp. 5% x 8% 61053-5
A SHORT HISTORY OF CHEMISTRY, J. R Partington. Classic e;Poum:m
origins of chemistry, alchemy, early medical chemistry, nature

theory of valency, laws and structure of atomic theory, much more. $28pp.
5% x 8% (Awvailable in US. only.) 65977-1

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-vear
text by Nobel laureate, Atomic and molecular structure, quantum mechanics, statis-
tical mechanics, thermodynamics correlated with descriptive chemistry. Problems.
992pp. 5% x BL 65622-5

FROM ALCHEMY TO CHEMISTRY, John Read. Broad, humanistic treatment
focuses on great figures of chemistry and ideas that revolutionized the science, 50
illustrations. 240pp. 5% x 8%. 28690-8
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great-

est treatise on technological chemistry, engineering, geology, mining of early mod-
ern times [1556). All 289 original woodcats. 638pp. 6% x 11. BON0G-8

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
devel by US. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 433pp. 5% x B4, 600610

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For nd\-mced :tu-

dents of ground water hydrology, soil mechanics and physics, drainage and irri

engineening, and more. 335 illustrations. Emmenwﬂhmwrn.mlzp 6% x 0%
656756

THEORY OF VISCOELASTICITY (Second Edition), Richard M. Christensen.
Complete, consistent description of the linear theory of the viscoelastic behavior of
materials, Problem-solving techniques discussed. 1982 edidon. 29 figures,

xiv+364pp. 6% x B4 42880-X
MECHANICS, . P. Den A classic introductory text or refresher. Hundreds
of applications and design iluminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x B 60754-2

MECHANICAL VIBRATIONS, ]J. P. Den Hartog Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations 1o a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 8%, GATRS-4

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.] plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x B4 60755-0

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%. 65632-2

STABILITY THEORY AND ITS APPLICATIONS TO STRUCTURAL

MECHANICS, Clive L. Dym. Self-contained text focuses on Kodter postbuckling

with mathematical notions of stability of motion. Basing minimum energy

pnnmplﬂfurmﬂhlhtyupund}mmc concepts of stability of mation, it devel-

nps l.!}-'mpmm: buckling and postbuckling analyses from potential energy considera-
th applications to columns, plates, and arches. 1974 ed. 208pp. 5% x B4

42541-X

METAL FATIGUE, N. E. Frost, K. |. Marsh, and L. P. Pook. Definitive, clearly writ-
ten, and well-illustrated volume addresses all aspects of the subject, from the histori-
cal development of understanding metal fatigue to vital concepts of the cyclic stress
that causes a crack to grow. Includes 7 appendixes. 544pp. 5% x B&. 409279
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HWMMWM&MMWWHMM
of rocketry and jet : “A Method of Reaching Extreme Altitudes™ {1919)
and I.iqu:idh-upellmn Dew]up'ncnt" {1936). 128pp. 5% x B4 425371

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill
Standard text covers fundamentals of statistical mechanics, applications to fluctuation

theory, imperfect gases, distribution functions, more. 448pp. 5% x B H5390-0

ENGINEERING AND TECHNOLOGY 1650-1750: Ilustrations and Texts from
Original Sources, Martin Jensen. Highly readable text with more than 200 contem-
mmmmmmwwmmm

lﬂ}mmmhlmmmmngm building tim-
I:nln:k:,m&dndpugmh. 207pp. 8% x 114 42232-1

THE VARIATIONAL PRINCIPLES OF MECHANICS, Comelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
Bibliography. 418pp. 5% x 8%, 65067-7

PROTECTION OF ELECTRONIC CIRCUITS FROM OVERVOLTAGES,
Ronald B. Standler. Five-part treatment presents practical rules and strategies for cir-
cuits designed to protect electronic systems from damage by transient overvoltages.
1989 ed. xxiv+434pp. 6% x 9% 42552-5

ROTARY WING AERODYNAMICS, W, Z. Stepniewski. Clear, concise text cov-

ers aerodynamic phenomena of the rotor and offers guidelines for

helicopter
mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%
b4647-5

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-

classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates. Bibliography. Index. 352pp. 5% x 8% 651 13-4

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
historical survey of the of materials with many references to the theories of
elasticity and structure. 245 452pp. 5% x B 61187-6

ANALYTICAL FRACTURE MECHANICS, David |. Unger. Self-contained text
supplements standard fracture mechanics texts by focusing on analytical methods for
determining crack-tip stress and strain fields. 336pp. 6% x 9% 417379

STATISTICAL MECHANICS OF ELASTICITY, |. H. Weiner. Advanced, self-con-
Mmtmmmﬂuﬂﬂbﬁmﬂd&ML
based on classical mechanics, studies thermoelastic behavior of crystalline and
meric solids. Part 2, based on quantum mechanics, focuses on interatomic force
behavior of solids, and thermally activated processes. For students of physics and
chemistry and for polymer physicists. 1983 ed. 96 figures. 496pp. 5% x 8%. 422607
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FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent teatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics, and engineering. Text covers
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 6% x 9%, 4042517

ASYMPTOTIC EXPANSIONS OF INTEGRA[& Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 55 x 8% 65082-0

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. 1. Borisenko
and 1. E. Tarapov. Concise introduction. Worked-out problems, sclutions, exercises.
257pp. 5% x B, 638332

THE ABSOLUTE DIFFERENTIAL CALCULUS [CALCULUS OF TENSORS],
Tullio Levi-Civita. Great 20th-century mathematician's classic work on material nec-
essary for mathematical grasp of theory of relativity. 452pp. 5% x 8% 63401-9

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A Coddm,gton. A thorough and systematic first course in elementary differential

ons for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x B4 659429

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal Elmn:unm:ndlppllnunmufﬂuﬁ:uner method to boundary-value
problems, 570 exercises. Answers and notes. 410pp. 5% x 84 659739

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions, New preface and appendix. 288pp. 5% x B4%. 61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G de Bruijn. An inexpensive, com-

prehensive guide to asympiotic methods—the pioneering work that teaches by
explaining worked exampies in detail. Index. 2Z24pp. 5% x 8% 642216

AFPPLIED COMPLEX VARIABLES, John W. Dettman. Step—by-nep coverage of
fundamentals of analytic function theory D—lg_h:mlnmd exposition of ﬁw impaortant
applications: Potential Theory; Ordinary Fourier Transforms;

Laplace Transforms; Asymptotic Expansions. Eﬁﬁguru E‘.urm:uch:ptﬂmdm
512pp. 5% x B, 64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8% 65191-6
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CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced

undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8%
6G4856-7

COMPLEX VARIABLES, Francis |. Flanigan. Unusual lp]:nm:h.dnh}-mg -:umph-:
algebra till harmonic functions have been analyzed from real variable
Includes problems with answers. 364pp. 5% x 8% EISE&?

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.
Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approocamations, more. References. 279pp. 5% x 8%
65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R, Gelbaum and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
“real variables.” The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xoav+ [98pp. 5% x 8% 42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry, and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii+666pp. 6% x 9%
67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8%

G5084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 84 65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-

polation, numerical differentiation and integration, other topics. 150 new problems.
E-E!Elpp 5% x B4, 65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden's thearem, the Landau-Schnirelmann hypothesis and Mann's
theorem, and a solution to Waring's problem. Solutions included. 64pp. 5% x 8%,
40026-3

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephm
Korner. Surveys the views of Plato, Aristotle, Leibniz & Kant conceming p

tions and theories of applied and pure mathematics. Introduction. Two

Index. 198pp. 5% x 8%. 25048-2
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INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated
hyﬂmhudﬂ.ﬂ:hcrmm&lfmnhmui,ml}rpmndmhudmtnmﬂlndﬁm:

tional analysis. Some 350 problems. 403pp. 5% x BY4. 612260

AFPPLIED ANALYSIS, Comelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical p mhmumm
matrices, harmonic analysis, quadrature methods, more. 550pp. 5% x 8%. X

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”®: sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8%

65940-2

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati-
cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies, 523pp. 5% x 8 6:5954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
exercises. 237pp. 5% x B4, GOHE10-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous fanctions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x B 6.5038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Sut}r Emphasizes practical
iﬂhlhﬂﬂﬂfpﬂ'ﬂhkmamvmmqrpuuftqlm - a welcome contribution
to the existing literature. . . . -Mﬂnmlﬂﬂppﬁi:ﬂ! 64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues, and differential
equations. Numerous exercises. 432pp. 5% x BY%. 66014-1

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel.
Analyzes models of fluid flow and solid deformation. For upper-level math, science,
and engineering students. 608pp. 5% x 8%. 65369-2

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8k 653854

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction 1o unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8% 63829-4
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TENSOR CALCULUS, ].L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x BY. 63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Moms Tenenbaum and Harry
Pollard. Exh.lu.ih'vemvey ufurduu:}rﬁﬂ’ermh:leqm:fnrundﬂmdumm

mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8% 64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. H4828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%, 633179

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural pum-
bers; complete induction; limit and point of accumulation; remarkable curves; complex
and hypercomplex numbers, more, 1959 ed. 27 figures. xii+260pp. 5% x 8%. 42804-4

PGPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted |ugl-
cian's lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 ed.
ix+283pp. 5% x B, 67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8% 63065-2

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x B 67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and L. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x §%. Two-vol. set.

Vol I: 655369 Vol. I1: 655377

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanogiou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8% 65251-3

THE THEORY OF GROUPS, Hans |. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstraies their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more, 276pp. 53 x BE 40022-8
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Math-Decision Theory, Statistics, Probability

ELEMENTARY DECISION THEORY, Herman Chemoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
Jhdpp. 5% x 8%, 65218-1

STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical collection
of classical and modern methods prepared by US. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x BY. 60599-X

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
pl'ﬂ-hll.‘l:l:ll.,ﬂltﬂ!}' and design of sampling techniques for social scientists, industrial

and others who find statistics important at work. 61 tables. 90 figures. xvii
+ﬁﬂﬂpp.5'ixﬂ!ﬁ 64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8% 65491-5

FROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
36( problems. Bibliographies. 322pp. 5% x 8% 65252-1

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 508pp. 5% x 84. 65043-7

INTRODUCTION TO THE THEORY OF GAMES, |. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games ﬂlunh'ltﬂi.pphul:lumtn
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced calculus a prerequisite. 1952 ed. x+372pp. 5% x BL. 428117

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded i difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x B%. 65355-2

PROBABILITY THEORY: A Concise Course, Y. A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernouili trials, etc. 148pp. 5% x 8% 635449

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x B4 652327
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Math—-Geometry and Topology

ELEMENTARY EDNCEP‘TS OF TOPOLOGY, Paul Alexandrofl. Elegant, intu-
itive approach to from set-theoretic topology to Betti groups; how mn:
of wpology are in math and physics. 25 figures. 57pp. ﬂxr

COMBINATORIAL TOPOLOGY, P. §. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5% x B%, 401790

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 210pp. 5% x B 25933-1

CONFORMAL MAFPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. ﬁﬁgwmﬂﬁipp.ﬂ: BY. 64025-6

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’s own di
together with definitive Smith-Latham translation. 244pp. 5% x 8% GO06SE-8

PRACTICAL CONIC SECTIONS: The Geometric Properties of Ellipses,
Parabolas and Hyperbolas, |. W. Downs. This text shows how to create ellipses,
parabolas, and hyperbolas. It also presents historical background on their ancient
origins and describes the reflective properties and roles of curves in design applica-
tions. 1993 ed. 98 figures. xii+100pp. 6% x 9%, 428761

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with tnu'nd:.w
tion and commentary by Thomas L. Heath. Definitive edition. Textual and ki

notes, mathematical analvsis. 2, 500 vears of critical commentary. Unabridged. 1, 4l4pp.
5% x 8%, Three-vol. set. Vol. [: GOORR-2 Vol I1: 60089-0 Vol. I1I: 60090-4

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. [lluminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Fuclidean geometries. 200pp. 5% x 8% 63830-8

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature, trans-
formation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8 63433-7

CURVATURE AND HOMOLOGY: Enlarged Edition, Samuel 1. Goldberg.
Revised edition examines topology of differentiable manifolds; curvature, homology
of Riemannian manifolds; compact Lie groups; complex manifolds; curvature,
homaology of Kaehler manifolds. New Preface. Four new appendixes. Hﬁpp,f:i:lg%
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History of Math

THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed.}. Topics include
the famous problems of the ratio of the areas of a cylinder and an inscribed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; and the

of the parabola. Informative introduction. chooovi+326pp; supplement,
52pp. 5% x Bk 42084-1

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians

19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x BY. 20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEFTUAL DEVELOP-

MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8% 605040-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip 5. Jones, and Jack D. Bedient. Fundamental underpinnings of modem
arithmetic, algebra, geometry, and number systems derived from ancient civiliza-
tions. 320pp. 5% x BY. 25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
study notes the first appearance of a mathematical symbol and its origin, the com-
petition it encountered, its spread among writers in different countries, its rise to pop-
ularity, its eventual decline or ulimate survival. Original 1929 two-volume edition
presented here in one volume. xxviii+820pp. 5% x BY. 67766-4

GAME&GDDS&GAMBUNG:&M&W@MWMMEH
Da?lifpnﬂdﬂﬁ'nmﬂuhvﬂﬂfﬂnhku Fermat, Pascal, and others illustrate this
hmumnngm:uunlufthemnuﬂfmuhemauu Features thought-provoking refer-

ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x B%
{Available in U.S. only.} 40023-9

OF MEN AND NUMBERS: The Story of the Great Mathematicians, Jane Muir.
Fascinating accounts of the lives and accomplishments of history’s greatest mathe-
matical minds—Pythagoras, Descartes, Euler, Pascal, Cantor, many more. Anecdotal,
illuminating. 30 diagrams. Bibliography. 256pp. 5% x 8%. 28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x B4 Two-vol. set. Vol. I: 204294 Vol 11: 204308

A CONCISE HISTORY OF MATHEMATICS, Dirk . Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 4] illustrations. [95pp. 5% x 8% 602559
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OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x B%. 655334

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
2% x BY. 65969-0

ATOMIC PHYSICS: 8th edition, Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
w and spectral lines, much more. Over 40 appendices, bibliography. 495pp.

x BY. 659844

A SOPHISTICATE'S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
tnuirdmdma]mn&yncqlmnt:dmd:qnudrﬂan“quhnhmkm:mdnme
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a *law of nature™? What is the role of the “observer™? Extensive
treatment, writien in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8% 42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv+360pp. 5% x 8% 67597-1

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; hmcmﬂummdbuundbtadmn:}rmmﬂnmﬁeld and
bead in a spherical shell. Other topics include spin, mitl'lcu,mdﬂ:cltm:h.m:nf
quantum mechanics; the simplest atom; md:rhnguuimbleplmclu and

state perturbation theory. 1992 ed. xiv+3l4pp. 6% x 9%, Iiﬂ‘?ﬂ-ﬂ

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures onm mathematical methods in guantum mechanics from Nobel

Prize-winning quantum pioneer build on idea of visualizing quantum theory through
the use of classical mechanics. 96pp. 5% x 8% 41713-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac's anti-particles, Bohr's model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8% 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: ‘I?ml’hynu
of the Chemical Bond, Walter A. Harmison. Innovative text offers basic

of the electronic structure of covalent and jonic solids, simple metals, transition metals
and their compounds. Problems. 1980 edition. 582pp. 6% x 9% 66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the R:ﬂmgh—ﬂenudpmb]em*dmmveng: of the theory of
instabilities causing convection. 704pp. 5% x §%. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) mvuﬁm dynamics of Brownian motion
and evolving elementary theory. Notes by R. 122pp. 5% x AL 603040

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8% 64926-]

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Wemer Heisenberg.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8&. 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. B0 illustrations. 257pp. 5% x Bk 60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill
Excellent basic text offers wide-ranging coverage of quanium statistical mechanics,
systems of interacting molecules, quantum statistics, more. 523pp. 5% x B%. 65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, e theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. xxiii+B85pp. 5% x B 652270

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles 5. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular
miomentum, molecular spectroscopy, more. 280 problems, 139 supplementary exer-
cises. 430pp. 6% x 9%, 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol [: Perfect Lattices in
Equilibrium; Vol. 1I: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties ufperfeﬂc:jmﬂjncmlid;nnn-cqujh‘hﬁum properties, defects and dis-
ordered systems. Total of 1,301pp. 5% x 8%, Vol. I: 65015-4 Vol I1: 65016-2

WHAT IS RELATIVITY? L. D). Landau and G. B. Rumer. Written by a Nobel Prize

physicist and his distinguished c Iklglxthucnmpdhnghmkexphmthespetm]

theory of relativity to readers with no scientific background, using such

objects as trains, rulers, and clocks. 1960 ed. vi+72pp. EEHMMummeEE
42806-0 $6.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics, Brings to final form Maxwell's theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x BY. Two-vol. set. Vol. [: 60636-8 Vol 11: 60637-6
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QUANTUM MECHANICS: Principles and Formalism, Roy McWeeny. Graduate
student—oriented volume develops subject as fundamental discipline, opening with
review of origins of Schriidinger’s equations and vector spaces. Focusing on main
principles nf quantum mechanics and their immediate consequences, it concludes
with final generalizations covering alternative “languages” or representations. 1972

ed. 15 figures. xi+155pp. 5% x 84, $2829-X
INTRODUCTION TO QUANTUM MECHANICS WITH APPLICATIONS TO
CHEMISTRY, Linus ing & E. Bright Wilson, Jr. Classic undergraduate text by
Nobel Prize winner ies quantum mechanics to chemical and physical problems.
Numerous tables and enhance the text. Chapter bibliographies. Appendices.
Index. 468pp. 5% x BY, 64871-0

METHGDS OF THERMDD‘:’HAMIES Howard Reiss. Outstanding text focuses
mdp technique of thermodynamics, typical problem areas of understanding,
ngm.ﬁcmce:.ndu:euflhumndymnucpatmm 1965 edition. 238pp. 5% x B4
69445-3

TENSOR ANALYSIS FOR PHYSICISTS, J. A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical exam-
ples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%. 65582-2

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to eleciromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x Bi. 65660-8

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, Morris H. Shamos (ed.]. 25 crucial discoveries: Newton's laws of motion,
Chadwick’s study of the neutron, Hertz on electromagnetic waves, more. Original
accounts clearly annotated. 370pp. 5% x 8% 25346-5

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolman. Landmark study extends thermodynamies to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501pp. 5% x 8%, 63383-8

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics, and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x B4, 65401-X

Paperbound unless otherwise indicated. Available at your book dealer, online at
www.doverpublications.com, or by writing to Dept. GI, Dover Publications,
Inc., 31 East 2nd Street, Mineola, NY 11501. For current price information or for free
catalogs (please indicate field of interest), write to Dover Publications or log on to
and see every Dover book in print. Dover pub-
lishes more than 500 books each year on science, elementary and advanced mathe-
matics, biology, music, art, literary history, social sciences, and other areas.
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Postulates of a Personalistic

The seven postulates (P1 through P7) scattered through the first
five chapters of this book are reproduced here for ready reference along

with & minimum of explanatory material. The language of the postu-
lates is here changed somewhat for conciseness and to show an alterna-
tive mode of expression, but the logical content of each postulate is
left unaltered.

The formal subject matter of the theory

The states, a set S of elements s, #/, - « - with subsets 4, B, C, - - - (page 11).
The consequences, & set F of elements f, g, h, -+ (page 14).

Acts, arbitrary functions f, g, b, - - from S to F (page 14).

The relation “is not preferred to” between acts, < (page 18).

The postulates, and definitions on which they depend

Definitions of terms not in general mathematical use are given here
as D1 through D5; for others consult the General Index (page 289)
and the Technical Symbols (page 283).

Pl The relation < is a simple ordering (page 18).

D1 £ <g given B, if and only if £ < g’ for every f' and g’ that
agree with f and g, respectively, on B and with each other on ~B
and g’ < f' either for all such pairs or for none (page 22).



Theory of Decision

| ' Foreveryf, g, and B, f < ggiven Borg < f given B {page 23).

D2 g<g¢'ifandonlyif f <f, when f(s) = g, f'(s) = ¢ for every
5 ¢S (page 25).

D3 B s oull, if and only if f < g given B for every f, g (page 24).

P3 If fis) =g, f'(s) = g’ for every s ¢ B, and B is not null; then
f <f given B, if and only if ¢ < ¢’ (page 26).

D4 A <B;if and only if f4 < fy or g < ¢’ for every {,, 15, ¢, ¢’
such that: f4(s) = g for se A, fuls) = ¢ for s e~4, fz(s) = g, for
8¢ B, fg(s) = ¢ for s « ~B (page 31).

P4 Forevery A, B, A < Bor B < A {page 31).

P5 It is false that, for every f, ', f < [’ (page 31).

6  Suppose it false that g < h; then, for every f, there is a (finite)
partition of S such that, if g’ agrees with g and b’ agrees with h except
on an arbitrary element of the partition, g' and b’ being equal to f
there, then it will be false that g' < h or g < b’ (page 39).

D5 f<ggmven B (g <1 given B); if and only if f < b given B
(b < f given B), when h{(s) = g for every s (page 72).

P7  If f < g(s) given B (g(s) <f given B) for every s ¢ B, then
f <ggiven B (g < f given B) (page 77).
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THE FOUNDATIONS OF
STATISTICS

Leonard J. Savage

With the 1954 publication of his Foundations of Statistics, in which
he proposed a basis that takes into account not only strictly objective
and repetitive events, but also vagueness and interpersonal differ-
ences, Leonard ]. Savage opened the greatest controversy in modern
statistical thought. His theory of the foundations, connected with
the personalistic interpretation of probability, challenged the then
dominant frequentist school.

In the first seven chapters of his book, Prof. Savage is concerned with
the foundations at a relatively deep level. To explain and defend
his theory of the behavior of a highly idealized person faced with
uncertainty, he considers decision making, the sure-thing prindple,
qualitative and quantitative personal probability, the approach to
certainty through experience, symmetric sequences of events, critical
comments on personal probability, utility, observations as they affect
the decision, and partition problems. In chapters eight through
seventeen he discusses statistics proper—the actual devices of the dis-
cipline—from the personalistic view. He concentrates on minimax
problems and on the theories of estimation and testing. Exercises
are included throughout to reinforce and supplement the text. The
mathematical techniques used are quite elementary, some calculus
and elementary probability theory being presupposed. Understand-
ing of all the material calls for some mathematical maturity on the
part of the reader.

Prof. Savage had reevaluated his position somewhat during the decade
and a half since the work was first published. While reaffirming the
malterial in the first seven chapters, he had reconsidered the appro-
priateness of many frequentistic applications, To explain these re-
cent developments, he added a new preface, new footnotes, and a
supplementary 180-item, annotated bibliography. Because of Prof.
Savage's recent death, the revisions that he made for this edition are
his final analysis of the situation.

As he says on page one, “the foundations are the most controversial
parts of many, if not all, sciences.” In statistics, the foundation of
bility is “as controversial a subject as one could name.” In
1954, the controversy was very great, and although it has quieted
since, the problem has yet to be resolved. A new generation of
readers who have missed Savage's analysis have here an opportunity
to study at hrst hand what his important foundation of statistics—
personal probability—is, and what it means to statistical thought.

Unabridged, revised republication of the 1954 edition. New preface,
supplementary bibliography, and footnotes added to the present edi-

tion by Prof. L. ]. Savage. xvii 4 376pp. 534 x 814.
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