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Abstract

It is natural to think that there’s something epistemically objection-
able about avoiding evidence, at least in ideal cases. We argue that this
natural thought is inconsistent with a kind of risk avoidance that is both
wide-spread and intuitively rational. More specifically, we argue that if
the kind of risk avoidance defended by Buchak| (2013) is rational, avoiding
evidence can be epistemically commendable.

In the course of our argument we also lay some foundations for study-
ing epistemic utility, or accuracy, when considering risk-avoidant agents.

Is it ever reasonable not to gather available evidence? Sure it is. Gathering
and processing the evidence is almost never free, costing you time and cognitive
energy if nothing else. Even if it were free, you might know that the evidence
doesn’t bear on anything important. And even if the evidence were both free
and relevant, you might still be worried that you’ll misevaluate it.

But what about cases in which none of these worries arise? Ideal cases, in
which (i) gathering the evidence incurs no cost whatsoever, (ii) the evidence is
potentially relevant, and (iii) you're certain to process it rationally?ﬂ In these
cases, it seems wrong to ignore evidence. Classical decision theory agrees: it
says that not gathering the evidence is instrumentally irrational, a bad way of
pursuing your goalsﬂ However, decision theories that allow for a kind of ‘risk
avoidance’ not permitted by classical decision theory do notE| Classical and
risk-avoidant decision theories thus disagree about:

I Evidence is potentially relevant if the agent has positive credence that it makes a difference
to what outcome she achieves; in the instrumental case, this means that the agent has positive
credence that the evidence will make her choose a different option in some decision problem
she will face, while in the epistemic case it means that the agent has positive credence that it
will make a difference to what credence she assigns to some claim that matters.

One might worry that, because gathering evidence always carries some cost, there couldn’t be
any ideal cases, making our principles vacuous. Perhaps that is so. However, given a precise
definition of costs, one could define what it is for the costs of gathering the evidence to be
negligible, compared to the other things at stake — one could then redefine ideal cases as ones
where the costs are negligible. However, we can’t give a precise definition of ‘costs’ (and hence
of cost-negligibility) here, and so will opt for the simpler formulation. We should, however,
note that, when considering epistemic principles, the relevant costs should be understood as
epistemic ones — for example, the loss of time, energy, or opportunity to gather other evidence.
2Good (1967)
3Wakker| (1988)
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Look-I. In ideal cases, one is instrumentally required to gather the evidence.

It thus looks as though evidence-avoidance can be rational (in ideal cases) if
and only if risk-avoidance is.

Recently, however, Buchak! (2010) has pointed out that this reasoning ignores
an important distinction. For, even if avoiding evidence is rational from a purely
instrumental perspective, it might nonetheless be irrational from an epistemic
one. This would mean that instrumental and epistemic rationality sometimes
conflict. But that is independently plausible: if you offer to pay me a lot of
money to take a pill that will instil in me the (mistaken) belief that I had eggs
for breakfast today, I may be instrumentally required to accept but epistemically
required to decline. It thus seems as though, in rejecting Look-I, advocates of
risk-avoidance might nonetheless be able to accept:

Look-E. In ideal cases, one is epistemically required to gather the evidence.

If that’s right, then even if avoiding risk is rational, there remains an important
sense in which avoiding evidence is not.

In this paper, we close this gap by arguing that if risk-avoidance is rational,
then avoiding evidence is sometimes epistemically rational (even in ideal cases).
More precisely, we argue that if the kind of risk-avoidance permitted by Buchak’s
decision theory is rational then it can be epistemically rational to avoid evidence
even in ideal cases. We leave open whether the correct reaction is to reject the
rationality of risk aversion, or to conclude that, even from an epistemic point of
view, there needn’t be anything wrong with avoiding evidenceﬁ

The plan is as follows. Sections [I] and [2] present relevant background, ex-
plaining the connection between risk-avoidance and Look-I, as well as Buchak’s
risk-sensitive decision theory. Section [3| begins the main argument, by mak-
ing the case that epistemic rationality requires an agent to gather (or avoid)
evidence if doing so is conducive towards securing epistemic goods; and hence
that risk-sensitive agents are required to gather (or avoid) evidence if doing
so maximizes risk-weighted expected epistemic utility. Section [4] discusses how
to measure epistemic utility when working with risk-sensitive agents. Section
presents the core result showing that Look-E fails for risk avoidant agents.
Sections [6] and [7] show that much of this result goes through even if certain
assumptions (about how epistemic utility is measured, and how rational agents
revise their beliefs) are significantly weakened. Section 8| sums up.

1 Risk aversion and Look-I

Classical decision theory requires agents to maximize expected utility. This
means that all rational aversion to risky options must be reflected in the agent’s

4Strictly speaking, another option is to maintain that some risk aversion is rational, but
not the kind described by Buchak’s theory. We will offer some (non-ad hominem) reasons to
focus on Buchak’s theory in evaluating the interaction between risk avoidance and Look-E;
but, those reasons won’t be conclusive, and so this third option remains open.
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utility function: if it’s rational to prefer a sure $5 over a bet that pays $10 if a
fair coin lands heads (and nothing otherwise), this is only because money has
diminishing marginal utility, so that the utility of winning $10 is less than twice
that of securing $5. But many have argued that this does not vindicate all
the ways in which rational agents can be risk averse. Perhaps the best-known
example is that adjusting the utilities doesn’t allow us to capture the ‘Allais
Preferences’ﬂ Consider the following four lotteries

Ticket 1 | Ticket 2-11 | Ticket 12-100
Ly $1,000 $1,000 $1,000
Lo $0 $2,000 $1,000
L3 $1,000 $1,000 $0
Ly $0 $2,000 $0

Note that Ly differs from L3 in exactly the same way as Ly differs from Lg4; in
both cases, we’ve just replaced 88 $1, 000-tickets with losing tickets. This means
that expected utility theory predicts that, regardless of how you value money,
if you prefer Ly to Ly, you also prefer L3 to Ls. However, many people report
preferences contradicting this, favouring Ly over Ly but L4 over Ls. Moreover,
such preferences seem to make sense. L; feels preferable to Lo in part because
it is risk-free, while L3 has no such attraction over L4 — that Lq differs from L3
in the same way as Lo differs from L, just hides this intuitively relevant point.

Cases like these have motivated the development of decision theories that
allow for other forms of risk-avoidance, and thus permit the Allais preferences.
Rejecting classical decision theory, however, means that we need to reexamine its
treatment of evidence-gathering. 1.J. Good (1967) famously proved that, when
faced with a choice between either (i) choosing an option now or (ii) gathering
some cost-free evidence, conditionalizing on it, and then choosing the option
that maximizes expected utility relative to the updated credences, (ii) will have
a strictly higher expected utility than (i) whenever the new evidence might
lead one to choose a different option. If we follow classical decision theory in
assuming that instrumental rationality requires us to maximize expected utility,
this establishes Look-I. But if we reject classical decision theory, it obviously
does not.

Moreover, no theory which permits the type of risk avoidance manifest in
the Allais preferences can recover an analogous resultﬁ We won’t go over the
argument here. But, very roughly, the idea is that, since the choice between L,
and Lo on the one hand, and between between L3 and L4 on the other, is the
same if you know that your ticket is 1-11 (and is inconsequential if you know
that your ticket is 12-100), you are bound to ‘switch’ preferences in one of the
two cases upon finding out whether your ticket is 1-11 or 12-11. But this means

5Allais| (1953). The preferences usually involve $1m where we have $1,000 and $5m where
we have $2,000. These changes affect nothing of substance; they just simplify the calculations
in section [2}

6Cf|Buchal] (2013} p.171-173). [Wakker| (1988)) establishes the even stronger claim that no
theory which allows for any violations of the ‘Sure-Thing Principle’ (a principle of classical
decision theory violated by the Allais preferences) can recover Look-I.


mailto:catrin@ccampbell-moore.com

that, in that case, you will pick an option you (initially) consider sub-optimal
if you gather the evidence before choosing.

This result is somewhat strange, but Buchak offers a helpful diagnosis. We
can call some evidence instrumentally misleading if it makes it rational to per-
form an action that is, as a matter of fact, worse than the one you would have
performed if you hadn’t received that evidence. Since learning that your ticket
is 1-11 makes it rationally permissible to perform a different action (taking Lo
instead of L;), it has a risk of being misleading; and since there is a 1/11 chance
of your ticket being ticket 1 (and hence L still having the better outcome) even
if it is one of 1-11, this risk is substantial. Of course, that risk must be weighed
against the fact that learning 1-11 could be instrumentally ‘truth-guiding’, mak-
ing it rational to perform an action which in fact leads to a better outcome than
you would otherwise achieve (taking Lo instead of L; when you hold ticket 2—
11). For a risk-neutral agent, these benefits always outweigh the risk. But for
a risk-sensitive agent, they may not.

All theories which depart from expected utility theory to allow for intuitively
rational forms of risk avoidance of the kind represented by the Allais Preferences
thus reject Look-1. However, as Buchak! (2010)) points out, this leaves open that
we may nonetheless always be epistemically required to gather evidence. Our
aim in this paper is to investigate whether, if risk avoidance is rational, we
are so required. To do that, we will need to employ a particular theory of
risk-avoidance; for reasons we will explain shortly, we will focus on the theory
developed by Buchak herself.

2 Buchak’s Theory

On Buchak’s theory, an agent is represented as having not just credences c
and utilities U, but also a risk function r capturing her attitude towards risk —
specifically how much she engages in worst-case-scenario style reasoning.

Mathematically, r is just an increasing function from [0,1] to [0,1], such that
r(0) = 0 and r(1) = 1. To understand its role in calculating risk-weighted ex-
pected utilities note that ordinary risk-neutral expected utilities can be written,
slightly non-standardly, as follows:

Risk neutral expected utility. Suppose an act, A, leads to outcomes o1, ..., 0,
in states s1,...,8n, with U(o1) < ... < U(oy,). Then

Exp, U(4) =U(o1)
+ (e(s2) + ...+ c(sn)) - (Uloz) — Ulor))
+...
+c(sn) - (U(on) — U(on-1))
Intuitively, the (risk-neutral) expected utility is here calculated by first tak-

ing the utility of the worst-case scenario; adding the improvement over the
worst-case scenario secured in the second-worst-case scenario, weighted by the
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probability of securing at least that improvement; adding the improvement over
the second-worst-case scenario secured the third-worst-case scenario, weighted
by the probability of securing at least that improvement; and continuing like
this until all the possible improvements have been taken into account. The risk-
weighted expected utilities are calculated in exactly the same way, except that
r can modify the weight which possible improvements receive:

Risk weighted expected utility. Suppose an act, A, leads to outcomes
01,...,0n in states sq,...,s, with U(01) < ... < U(o,). Then:

RExp! U(4) = U(oy)
+r(c(s2) +e(s3)+...+¢(sn)) - (Uloz) —U(or))

+ r(e(ss) + ...+ c(sn)) - (Ulos) — Uloz))
+...
+ r(c(sn)) - (U(on) = Ulon-1))

If an agent has the risk function r(z) = x, this is equivalent to the usual formula.

But if r is more interesting, we can get different results. Suppose, for ex-
ample, that r(z) < xz. Then the weight given to the potential improvements
will be less than it is in the expected utility calculation; and so the relative
weight given to the worst-case scenario is increased. This means, for example,
that one can have utilities that are linear with money and still prefer the sure
$5 (which has an RExp. U of 5) over the possible $10 (which has an RExp, U
of 04 r(0.5) - (10 — 0) < 5) — one thus prefers the safe choice not because one
values the ‘second’ $5 less, but because one gives more weight to the worst-case
scenario when evaluating one’s options.

Intuitively, risk-aversion is a matter not just of giving extra weight to the
worst-case scenario, but more generally a matter of giving more (relative) weight
to worse scenarios. The property mentioned above, that r(z) < z, is not quite
enough to ensure this; but a slightly stronger property — convexity — isE] Fol-
lowing Buchak, r(z) = 22 will be our main example of a risk-profile which has
this feature.

Tr is convex if r(Az + (1 — N)y) > Ar(z) + (1 — A)r(y) for  # y and X € (0,1). To explain
why this is the required property, we first introduce the abbreviation ‘p;’ for the probability
that we achieve at least outcome o; (so that p; =3, <, ¢(s;)), with pny1 := 0 as a limiting
case. Then we can rearrange the formulas for EU and REU as

RExp, U(A) = Y U(si)- (r(pi) = r(pit1))

i=1l...n
Exp, U(A) = Y U(si) (pi — pit1)
1=1...n

So we can think of the weight given to an outcome o; in the REU calculation as the weight it
receives in the EU calculation (namely p; — p;+1), but scaled by the factor

r(pi) — r(pit1)
Pi — Pit+1
This factor can either increase or decrease the weight which this outcome has in determining

the REU (relative to the weight it has in determining the EU). To say that worse outcomes
receive additional weight is then to say that the scaling factors will become smaller as that
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Such an agent is therefore inclined to avoid risks in a way not represented
in her utilitiesF]

The presence of the risk profile also allows the theory to rationalize the Allais
preferences described earlier. Recall the lotteries we mentioned, and consider an
agent for whom utility and money are interchangeable, but who is risk-avoidant

in line with the risk profile r(x) = 22

Ticket 1 | Ticket 2-11 | Ticket 12-100
Ly 1,000 1,000 1,000
Lo 0 2,000 1,000
Ls 1,000 1,000 0
Ly 0 2,000 0

Since 1000 is L;’s worst-case scenario, and there is no possibility of improvement,
our agent assigns
RExp., U(L;) = 1000.

For Lo, the RExp, U is given by looking at the base-line of 0 if the ticket
is ticket 1; factoring in the possible improvement of securing 1000 more than
that if the ticket is 12-100; and then factoring in the possible improvement of
securing an additional 1000 if the ticket is 1-11. Plugging in the probabilities
and risk-profile, this amounts to

RExp’ U(Ls) = 0+ (0.99)2 - (1000 — 0) + (0.1)2 - (2000 — 1000) = 990.1.
< RExp, U(Ly)

Similar reasoning shows:

RExp! U(Ls3) = 0+ (0.11)% - (1000 — 0) = 12.1
< RExp. U(L4) = 0 + (0.1)%(2000 — 0) = 20

The agent thus has the preferences which the classical theory couldn’t capture,
preferring L1 to Ls but Ly to Ls.

Moreover, if our agent were to learn that her ticket was in the range 1-11,
the RExp!, U of Ly would become higher than that of Ly:

REXPZ(- | Ticket 1-11) U(L1) = 1000

. 102
REXDc(. | Ticket 111y U(L2) =0+ (11) - (2000 — 0) ~ 1653

outcome gets better (i.e. as ¢ becomes larger). In other words, the scaling factors will satisfy

r(pi) = r(Pi+1) - r(p;) = r(Pj+1)
DPi — Pi+1 Pj —Pj+1

whenever j > i. Since the only constraint on the py is that 1 > pi > p; > 0 whenever k < [,
this condition is equivalent to the claim that r is convex by a standard result [reference??
reference Buchak for other arguments?].

8Risk-seeking agents can be associated with concave risk functions, and can hence also be
represented by the theory; but our focus will be on risk-avoidant agents.
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For this agent, then, gathering the evidence (GATHER) is equivalent to tak-
ing Lo, and not gathering the evidence (AvOID) is equivalent to taking L.
But since RExp, U(L;) > RExp,, U(L2), we also have that RExp. U(AvoID) >
RExp, U(GATHER). Look-I therefore fails in exactly the way described earlier.

In what follows we will assume that if risk-avoidance is rationally permis-
sible, then the kind of risk-avoidance described by Buchak’s theory, with some
choice of a risk-avoidant r, is rationally permissibleﬂ Part of the motivation
is dialectical: Buchak is the one who suggests that advocates of risk-aversion
retreat to Look-E given the failures of Look-I. Part of the motivation is prin-
cipled: Buchak’s theory is elegant, intuitive, and well-developed, and thus a
leading a contender for what rational risk-aversion might look like. And part of
the motivation is pragmatic. An important advantage Buchak’s theory has over
other theories of risk-aversion is that it neatly separates out an agent’s attitude
to risk from her beliefs on the one hand, and her utilities on the other[T] This
feature makes Buchak’s theory particularly well-suited to studying the interac-
tion between risk-aversion and epistemic rationality: because the risk-profile is
separated from the utilities, we can easily study the theory’s predictions when
‘what matters’ isn’t fixed by the agent’s own desires; and because the agent’s
attitude to risk is separated from her beliefs, we can use a familiar epistemology
(namely: Bayesianism) when we do SOB

3 Epistemic Rationality of Actions

According to risk-avoidant theories, instrumental rationality can sometimes re-
quire agents to avoid relevant and free evidence. However, as Buchak empha-
sizes, this result is consistent with claiming that epistemic rationality might still
always require agents to gather such evidence. This would make rational risk-
avoidance compatible with recognizing some sense in which gathering evidence
is always a good idea.

Such a response presupposes that norms of epistemic rationality apply to
actions such as the gathering or avoiding of evidence. It isn’t obvious that they
do: assessments of epistemic rationality are most at home when applied to dox-
astic states such as beliefs and credences, or to belief-producing procedures such
as inference to the best explanation or conditionalization. Equally, however, it
isn’t obvious that they do not. When we say that it is irresponsible to consult
only one kind of source, or wise to forego a quick but ambiguous test in favour
of running a more thorough analysis later, we seem to engage in some form
of epistemic evaluation. We will thus grant the presupposition, and assume
that actions can be described as ‘epistemically rational’ (or ‘commendable’ or
‘responsible’ if those sound better to you).

Epistemic rationality, as applied to actions, is plausibly understood in conse-
quentialist terms: an action is epistemically rational if it promotes the epistemic

9We also assume that at least one such r is differentiable; but this looks innocuous.
19Buchak] (2013, pp.34-47, 53-56)
' Though we will weaken some of the Bayesian assumptions regarding updating in
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goods of having true beliefs and accurate credences. This is not to say that
epistemic rationality is consequentialist in all domains. Several philosophyers
have recently argued against the idea that epistemic rationality, as applied to
beliefs or credences, is consequentialist. Suppose, for example, that your over-
all evidence weakly points towards p, but that someone powerful guarantees
that you’ll later find out for sure whether p if and only if you now disregard
the inconclusive information and adopt a credence of 0.5. Then a naive conse-
quentialist approach to the rationality of beliefs will make the counter-intuitive
prediction that it would be epistemically rational for you to disregard your evi-
dence and believe p to degree 0.5; for the loss in accuracy you're likely to incur
by ignoring your current evidence is outweighed by the gain in accuracy when
you later conform your credence to the conclusive evidence which will then be
available. Perhaps more sophisticated forms of consequentialism can avoid such
conclusionsE But it’s worth noting that the analogous consequence of conse-
quentialism about the epistemic rationality of actions is actually very intuitive.
If I know that running a quick first-pass test into whether p will destroy the
only sample and thus prevent me from carrying out a more conclusive analysis
in the future, it seems epistemically quite admirable for me to refuse. While
it may be weird to factor in the consequences on the accuracy of one’s later
beliefs, or beliefs in other propositions, when wondering whether to believe p, it
is perfectly normal to do so when deciding what evidence to gather@ Reasons
to doubt consequentialism elsewhere in epistemology thus do not apply when
the evaluations concern actions.

We will thus assume that the epistemic rationality of gathering and avoid-
ing evidence can be understood in terms of its anticipated effects on matters
of epistemic value, specifically the accuracy of one’s credencesE However, we
will side-step a different controversial issue: how the accuracy of credences re-
garding different propositions contributes to the overall accuracy of the agent’s
credenceSE It is natural to think that not all propositions contribute equally
(that’s why we should investigate ambitious scientific theories instead of count-
ing blades of grass); but also that there is a large amount of incommensurability

12Greaves| (2013), Berker] (2013), |Caie| (2013)) and |Carr| (ms)) argue that they can’t. [Konek
and Levinstein| (forthcoming) are more optimistic.

T3Note that in cases where there are such consequences, gathering the evidence has a non-
negligible epistemic cost; so we will put them aside when discussing Look-E.

14Buchak seems sympathetic to this assumption; in defending the suggestion that we can
retain Look-E while rejecting Look-I, she writes that “what you have to do in connection
with maximizing instrumental value is not necessarily constrained by what you have reason
to do in connection with maximizing epistemic value” [Buchak| (2010, p.105), which suggests
that epistemic rationality is a matter of pursuing epistemic value. Buchak does argue at
some length that epistemic demands are not to be reduced to instrumental ones, since such
a reduction is incompatible with the fact that epistemic demands are categorical. But, even
if this is a good reason to reject such a reduction, it is no reason to reject a consequentialist
approach to epistemic norms; otherwise the fact that moral demands are categorical would be
reason to reject consequentialist theories in ethics.

15As the examples we're about to discuss bring out, this issue is particularly pressing if
we want to use accuracy evaluations to determine the rationality of actions; |Greaves| (2013)),
among others, argues that it does not arise if we evaluate only the rationality of beliefs or
belief-revision procedures.
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(that’s why it’s fine to make slow progress on arcane issues in philosophy instead
of reading Wikipedia all day). Fortunately, we can side-step all these issues by
considering only how your action affects your accuracy on a single proposition,
which the evidence in question is supposed to bear on. In this simple case,
accuracy and value plausibly coincide.

Before saying more about how accuracy, and hence epistemic value, is mea-
sured, we need to discuss how exactly epistemic value determines the epistemic
rationality of gathering evidence. If we assume risk-neutral decision theory, it is
natural to think that an action is epistemically rational only if it maximizes ex-
pected epistemic value. But if we're instead considering Buchak’s risk-sensitive
theory, it’s at least as natural to say that an agent’s action is epistemically
rational only if it maximizes risk-weighted expected epistemic value, where the
risk-weightings are determined by the agent’s risk functionE

There are at least two reasons we suggest that epistemic rationality should
be determined by taking risk-sensitive expected values. The first is that this
fits better with the picture painted by risk-sensitive decision theory. This the-
ory departs from classical decision theory precisely because it maintains that a
rational agent’s attitude towards risk should not be understood as a generaliza-
tion about her goals (e.g. that she has a concave utility function) but instead as
a psychological feature that determines how she rationally pursues her goalsm
But if that’s true, then it’s natural to think that the agent’s rational attitude to
risk should be ‘held fixed’ even when the agent’s subjective utilities are swapped
out for epistemic values to determine the agent’s epistemic obligations. The sec-
ond consideration is that a major attraction of consequentialist theories quite
generally is their prediction that epistemic norms require nothing ‘more’ than
instrumental rationality once an agent’s desires align with what is epistemically
ValuableEBut if we determine epistemic duties in terms of expected rather than
risk-weighted expected value, we lose this pleasing convergence. For these two
reasons, we think that it is natural to characterize epistemic obligations in terms
of risk-weighted expected epistemic value.

We will show that, if these assumptions are granted, then risk-avoidant
agents will sometimes be epistemically permitted to avoid evidence. At first
sight, this may look like an obvious corollary of the failure of Look-I and the
view that epistemic rationality requires us to maximize risk-weighted expected
epistemic value, much like the moral permissibility of avoiding evidence is an
obvious corollary of the failure of Look-I and the view that morality requires
us to maximize risk-weighted expected moral value. A closer look, however,
reveals that this isn’t so. For we have significantly fewer ‘degrees of freedom’
when constructing counterexamples to Look-E than when constructing coun-
terexamples to Look-I. This is because the epistemic utilities associated with

16 Another option is to say that an action is epistemically rational if it maximizes risk-
weighted expected epistemic value according to any permissible risk-profile. We discuss how
to measure accuracy if one takes this view in footnote[26] and how much of our argument this
allows us to sustain in footnote @ and footnote

17See especially [Buchak| (2013] p.34-36).

18[Find a reference for this in the moral case.]
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learning are fixed by the agent’s credences after learning the evidence, which
are in turn determined by the credences used in deciding whether to gather
the evidence in the first place. So we cannot simply stipulate probabilities and
utilities independently. Thus, (unlike in the moral case) we cannot simply use
the Allais example, stipulating that the utilities in question represent epistemic,
rather than instrumental, value.

This explanation also brings us to our final piece of setup. So far, we have
said nothing about how epistemic value, or accuracy, is measured; but without
measuring accuracy, we cannot calculate the risk-weighted expected accuracy of
gathering or avoiding evidence. Showing how to measure accuracy will be our
next task; it deserves its own section, since, when working with risk-weighted ex-
pectations, our accuracy measures have to behave in a somewhat non-standard
way.

4 Measuring Accuracy

We are interested in measuring the epistemic utility, or accuracy, of our agent’s
credence in the proposition of interest, X. We can think of this as a measure of
how ‘close’ the credence is to the truth-value, i.e. to 1 if X is true and to 0 if X is
false. However, there are many ways of measuring such proximity. The obvious
absolute-difference measure, on which the distance between her credence, x, and
the truth value, v, is simply |v — 2|, and the ‘closeness’ between them is hence
—|v — x|, has various drawbacks; a popular alternative is the Brier Score, which
measures distance as the square of the absolute difference{™|

BS(z,v) := —(v — ).

Following the literature, we will not defend a particular measure, but will
instead adopt some general constraints, and show that our claim holds given any
measure A meeting these constraints. Two of the constraints we will appeal to
are uncontroversial, and require no extra comment@

o Ais (weakly) truth directed, i.e.

— If 21 < m3 < 1, then A(z1,1) < A(z,1),
— If 1 > x5 > 0, then A(z1,0) < A(x2,0).

19See especially |Joyce| (2009)), |Leitgeb and Pettigrew| (2010a)) and [Pettigrew]| (2016}, ch. 4).
Most of the literature discusses measures of inaccuracy. But these are straightforwardly
adapted, by letting the accuracy be the negative of the inaccuracy. For our purposes, this
slight mathematical inelegance is worthwhile, since it preserves the connection between ‘higher
value’ and ‘better outcome’, thus making it easier to apply Buchak’s theory. However, nothing
of substance depends on it.

20Gee e.g. |Joyce| (2009). A further constraint, continuity, will be met by our specific example,
but will not be required for the general theorem. Other standard constraints, such as those
known as ‘Normality’ and ‘Separability’, concern the relationship between the accuracy of
particular beliefs and the accuracy of the overall belief state; since we are focusing only on
the accuracy of a single belief, these constraints have no bearing on our discussion.

10
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o Ais0/1 symmetricEi.e.
— A(z,1) = A(1 — z,0).

Our final condition, however, does require additional discussion — not only be-
cause it is more controversial, but also because it will need to be spelled out in
a slightly non-standard way.

Many authors writing on the connection between credence and truth have
argued that epistemically rational agents should be immodest: they should
regard their own credence in X as giving the best shot at the truth, compared
to any other credences@ This thought comes in both a weak and a strong
version. On the weak version, it merely requires that rational agents should
regard their own credence in X as giving them no worse a shot at the truth
than any other; on the strong version, it requires that agents should regard their
own credence as giving them a better shot at the truth than any other.

One standard motivation is that someone who isn’t immodest exhibits inter-
nal conflict. This is clearest in the case of weak immodesty: if you think some
other credence has a better shot at the truth than yours, you seem divided in
much the way as when you believe a contradiction. But it may also motivate
strong immodesty: if you think that some other credence has just as good a
shot at truth as yours does, it feels as though, in some sense, you're also taking
this other credence, thus bearing rival attitudes towards X.

Another standard thought in motivation is that modest states are problem-
atically unstable. If you fail to be strongly immodest, you have no epistemic
reason to stick with your beliefs: if the opportunity arises, you might as well
abandon it for one of the alternatives you think equally good. And if you fail to
even be weakly immodest, you will not only lack reason to remain, but actually
have positive reason to switch. Since such changes of mind look epistemically
irrational (no new evidence is required to initiate them), this again suggests
that rational agents must be immodest.

Most of the literature treats these arguments as establishing strong, rather
than merely weak, immodestyﬂ and we will follow this trend in our initial
discussion. However, the arguments for strong immodesty are less conclusive
than those for weak immodesty. Moreover, there may be special reasons why
strong immodesty is too strict a constraint when allowing for risk-avoidance;
for while there are ways of measuring the accuracy of one’s attitude to a single
proposition that vindicate strong immodesty even in our risk-avoidant setting,
[REFERENCE OMITTED)] shows that there are no ways of measuring the accu-
racy of an entire credal state that vindicate strong immodesty in this framework.

21 In fact, our theorem only requires the much weaker constraint that A(zx,0) < A(z,1)
when > 1/2 and A(x,0) > A(z,1) when < 1/2.

22We take talk of ‘best shot at the truth’ from |Horowitz| (forthcoming). Other sympathetic
discussions include [Lewis| (1971)), /Oddie| (1997)), |Greaves and Wallace| (2006)), |Gibbard| (2008),
and |Joyce| (2009).

23See e.g. |Oddie] (1997), |Greaves and Wallace| (2006), and |[Joyce| (2009). [Maher| (2002) and
Gibbard| (2008)) raise doubts about strict immodesty, understood as a constraint on accuracy
measures.
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Now, for the reasons discussed in [3] the former kind of measure is more obvi-
ously relevant to our project, and so this is not a conclusive reason to reject
strong immodesty; but it may, nonetheless, temper one’s enthusiasm for this re-
quirement. So, after presenting the initial argument in a way that presupposes
strong immodesty, in section [6] we will consider how it fares given only weak
immodesty.

We can leverage immodesty (of either kind) into a precise contraint on A
given two things: a sufficient condition for a distribution being rational, and an
account of ‘how good a shot’ a distribution gives to a particular credence in X.

Plausibly, a sufficient condition for the rationality of a distribution is that it’s
probabilistically coherent — any coherent distribution could be rational, given
the right sort of evidence@ So any such distribution should give itself a (or
the) best shot at the truth.

Understanding how good a shot a distribution ¢ gives to a credence y is
slightly subtler. If we were working in the risk-neutral framework, it would be
natural to identify a credence’s shot at the truth with its expected accuracy. We
can then guarantee that all probabilistic agents are weakly immodest by requir-
ing A to be weakly proper: Exp, A(c(X)) > Exp,A(y). And we can guarantee
that all probabilistic agents are strongly immodest by requiring A to be strictly
proper: for every probabilistic ¢ and y # ¢(X), Exp, A(c(X)) > Exp, A(y).

However, we are assuming that some rational agents are risk sensitive and
instead calculate expectations taking risk into account. And it seems more
natural to say that, when an agent has credal state ¢ and risk profile r, the
credences in X she considers to give her a ‘best’ shot at the truth are the
ones that maximize risk-weighted expected accuracy. We can then say that A
is weakly r-proper if for all probabilistic credence functions, ¢, RExp. A(y) is
maximal at y = ¢(X); and that A is strictly r-proper if this maximum is unique.

If we are to have a single measure of accuracy that is appropriate for every
rational agent, and which also preserves weak or strong immodesty, it must be
weakly or strictly r-proper for every rational risk-profile r. Unfortunately, if
there are multiple rational risk profiles, this condition is very hard to meet. For
if 71 and ro are distinct, continuous risk profiles, then A cannot be both strictly
r1-proper and (even weakly) rg—properﬁ This shows that we cannot have an
accuracy measure such that every probabilistic agent comes out as strongly

240ne might worry that this is not a plausible assumption for risk avoidant agents; for
example, it might never be rational for such agents to adopt an extremal credence, since
doing so is very risky. However, our result goes through even if the inaccuracy measure
doesn’t render all coherent distributions immodest. All we really require is that there is some
range such that the inaccuracy measure renders immodest the probability functions ¢ defined
on {X, X} for which ¢(X) falls within the range. And the rationality of risk aversion provides
no challenge to this weaker assumption. (Thanks to Jason Konek and Richard Pettigrew for
discussion on this point.)

25Pettigrew| (2016}, Section 16.4) shows that for all , A, = and y,

A(y)

where ¢, denotes the probability function on the algebra { X, =X} where ¢ (X) = z, co (- X) =
1 — . So, if we pick x1 # x2 with r1(x1) = ra(z2) (which is possible by the intermediate

RExpe, A(y) = Expcr(z)
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immodest when epistemic utility is determined by that measure; and that even
the requirement that the accuracy measure be such that every probabilistic
agent comes out as weakly immodest relative to it is implausibly restrictive.

This means that if we want both immodesty and risk-avoidance we need to
give up on a certain picture of epistemic utility — a picture on which there is a
single quantity, epistemic value, and that every rational agent is epistemically
required to pursue that quantity. The most similar (‘objectivist’) picture holds
that for each risk-profile there is a unique value quantity which all agents with
that risk-profile are epistemically required to maximize. (Compare: we may re-
ject ‘single value quantity’ consequentialism in moral philosophy on the grounds
that their histories and personal relationships require different people to priori-
tize differently the well-being of various people; but we might still say that there
is a single function, which determines for each kind of history and personal cir-
cumstance a unique quantity which people with that history and circumstances
are morally required to pursue.)We would then place as a constraint on this
function that it associates a risk-profile r with an r-proper accuracy measure,
thus ensuring immodesty.

An alternative, ‘subjectivist’; picture maintains that agents choose a partic-
ular accuracy measure, subject to certain constraints, and are then epistemically
required to pursue accuracy as evaluated by that measure. We could then en-
sure immodesty by imposing as one of the constraints that the chosen accuracy
measure be r-proper relative to the agent’s risk-profile. A third alternative is a
‘permissivist’ picture. On this account agents are not required to pursue epis-
temic value as measured by any particular measure. Rather, given an agent’s
risk profile there are a number of legitimate epistemic utility measures; and
an agent is epistemically permitted to perform any action that maximizes risk-
weighted epistemic utility on some legitimate accuracy measure or other. We
could then impose immodesty by maintaining that A is a legitimate accuracy
measure, for an agent with risk profile r, only if A is r-proper.

We have now encountered all the constraints on accuracy measures that we
will appeal to. We think they are all reasonable. We know that all three can be
jointly met in the case of a risk-neutral agent (for whom r(x) = z), since in that

value theorem using the assumption that r; and ro are continuous), then
RExpcy Aly) = Expe, . Ay)
=E
XPe, () AWY)
= RExp2, A(y)
which is maximised at y = zg # x1 if A is weakly ro-proper. But this means that A is not
strictly ri-proper.
26We mentioned in footnote that epistemic rationality might not care which particular
risk-profile an agent has adopted, but only about which ones are rational. This generates a
view we will call super-permissivism: instead of aggregating verdicts across legitimate accu-
racy measures like the permissivist, the super-permissivist aggregates them across legitimate
standards of evaluation consisting of both a risk-profile and an accuracy measure. We can
still impose immodesty by maintaining that (r,.A) is a legitimate standard of evaluation only

if A is r-proper. As discussed in footnote and footnote much of our argument goes
through on this super-permissivist picture as well.
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case popular measures such as the Brier Score will do. However, we also know
that this measure won’t work for risk-avoidant agents, since no single measure
is proper relative to two different risk-profiles. Fortunately, there are suitable
measures even for risk-avoidant profiles; relative to r(z) = 2, for example, the
following measure meets all three conditions@

—(v —x)?

/A\ltBS(l'7 ’U) = m

Now that we have explained the conditions on our accuracy measures, and
have provided an example of an accuracy measure suitable for a risk-avoidant
agent, we can finally address our central question: whether epistemic rationality
ever permits avoiding evidence.

5 Avoiding Evidence

The principle we are interested in is:
Look-E. In ideal cases, one is epistemically required to gather the evidence.

We will show that, if Buchak’s risk avoidant agents are rational, and if accuracy
measures should be strictly r-proper, there are counterexamples to this principle.
In fact, we will show that there are even counterexamples to the weaker

Weak Look-E. In ideal cases, one is always epistemically permitted to gather
the evidence.

Before we do this, it’s worth reporting the status of these principles in classi-
cal decision theory. Suppose that ¢ is a probability function that makes a piece
of evidence, F, relevant to our proposition of interest, X. Suppose further that
it’s certain that, were our agent to learn whether F, she would conditionalize on
what she learns. Then we get the following result regarding the expected accu-
racy achieved by finding out whether E' (GATHER) or not finding out whether
E (AvoID):

Theorem 5.1. If A is strictly proper, then Exp, A(GATHER) > Exp,, A(AVOID)E

We thus vindicate Look-E, and hence also Weak Look-E, if rationality requires
risk-neutrality, regardless of whether we opt for an ‘objectivist’, ‘subjectivist’,
or ‘permissivist’ picture of the accuracy measures.

So much for the classical theory; on to Buchak. We will begin with a specific
example, assuming the ‘subjectivist’ picture sketched above. We have a rational

27For a graph of this function and the proof that this satisfies the desiderata, see appondix
In unpublished work Ben Levinstein develops a method which can be applied to almost any
risk-profile r to yield an inaccuracy measure A that has all the properties we require (relative
to 7).

280ddie| (1997)
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agent whose risk-profile is given by r(z) = 22, and whose accuracy measure is
AltBS. X is the proposition of interest; ¢(X) = 0.7, ¢(X|-E) = 0.6, and
¢(X|E) = 0.8. Our agent is still certain that, if she finds out whether E, she
will conditionalize on what she learns, so that her credence in X will move to
either .8 (if E') or .6 (if —=F). She is also certain that, if she declines to find out
whether E, her credence in X will stay at .7. So the epistemic utility achieved
by finding out whether E (GATHER) or not finding out whether E (AvOID)
depends on X and E as follows:

| EA-X -EAN-X -EANX EnX
Avolp | AltBS(0.7,0) AItBS(0.7,0) AItBS(0.7,1) AItBS(0.7,1)
GATHER | AltBS(0.8,0) AItBS(0.6,0) AItBS(0.6,1) AltBS(0.8,1)

Crunching the numbers, and including information about the probability of
the four different underlying states, this becomes

EN-X —-EAN-X -ENX FEAX
probability 0.1 0.2 0.3 0.4

AvoID -0.7 -0.7 —-0.129 —0.129
GATHER —-0.8 —0.6 —-0.4 —0.05

We can then calculate the risk-weighted expected accuracies of the two options,
as usual considering the outcomes from worst to best:

RExp? A(AvoiD) = —0.7 + (0.3 4 0.4)% - (=0.129 — —0.7)
~ —0.420
RExp. A(GATHER) = —0.8
+(0.24 0.3+ 0.4)%- (=0.6 — —0.8)
+(0.3+0.4)*- (0.4 — —0.6)
+(0.4)2 - (=0.05 — —0.4)
= —0.484

We thus get that RExp,, A(GATHER) < RExp, A(AvoID). So even though F is
relevant and the investigation is cost-free our agent is not epistemically required
to find out whether E. On the contrary, our agent is epistemically required to
avoid finding out whether E, since this a better means to achieving accurate
opinions. Look-E and Weak Look-E both fail.

This counterexample relies on the choice of risk-profile 7(x) = 22 and accu-
racy measure AltBS. An advocate of Buchak’s decision theory could in principle
reject either of those: perhaps r(z) = 22 is not a rational risk-profile after all,
or perhaps there are constraints on accuracy other than those mentioned in
section [4] which mean that AltBS is not an acceptable accuracy measure even
for an agent with that risk-profile. However, a response along these lines can-
not succeed. For the example just given is simply an illustration of a far more
general result (proved in appendix [B]):
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Theorem 5.2. Suppose that r is a risk-profile that is differentiable and risk-
avoidant. Then there is some prior credence distribution ¢ over the algebra
generated by X and E such that, for every A which is weakly truth-directed,
0/1-symmetric, and strictly r-proper, RExp A(GATHER) < RExp,, A(AvOID)

This means that, regardless of which exact risk-profile our agent has, and re-
gardless which accuracy measure she chooses within the constraints we have
defended, if she is risk-avoidant then there will always be ideal cases in which
she is epistemically required to avoid the evidence. Weak Look-E and Look-E
thus fail.

As just formulated the point presupposes the ‘subjectivist’ picture of accu-
racy measures. But, clearly, the theorem similarly shows that the ‘objectivist’
picture leads to the failure of Weak Look-E and Look-E. The theorem even
establishes the failure of both Look-E and Weak Look-E on the permissivist
picture, which requires us to avoid the evidence only if all the legitimate mea-
sures recommend avoiding. This is because the theorem states not only that for
every accuracy measure there will be an example in which it recommends avoid-
ing the evidence (which is sufficient to refute Weak Look-E on the subjectivist
and objectivist pictures and Look-E on the permissivist picture), but also that
there will be a single example in which all the relevant accuracy measures rec-
ommend against gathering the evidence (which is needed to refute Weak Look-E
on the permissivist picture)

All the pictures of how accuracy considerations determine epistemic obliga-
tions thus lead to the conclusion that Look-E and Weak Look-E both fail if
Buchak-style risk-avoidance is rational.

Buchak offered an informal explanation of the failure of Look-I in terms of
the risk of receiving instrumentally misleading evidence. A similar explanation
is available here. Evidence can be epistemically misleading moving an agent’s
credence further away from the truth. Suppose that E is evidence for X and
—F is evidence against X, as in our examples. Then in the state £ A =X, by
learning F the agent will increase credence her credence in the false proposition
X, thereby becoming less accurate. Similarly in -F A X, by gathering the
evidence the agent will decrease her credence in the true proposition X. In
both E A =X and -FE A X then, the evidence is misleading, and the epistemic
utility decreases by gathering the evidence. Drawn out in our table, we have:

\ EA-X “EA-X -EAX EAX
Avop | A(c(X),0) A(c¢(X),0) A(e(X),1) A(e(X), 1)
\V; N \V; N

GATHER | A(c(X|E), 0) A(c(X|=E), 0) A(c(X|E), 1) A(c(X|-E), 1)

Of course, F and —F can also be truth-guiding, as in the two scenarios in which
X and F have the same truth value. For the risk-neutral agent, this potential

29Note, however, that on the super-permissivism described in footnote according to
which standpoints of evaluation can be relevant even though they don’t share the agent’s
risk-profile, we will only get failures of Look-E and none of Weak Look-E; for risk-neutrality
is surely rationally permissible, and by theorem the standpoints of evaluation that use a
risk-neutral risk-profile will always recommend gathering the evidence.
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truth-guiding benefit always outweighs the risk of being misled; but for the
risk-avoidant agent, we’ve shown that it might not. E

This completes our main argument. Before closing, however, we will show
that much of our conclusion can be established even if we significantly weaken
two of the assumptions: that accuracy measures must be strictly r-proper and
that rational agents update by conditionalization.

6 Weak Propriety

The previous section discussed the status of Look-E and Weak Look-E, on the
assumption that accuracy measures must be strictly r-proper. However, the
arguments for strict r-propriety are less compelling than those for weak -
propriety. And, as we mentioned in section [4 there are specific worries that
in the risk-sensitive setting strict r-propriety becomes impossibly demanding.
It’s thus worth considering what happens to Look-E and Weak Look-E if we
assume only that accuracy measures should be weakly r-proper.

Let us begin, again, with the risk-neutral case. The standard result is easily
adapted to show

Theorem 6.1. If A is weakly proper Exp. A(GATHER) > Exp_. . A(AvOID)

This establishes Weak Look-E on any of our three pictures: gathering evidence
might not always be required, but at least it is never forbidden.

Moreover, there is at least one account on which this, combined with the-
orem could be used to defend Look-E. When discussing the ‘permissivist’
picture, we aggregated recommendations across different measures by univer-
sal agreement: an option is required only when it uniquely maximizes value
according to every measure. However, we could instead have aggregated recom-
mendations by a kind of ‘pareto dominance’: an option is required if it (perhaps
non-uniquely) maximizes value according to every measure, and uniquely max-
imizes value according to at least one measure. Combined with the plausible
thought that some legitimate measures are strictly proper, theorem [5.1] and
theorem then show that gathering the evidence is always required after all.

So much for the risk-neutral case. What about the risk-sensitive one? Here
too it’s easy to adapt the result to include weakly r-proper measures:

Theorem 6.2. Suppose that r is a risk-profile that is differentiable and risk-
averse. Then there is some prior credence distribution ¢ over the algebra gen-

300One might wonder what, in general, characterizes the cases where Look-E fails. An
extension of our result shows that Look-E fails whenever ¢(X|E) and ¢(X|-FE) are close enough
to ¢(X), i.e. the evidence in question is relatively uninformative (and that ¢(X) # 1/2). (See
corollary which also gives the particular form of the ‘close enough’.)

This is different to the instrumental case; there |Buchak! (2010, Appendix C) observes that
Look-I fails when the evidence is reasonable informative but not decisive. But this difference
makes sense: in the instrumental case, the evidence needs to be reasonably informative to
affect the agent’s actions; whereas in the epistemic case, any E that is evidentially relevant
at all will affect the agent’s credences.
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erated by X and E such that, for every A which is weakly truth-directed, 0/1-
symmetric,

o if A is weakly r-proper, then RExp, A(GATHER) < RExp. A(AvOID)
o if A is strictly r-proper, then RExp., A(GATHER) < RExp. A(AvOID)

Clearly, this is enough to show that Look-E fails: we are not always required to
gather evidence. However, since, on most pictures, the retreat to weak propriety
left us with no argument for Look-E even in the risk-neutral case, this does not
conclusively establish any connection between risk-aversion and epistemic norms
on evidence gathering.

On some pictures of the accuracy measures, we can still demonstrate such
a connection. Most saliently, given the discussion of the risk-neutral case, we
can do better on a version of the permissivist picture on which verdicts are
aggregated via pareto dominance. For then Look-E and Weak Look-E both
hold in the risk neutral case. And Look-E and Weak Look-E both fail in the
risk averse case on the plausible assumption that for some risk averse risk profile
there is at least one legitimate strictly r-proper accuracy measureﬂ

We can also get a connection on the subjectivist picture, on which agents
can pick any accuracy measure meeting certain constraints. For even if we
allow that strict r-propriety is not a constraint on how agents make their choice,
plausibly, the constraints imposed still allow for some strictly r-proper measures.
The original will thus be enough to show that those agents who have such
strictly r-proper measures will be required to avoid evidence. So we get that
the rationality of risk-avoidance requires us to reject Weak Look-E, while we
were able to show that this principle is true if we're required to be risk-neutral.

On the other pictures, we are restricted to less decisive plausibility argu-
ments. Given the objectivist picture, for example, what we need to get vio-
lations of Weak Look-E is that some risk-averse risk-profile is associated with
an accuracy measure for which the inequality is strict. If any such risk-profile
is associated with a strictly r-proper measure, that is sufficient for the failure
of Weak Look-E. And even if every risk-profile is associated only with weakly
r-proper measure, it would still be surprising if in all the cases produced by [6.2]
the weak inequality held because GATHER and AvOID have exactly the same
expected inaccuracy. This does not conclusively establish a connection between
risk-avoidance and evidence-avoidance, further constraints on accuracy mea-
sures would be required to do that. But it does make it look overwhelmingly
plausible that such a connection does obtain. We can say something similar
for a version of the permissivist picture which aggregates by universal verdicts
rather than pareto dominance 7]

31This assumption is plausible even in light of [REFERENCE OMITTED]’s impossibility
result mentioned above. That result shows that there can’t be measures which are strictly
proper when they evaluate entire credal states. However, there can clearly be measures which
are (a) weakly proper in their evaluations of entire credal states and (b) strictly proper in
their evaluation of credences in a particular proposition X. (Just consider the ‘global’ measure
which cares only about your accuracy with respect to X.) And measures which are strictly
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Weak Look-E Look-E

risk neutral | risk aware | risk neutral | risk aware
Subjectivist yes no no no
Objectivist yes probably no no no
Permissivist Universal yes probably no no no
Pareto yes no yes no

Table 1: Look Principles given only Weak Propriety

Based on these results, summarized in table |1} we conclude that, regardless
of one’s picture, our theorem provides at least a plausibility argument for a
substantial connection between risk-avoidance and evidence-avoidance, even if
strict-propriety is rejected as a constraint on accuracy measures.

7 Updating by Conditionalization

To calculate the expected accuracy associated with finding out whether E, we
need to know what credence the agent will adopt in response to what she learns.
Since we are concerned with ideal cases, this means that we need to know what
credence the agent should adopt in response to what she learns. In[5] we assumed
that this is the agent’s prior credence conditional on what she learns —i.e. that
rational agents update by conditionalization.

Is this assumption plausible when working with risk-sensitive agents? Sev-
eral of the ordinary arguments for conditionalization (e.g. that it yields intu-
itively plausible verdicts in many examples, or, following van Fraassen’s Muddy
Venn Diagram model (1989), that to update agents should simply renormalize
their distribution after the possibilities inconsistent with what they learned have
been eliminated) are independent of decision theory, and are thus as legitimate
as ever. Others however, such as Dutch-book arguments or arguments from
expected accuracy, are potentially more problematic, since they tend to assume
that the preferences of rational agents are determined by expected (rather than
risk-weighted expected) values@ We don’t want to oversell the significance of

proper relative to X are all we need here.

32What about the super-permissivism discussed in footnote and footnote This, too,
comes in two versions, depending on whether we aggregate by dominance or by universal agree-
ment. If we aggregate by dominance, and risk-neutrality is rationally required, theorem
and theorem [6.1] combine to establish Look-E; while if risk-avoidance is rational, theorem [6.2]
shows that Look-E fails (assuming always that some strictly r-proper measures are accept-
able). So the rationality of risk-aversion still makes a difference to Look-E (though, as in the
case of strict propriety discussed in footnote [29] it makes no difference to Weak Look-E). If
we aggregate by universal agreement, by contrast, we have no definite connection between
risk-aversion and our principles. For Look-E will now fail even if risk-neutrality is rationally
required, given the acceptability of weakly proper accuracy measures; and Weak Look-E will
continue to be true, for the same reason, even if risk-aversion is rationally permissible.

33By equating credences with betting prices, Lewis’s (1999) dutch book argument assumes
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this, since (1) these arguments are independently controversial (assuming, for
example, that pragmatic efficacy or consequentialist reasoning is probative when
it comes to the epistemic rationality of updating rules) and (2) it may be pos-
sible to recover these arguments for conditionalization even in a risk-sensitive
settingﬁ But even with these reservations in mind, it’s worth asking how es-
sential the assumption that rational agents update by conditionalization is to
our argument.

The answer is: not very. For theorem [5.2] holds given just a few quite general
assumptions about our agent’s update procedurolﬁ Since the only cases we
need are the simple ones involving just propositions X and F, we can think of
an update procedure as a pair of functions (fg, f-g), which take as inputs a
probability distribution c over the algebra generated by X and F, and output a
real number in [0, 1] which is the credence in X the agent is supposed to update
to upon receiving £ and —F respectively@ Using this notation, the necessary
assumptions are as follows:

1. fg and f_g are continuous with respect to changes in the probability of
the atoms

2. If ¢(E) =1 then fg(c) = ¢(X); and if ¢(—F) = 1 then f_g(c) = ¢(X).

3. fe(c) =c(X) only if ¢(X) = ¢(X|E) (i.e. ¢ makes X and F independent);
and similarly for f-g.

4. There is some t such that if ¢(X), ¢(X|E), and ¢(X|-FE) are all > t then
fe(c) and f-g(c) are both > 1/a.

Conditions 1. and 2. are extremely plausible: they say, respectively, that arbi-
trarily small changes in the input distribution shouldn’t make for large changes
in the output, and that learning something of which one is already certain
shouldn’t change one’s views. Conditions 3. and 4. are also quite plausible,
saying, respectively, that conditionally relevant evidence is relevant and that
when X is highly probable regardless of what’s the case with E, learning E
shouldn’t make one think X improbable. While plausible, however, the latter
two thoughts both assume that conditional probabilities place substantial con-
straints on the update function; so someone who rejects conditionalization as
fundamentally mistaken (rather than merely wrong in details) might reject one

that agents evaluate bets based on their expected payoffs. The accuracy arguments of |Greaves
and Wallace (2006)), |[Leitgeb and Pettigrew| (2010b), [Easwaran| (2013), and |Pettigrew| (2016,
ch.4) assume that rationality requires us to update so as to maximize expected accuracy. The
argument in |Briggs and Pettigrew| (ms) assumes only that rational agents don’t use accuracy
dominated belief-revision procedures, so is not subject to this problem; however, the formal
result assumes that inaccuracy measures are strictly proper, and doesn’t hold for the strictly
r-proper measures we associate with risk-avoidant agents.

34We defend this claim with respect to accuracy arguments in [REFERENCE OMITTED)].

35For the proof, see appendix

36We can allow that fg is undefined when c(E) = 0 and f-g is undefined when ¢(—FE) = 0.

37Perhaps a risk-aware update function can be discontinuous at particular points, perhaps
because of changes in the orderings. This will not affect the result as we only need continuity
as ¢(X) converges to a fixed ¢(X|E) (when ¢(X|=FE) is also fixed), or to a fixed ¢(X|-E).
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or both of them. So it’s worth highlighting what role they play in the proof.
Some condition like 3. is needed to guarantee that the update function consid-
ers a reasonably wide range of evidence to be ‘potentially relevant’, and hence
doesn’t merely validate Look-E in a vacuous way. And condition 4. is needed
only to ensure that there is some range of cases in which we know how the var-
ious possible outcomes of learning the evidence are to be ordered. It is thus far
from clear that denying 3. would allow one to vindicate Look-E in an interesting
way — or that denying 4. would allow one to vindicate it at all.

Conditions 1.-4. are thus fair assumptions to make about the update proce-
dure. This is not to say that they couldn’t possibly be rejectedﬁ But it does
mean that the burden is not on us to show that risk avoidant agents should still
update by conditionalization, but rather on our opponent to offer some reasons
for thinking that risk avoidant agents should update in a radically unfamiliar —
and intuitively rather odd-looking — way.

8 Conclusion

Can it be rational to avoid evidence, even when gathering it would cost you
nothing, you expect it to be relevant, and you know that you would process
it rationally? It’s well-known that if risk avoidance is rational then it can be
instrumentally rational to do so. But, as Buchak| (2010) observes, there’s more
to life than instrumental rationality: there’s epistemic rationality as well. What
we have shown is that this does not threaten the connection; for if risk avoidance
is rational, then evidence avoidance can also be epistemically rational.

More specifically, we have shown that if the kind of risk-avoidance defended
by [Buchak| (2010} |2013) is rational, then avoiding evidence can be epistemically
rational. Our main argument, presented in section[5] relies on five main assump-
tions: first, that people are epistemically required to pursue epistemic utility;
second, that for rationally risk-avoidant agents, this amounts to maximizing
risk-weighted expected epistemic utility; third, that the epistemic utility of an
action is the accuracy of the anticipated resultant credences; fourth, that inac-
curacy is measured according to a strictly r-proper accuracy measure; and, fifth,
that risk-averse agents who know they will be rational expect to conditionalize
on whatever evidence they encounter.

The first three assumptions are natural starting points; in section [3] we
gave some brief motivations for adopting them, and distinguished them from
stronger claims which might be problematic. We defended a strong version
of the fourth assumption in section [d] by appeal to the thought that rational
agents regard their credences as giving them the best shot at the truth; and
we showed, in section [6] that much of our argument can be run from a much

38 Are they met by the policies motivated by risk-sensitive versions of expected accuracy
arguments? In [REFERENCE OMITTED], we argue that the best ways of adapting these
arguments still supports conditionalization, so that conditions 1.-4. are met. But on other
ways of adapting the arguments, they support a revision procedure which is custom-made
to vindicate Look-E. So one can read our theorem as showing that these revision procedures
must violate at least one of our constraints.
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weaker version of the fourth assumption. Finally, in section |7, we showed that
the fifth assumption, too, was unnecessarily strong: the argument goes through
for any update procedure satisfying a few fairly weak constraints.

We thus conclude that there is a serious tension between risk avoidance and
the claim that, in ideal cases, we should always gather the evidence. But we
leave open what to ultimately make of that conclusion: whether it is a reason
to reject the rationality of risk avoidance, or a reason to embrace the epistemic
rationality of avoiding relevant and freely available information.
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A Proof that AltBS satisfies our desiderata

Proposition A.1. AItBS is truth-directed, 0/1 symmetric and continuous.
Proof. Observe that

y y=12,0=0
A=9)?/y y=1loov=1
vy  y<l2,0=0
1—y y<lhov=1

>
>
AltBS(y,v) := -

which is displayed in fig. [I] and the properties are all quite easy to check. O

23


mailto:catrin@ccampbell-moore.com

0.5 1
x; Credence in X

ARBS(z, 1)

—0.5 +

o AItBS(z,0)

1
Accuracy

Figure 1: AltBS(z,-).

Proposition A.2. AltBS is strictly r-proper.
Proof. Assuming truth-directedness and 0/1-symmetry of A,

Ay, 0) +7(e(X)) - (Aly, 1) — Aly,0))  ify =1/

RExp; A(y) = {A(%l) +r(e(=X)) - (Aly,0) — Ay, 1)) ify < 12

The definition is piecewise because X being true is the ‘good’ case when y > 1/2,
but the ‘bad’ case when y < 1/2.
Suppose y > /2. Then

RExp! AItBS(y) = AltBS(y, 0) + r(c(X)) - (AltBS(y, 1) — AltBS(y, 0))

Y
0 c(X)?
—RExp!, AltBS(y) =1 —
by XD (y) 7
so we have:
If and then, 8%REXpZ AltBS(y) is  so RExp., AltBS(y) is
y>1/2 y>c(X) >0 increasing
y>1/2 y<c(X) <0 decreasing

Suppose now that y < /2. Then
RExp’, AltBS(y) = AltBS(y, 1) + c(—=X)? - (AltBS(y, 0) — AltBS(y, 1))

2 y?
5 ) =X)L (- e(X))?
a—yREXpC AltBS(y) =1 — (—y? 1- (1-y)?2
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so we have:

If and  then, £ RExp; AltBS(y) is so RExp AltBS(y) is
y<l2 y>cX) >0 increasing
y<l2 y<cX) <0 decreasing

So we can put these two tables together into one:

If then, RExp, AltBS(y) is

y > c(X) increasing
y < c(X) decreasing
This information tells us that there is a unique minimum at y = ¢(X). O

B Proof that there is always some credal state
where one shouldn’t Gather

We will now show that for any well-behaved and risk-avoidant r, and associated
accuracy measure A, there will be cases in which the expected accuracy of not
gathering a relevant and cost-free piece of evidence exceeds that of gathering it.

To support our claims in section[7], we will not assume that the agent updates
by conditionalization but allow her to use an arbitrary updating procedure so
long as it satisfies some minimal criteria. This update procedure is given by a
pair of functions (fg, f-g) which are each functions taking a prior credal states
to a credal state after learning.

Our final theorem is the following:

Theorem B.1. Suppose the following hold:
e r:[0,1] — [0,1] 4s:

— a risk function, i.e.

* increasing, and

* r(0)=0, r(1) = 1.
— dijj‘erentiablﬂ

— (strictly) convez, i.e. r(ZHL) < M

o fr, f-g are functions from probability functions ¢ over the algebra gener-
ated by X and E to [0,1] (though fr may be undefined when c(E) = 0,
and f-g when ¢(—E) = 0) such that:

— fE and f-g are continuous with respect to changes in the probability
of the atoms

39 The argument would almost certainly go through with weaker differentiability assump-
tions, for example the existence of one-sided derivatives and that the right sided derivative is
larger than the left-sided derivative, which follows from convexity (Tiel| (1984} Theorem 1.6)).
In that case, though the argument would have to be slightly modified.

40Though the weaker condition mentioned in footnote is sufficient.
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— If ¢(E) = 1 then fr(c) = ¢(X); and if ¢(—E) = 1 then f_g(c) =
o(X).

— If fe(c) = ¢(X) then ¢(X) = ¢(X|E) = ¢(X|-E) (i.e. ¢ makes X
and E independent); and similarly for f_g.

— There is some t > /2 such that if both ¢(X|E) and ¢(X|-E) are >t
then fr(c) and f-g(c) are both > /2.

Then there is some probability distribution ¢ over X and E such that for
each A where:

e A:00,1] x {0,1} = R is:
— weakly truth directed, i.e.
x If 11 < w9 < 1, then A(z1,1)
x If x1 > w9 > 0, then A(z1,0)
— 0/1-symmetric, zﬂe@
* A(z,0) = A(1 — z,1).
— r-proper, i.e@
* For all x #y, RExp A(x)>/>RExp A(y).

(With > or > depending on whether it is weak or strict propri-
etry.)

we have:
o If the r-proprietry is weak, then RExp, A(GATHER) < RExp[ A(AvOID)
o If the r-proprietry is strict, then RExp_ A(GATHER) < RExp, A(AvOID)

Proof. This follows immediately from propositions and and lemma
O

Since the update functions fr and f_g corresponding to conditonalization
have the required properties, theorems[5.2] and [6.2] are special cases of this result.

To prove this theorem we start by dealing with a special case: We note that
if the update rule sometimes leads to the same value whether the agent learns
FE or —FE, then our result is easy:

Lemma B.2. Suppose there is some credence function where fg(c) = f-g(c) #
c(X) then for all r-proper A,

o Ifthe r-proprietry is weak (for ¢), then RExp, A(GATHER) > RExp, A(AvOID)

41The weaker condition discussed in footnote is sufficient

42The weaker condition discussed in footnote is sufficient for the main result, provided
the interval in question includes values greater than the ¢t mentioned in the fourth condition
on the update functions. The main result could be strengthened to say that there is a ¢ for
which ¢(X) falls in the interval. Corollary would have to be restricted to cases where all
the values fall into the interval.
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o Ifthe r-proprietry is strong (for ¢), then RExp, A(GATHER) > RExp_ A(AvOID)
Proof. For such a c,
RExp. A(GATHER) = RExp,, A(fr(c))

and
RExp. A(AvoIiD) = RExp,, A(c(X))

so the result holds by r-propriety. O

We start our main result by giving sufficient condition for the failure of
Look-E:

Proposition B.3. Suppose A, fg, f-g satisfy the conditions in theorem E
Suppose 0 < ¢(E) < 1 and one of the following conditions holds: |E|

1. Y2 < fop(e) < fe(e) <1 and

r(e(X)) = r(c(E A X))

M) + B A X))~ r(e(BA X)) > "B
2. Y2 < fr(e) < f-g(c) <1 and
r(c(X)) —r(c(-E A X)) > r(fon(0)).

r(c(E)+c¢(wEANX))—r(c(mE AN X))

We then have:
o [f the r-proprietry is weak, then RExp. A(GATHER) < RExp. A(AvOID)
o If the r-proprietry is strict, then RExp, A(GATHER) < RExp, A(AvOID)

Proof. We will only present the proof in the case where the first condition holds.
The other case is completely analogous. We will use the shorthand x = ¢(X),

ye = fe(c) and y-g = f-e(c).

43In fact no assumptions on fr or f-g are actually required for this result. Although we
have used the assumption that fg(c) # ¢(X) that isn’t actually essential because one can
instead use the strict proprietry assumption at eq. .

440ne can also add the following conditions, but they won’t play a role in our proof of the
final theorem:

3. 0< fe(c) < f-g(c) < /2 and
r(e(=X)) = r(e(EA X))
r(c(—E) 4+ c(EN-X)) —r(c(EN-X))

>r(l— fe(0).

4. 0< f-p(c) < fe(c) < /2 and
r(e(=X)) —r(c(=E A X))
r(c¢(E) + c¢(~E A -X)) —r(c(~E N X))

zr(1— f-p(c).
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Given this assumption of the orderings /2 < y—-p < yrg < 1 and the as-
sumptions of truth-directedness and 0/1-symmetry we see that the states are
ordered:

GATHER: EN-X < " EAN-X < 2EANX < EANX
We can then calculate the risk-weighted expected utility of GATHER:

RExp’, A(GATHER) = A(yg,0)
+r(c(~EA=X)+c(~EAX)+c(EAX)) (Ay-5,0) — Alyg,0))
+r(c(~EAX) 4+ c(EANX))- (Aly-5,1) — Ay-E£,0))
+r(c(EAX)) - (Alyr, 1) — A(y-Eg,1))

We can also observe that
RExp, A(AvoiD) = RExp. A(c¢(X))

If we assume that A is strictly r-proper, we thus have:

RExp. A(Avoip) = RExp,, A(c¢(X))
> RExp; A(yr)
= A(ye,0) + r(c(X)) - (Alye, 1) — Alye, 0))

And if A is weakly r-proper, then we have the weak inequality:
RExp; A(Avo) = A(yg, 0) + r(c(X)) - (Alye, 1) — A(ye, 0))
For both the strict and weak propriety results it thus suffices to show that:
A(ye,0) +r(c(X)) - (Alye, 1) — Aye, 0))
F7r(c(CEN-X) + c(ENX) 4+ (EAX)) - (Ay-£,0) — Ays, 0))
+r(c(CEANX) +c(ENX)) - (Aly-p,1) — A(y-£,0))
+r(c(EANX)) - (Alyg, 1) — A(y-g, 1))

= =

For shorthand, let

a1 =c(EN-X)+c(-ENX)+c(ENX) (2)
=c(ENX) (3)

We can now rearrange eq. to get that it is sufficient to show that:

(r(a1) = r(x)) - Alyg, 0) + (r(x) — r(a2)) - Alye, 1)
> (r(a) —r(x) - AlYy-p,0) + (r(x) — r(a2)) - A(y-£,1)
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Which can be further rearranged to:

r(x) —r(az)

@) —r(ay) A1)~ AlE,0)

Tx) ~rlaz)
> Aly-e 0+ o T )

A(ye,0) +
(4)
(A(y-g,1) — A(y-E,0))

This now has exactly the form of a risk-weighed expectation, so we can now use
our (at least weak) propriety assumption again. Now we use it at a credence
function ¢, defined on {X,-X} with ¢, (X) = yg and ¢y, (-X) =1 — yg:

RExp;, A(ye) = RExp;, A(y-g), (5)

Le.:
A(ye,0) +r(ye) - (Alye, 1) — A(ye,0))

> A(y-g,0) +7(ye) - (A(y-g, 1) — A(y-£,0))

One of the assumptions in the statement of the theorem is item [1}, which we
can now write in our notation as:

r(x) — r(az)
r(ar) —rag) =

r(yE)
Given this and the assumption about the orderings of utilities, which implies
we get that

r(x) —r(az)

@) —r(ay) A D)~ A, 0)

r(x) —rlaz)
> A(y-z,0) + r(ay) — r(az)

A(ye,0) +
(A(y-g,1) — A(y-£,0))

Which is eq. , as required. O

We have now got a sufficient condition for failures of Look-E. We can now
show that there are such failures by showing that for differentiable risk-avoidant
risk profiles, r, there will be some credences that satisfy the condition of propo-
sition [B.3l

Before proving this, we show that to exhibit credences satisfying the condi-
tions it is sufficient to choose values for ¢(X), ¢(X|E) and ¢(X|-E).

Lemma B.4. If x_g,z,2p € [0,1] and x lies strictly between x_g and IEE
there is a unique probability function c defined on the algebra generated by E
and X with ¢(X|-F) = z-g, ¢(X) =z and ¢(X|E) = 2.

457 e either 0 < zp <z <zp<lor0<zp <z <z_g <1l
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Proof. Suppose we have such g, zg, x. We will define the probability function
on the atoms of the algebra; and then by ensuring that these sum to one (and
lie in [0, 1]) we will know that we have in fact defined a probability function.
The probabilities of the other members of the algebra are then determined by
summing up these probabilities assigned to the atoms.

C(E/\X):xE.m
Ty — T-E

r — T-E

EA-X)=(1—ap) ——T°F

o )=(1-2zp) Pr———
(~EAX)=q_p —E"L
rE — XT-E

g — X

CEA-X)=(1—2op) —EZT

ENX)= (1)

It is easy to see that these are well defined and in [0, 1]. It is also a routine to
verify that they sum to 1, and thus induce a probability function on the algebra
generated by F and X, and that this probability function has the property that
(X|-E)=z_g, ¢(X) =2 and ¢(X|FE) = zp. O

We thus only need to specify values for x_g,x,xg to exhibit a credence
function satisfying the conditions of proposition [B-3] and complete the proof.

Proposition B.5. Supposer, A, g, f-g satisfy the constraints in theorem[B.]]
and:

o If fr(c) = f-g(c) then they are = ¢(X).

Then there is some credence function c where one of the conditions in propo-

sition [B.3 holds.
Proof. We start with a useful fact about such update rules:
Lemma B.6. One of the following holds:
e For all c: If ¢(X) < ¢(X|E) then f_g(c) < fr(c). Or
o For all c: If ¢(X) < c(X|E) then f-g(c) > fr(c).
And similarly for ¢(X) > ¢(X|E).

Proof. This result will use the standard theorem from topology that says that
the continuous image of a connected space is connected@

Consider the collection of probability functions where ¢(X) < ¢(X|E). We
note that this is a connected set. And since fg and f_p are continuous so
is fg — f-g. So {fr(c) — f-g(c) | c(X) < ¢(X|E)} is also connected by the
aforementioned standard result.

Also observe that fg(c)— f-g(c) # 0 for all such ¢. This is because: Suppose
fe(c) — f-g(c) =0, i.e. fg(c) = f-g(c). Then by the additional assumption

46Gee, e.g. [Willard| (1970, Theorem 26.3).
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in proposition fe(c) = ¢(X), but by the assumption in theorem then
we have that ¢(X) = ¢(X|E). This contradicts our assumption that we are
considering credence functions where ¢(X) < ¢(X|E).

So {fe(c) — f-r(c) | ¢«(X) < ¢(X|E)} is connected and # 0. It must there-
fore be that all such credence fucntions have fg(c) — f-g(c) positive, or all nega-
tive. The first would get us that f-g(c) < fr(c) and the latter f-g(c) > fr(c).

The same argument applies to the credence functions with ¢(X) > ¢(X|E).

O

Suppose we are in the case where whenever ¢(X) < ¢(X|E) then f_g(c) <

fe(0).
We thus are looking to find a ¢ with ¢t < ¢(X|-F) < ¢(X) < ¢(X|E) (as then
12 < fog(c) < fr(c) so we have the ordering of item [1)) that satisfies:

H(e(X)) = r(e(B A X))
r(e(-E)+ c¢(ENX))—r(c(EANX))

= r(fe(c).

By lemma[B.4] we know it suffices to chose values of ¢(X|=E), ¢(X|E) and ¢(X).

We first pick the conditional credences, i.e. we fix some constants d—g and
dp that will stand for these conditional credences in our final credence function
c. We chose them with r(dg) < d-g < dg and t < d_g. This is possible because
of our assumption of r being a risk avoidant risk function we have r(z) < x for
all z € (0,1).

We will then consider variations of x, a variable for ¢(X), in order to find
our instance of ¢ satisfying the conditions of proposition

Since by lemma [B:4] we know that choosing any z with d_p < z < dg
determines a unique probability function we can abuse notation and consider
fE simply as a function of this variable z. We know that this is well-defined
on (d-g,dg). Moreover, we will extend fg(x) to the boundary dg, by letting
feldg) = fr(c) for ¢ with ¢(F) = 1 and ¢(X) = dg. The probability func-
tions corresponding to a choice of z will be such that as * — dg, they have
¢(X) — ¢(X|E) — 0, and thus the probability of E will converge to 1. So at
the limit one obtains the probability function ¢ with ¢(E) = 1 and ¢(X) = dg.
Since fg is continuous with respect to changes it the atoms, it follows that
lim, ~q, fE(z) = fe(dg) (and thus our extended fg, considered as a function
of just x is continuous). Moreover, by our second assumption on fg from theo-
rem fE(dE) = dE.

In the proof of proposition [B.3| we used a; and as to denote the probabilities
of certain events (egs. and ) In this theorem we will use them explicitly
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as a function of x, which provides the relevant probabilities@

_dﬁ
ai(z) =1~ (1-dg)- da;_idi (6)
.Z‘—dﬂE
az(x) :=dg - —— 7
2(z) =dp i (7)

These are well-defined for all z as the denominators are non-zero by the choice
of dog < dg.
Observe that we are therefore required to find some z where::

r(z) — r(as(z))
r(ai(z)) = r(az(z))

as that will then provide us our credence function satisfying item
Now definef®|

9(x) = r(x) = rag(z)) — r(fe(@)) - (r(ar(z)) - r(az(z)))

Lemma B.7. If ¢'(dg) < 0 then for x sufficiently close to dg (and x < dg),
eq. holds.

Proof. Observe that

= r(fe(x)), (8)

r(z) — r(az(z))
r(ay(z)) —r(as(z))

(so long as this right hand side is well-defined, which it is for any = € (d—-g,dg).)

Using the fact that a1(dg) = a2(dg) = dg we can see that g(dg) = 0. So
since ¢'(dg) < 0 it must be that g is decreasing at dg and therefore for any x
sufficiently close to dg (and < dg) we have

g(z) 20 =

> r(fe(z)).

g(z) > 0. O
Our final lemma to prove proposition [B.5]in the case where if ¢(X) < ¢(X|E)
then f-g(c) < fe(c) is then:
Lemma B.8. ¢'(dg) < 0.

47S0 mnote that if we consider a probability function with c¢(X|=E) = d-g, ¢(X|E) = dg
and ¢(X) = z, then we have that

ai(z)=1—c(EA-X)=c(-EAN-X)+c(mEANX)+c(ENX)
az(z) =c(ENX)

48Since the domain of fg is just (d—g,dg], the domain of g is the same. We will be
considering ¢g’(dg) so it’s really one-sided derivatives that are being talked about here. But
this does not affect our result because r, a1 and ag are all differentiable on the whole of (0, 1)
and the fj component of ¢’ is multiplied by zeros.
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Proof. ai(x) and as(z) (from egs. (6) and (7)) are both differentiable with
ay(z) = —2— and af(z) = — =%
E -E E -E

So by using the chain and product rules we get@

(@) = () ' (@x(@)ab(@) (7)) - 0 (@) (0) ' (0s(2)h(x)
— (o) F50) - (r(as() — (aa(a)
= 1'(0) — ' (an(e))
el (@) (- = )~ ) )
— (o) Te) - (r(as () — (aa(a)

Since a1 (dg) = az(dg) = dg, the derivative at dg is:

d
g'(dp) = r'(dg) — ' (dp) ——
dg — d-g

— ' (fe(dp)) - fr(de) - (r(dp) = r(dp))

_ (dp) (1 _dg ;Er(fjfZE))> (9)

Since r is convex and increasing we have r'(dg) > OH We thus have
g/(dE) <0 << T(fE(dE)) < d-g.

To obtain our result we thus have to show the right hand side of this. Our as-
sumption on fg (together with the definition of fr(dg)) ensures that fr(dg) =
dg. We chose dg and dg with r(dg) < d-g. So the right hand side of this
holds, as required. O

This has therefore shown that if we are in the case where if ¢(X|-E) <
¢(X) < ¢(X|FE) then f_g(c) < fr(c), it must be that there is some ¢ where con-
dition 1 of proposition[B.3|holds and thus that RExp[, A(GATHER)</<RExp_ A(AvoID).
Supposing instead we were in the case where if ¢(X|-FE) < ¢(X) < ¢(X|E)
then f_og(c) > fr(c), we would need to redo some of this proof. However, the
argument goes through pretty much similarly. The proof would then work by:

e Choose any t < d-g < dg.

49 Although this refers to f},(z) we will be taking the derivative at dg and for that we do
not need to assume this exists, roughly because it’ll then be multiplied by zero. We can say
this because: if ho(xg) = 0 and ho is differentiable, h; is continuous, then

(h1 - ha)'(z0) = hi(zo) - h2'(20).

50Since r is convex its derivative is increasing (Roberts and Varberg (1974, Theorem 42B),
and since r is an increasing function r/(z) > 0 for all z € (0,1). Thus r'(dg) > r'(dg —¢€) > 0.
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e Redefine a;(z) =1— (1 —d-g) - df;ﬁgE and as(x) = x-p - dg:ﬂd:ziEE, and

the resulting g will be the same as here except using these new a; and as,
and will involve f_g(z) instead of fg(x).

e One then observes that if ¢(d—g) > 0 then we can get our item [2| by
choosing x close enough to d—g, and d_g < x < dg.

e We show ¢'(d-g) > 0 by an analogous argument to lemma[B.8] One needs
to notice in the eq. @ the denominator will be d—g — dg which is negative
and so we get that ¢'(d-g) > 0 <= r(f-g(d-g)) < dg.

e We show this inequality by observing f_g(d-g) = d-g < dEg. O

Suppose for simplicity the update rule is conditionalization. Then we can
also get a sufficient condition:

For all y € [0,1] \ {1/2}
For all z closer to 1/2 than y and close enoughy, to y
Corollary B.9. For all x between y and z and close enough, . toy
If c hasy and z as ¢(X|E),c(X|-E) and x as ¢(X)
then RExp. A(GATHER)>/>RExp., A(AvOID)
Where what counts as close enough depends on the indicated variables.

Proof. For the case where y = ¢(X|E) > 1/2 the above proof works for this just
by checking what choices were made. For the other cases one can observe that
much of the proof goes through mutatus mutandis. O

If the update rule is not conditionalization a theorem similar to the above
will still be available but it will be more complex with additional assumptions
to ensure, for example, that the orderings of the states are appropriate.
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