

Reading Assignment 9: Understanding Inductive Skepticism

Assigned Reading

1. R. Feldman. *Epistemology*. Prentice Hall Foundations of Philosophy Series. Pearson Education Inc., 2003, Chap. 7, pp. 130-141
2. B. Weatherson. *Lecture Notes on Knowledge*. 2015, Chap. 4 and 9
3. B. Skyrms. *Choice and Chance: An Introduction to Inductive Logic*. Fourth. Belmont, CA: Cengage Learning, Nov. 1999, Chapter 4

Note on readings

Skyrms' terminology differs from what we have used thusfar in the class. First, Skyrms uses the phrase "inductive probability" to refer to what we have called "the strength" of an argument. I have avoided using the word "probability" to refer to strength because probability, in contemporary English, has quantitative connotations, and I want to avoid assuming that the strength of arguments can be quantified numerically. But to reiterate, *arguments*, not individual statements or events, have inductive probabilities in Skyrms' terminology.

Another terminological difference is that we have used the word "rule" to refer to argument schema/patterns/types. For example, in our terminology, *modus ponens* is a rule and it refers to the pattern/schema, "If P , then Q . Moreover, P . Therefore, Q ." By plugging in for sentences for P and Q , one obtains what we have have called an *instance* of an argument (or just an argument simpliciter).

In contrast, in this chapter, Skyrms uses the word "rule" to refer to a method for assigning inductive probabilities to arguments. In the earlier chapters of this book, Skyrms implicitly suggests to readers that a rule for assigning probabilities should be a function only of the logical form of arguments, i.e., that two arguments with the same logical structure should be assigned the same probability. For example, Skyrms suggests in earlier chapters that the following two arguments should be assigned the same probability/strength: (1) "All observed emeralds have been green. Therefore, the next observed emerald will be green" and (2) "All observed rubies have been red. Therefore, the next observed ruby will be red." What Skyrms does in this chapter is to summarize an argument, due to Nelson Goodman, that challenges that earlier suggestion. In other words, one way of interpreting Goodman's thesis is that there is no rule for assigning probabilities to arguments that is a function exclusively of logical form.¹

Questions

Answer questions two, four, five, nine, and fourteen.

1. According to Feldman, does Hume use the word "moral" to mean "ethical"?
2. Feldman argues that principles like PF (which is like Hume's "principle of the uniformity of nature") ought not be interpreted as claiming that the future will resemble the past *in all respects*. What example does Feldman use to illustrate why such an interpretation would yield a principle that is obviously false? Devise an example of your own to illustrate the same idea.
3. Feldman distinguishes two ways that an argument might be circular and he argues that Argument 7.6 is *not* circular in the first way. Briefly explain Feldman's first definition of "circular" argument. Give an example of an argument that is circular in that way, and then finally, briefly explain why Argument 7.6 is not circular according to Feldman's first definition.
4. Explain the pragmatic solution to the problem of induction using an analogy of your own (i.e., do not use the patient or bet analogies that Feldman describes). Then explain how the analog of Feldman's first objection to the pragmatic solution applies in your example.

¹Goodman himself did not interpret his argument this way. But John Norton, a contemporary philosopher of science, does.

5. Explain the distinction between PF and PFR by giving an example of your own. Then in no more than a paragraph, explain the *a priori* solution to the problem of induction.
6. In no more than a paragraph, explain Madam Malarkey's objection to Russell's *a priori* solution to the problem of induction, and explain Feldman's second criticism of that argument.
7. Feldman concludes that the *a priori* response to the problem of induction is the most plausible that he considers. What "hard questions" does the *a priori* solution leave open?
8. In a paragraph, summarize the Humean version of the indiscriminability argument without using any variables or the phrases "disaster scenario" or "actual scenario."
9. In your own words, summarize one of the four reasons that Weatherson gives to care about skepticism.
10. Weatherson raises two objections to the Methods (List) argument for $\neg SH$. Explain the second in your own words. Which premise of the Methods (List) argument does the objection target?
11. Skyrms argues that Rule S is "inadequate" as the basis for a system of inductive reasoning, or in other words, that it cannot be the *only* rule we use to assign probabilities to arguments. To understand the first "inadequacy" Skyrms identifies, give an example of an argument to which Rule S assigns a probability. Then provide a pair of arguments in which one is intuitively stronger than the other but such that neither is assigned a probability by Rule S.
12. Summarize in no more than three sentences Goodman's response to the objection that "bleen" and "grue" are not acceptable color words because their definitions, in our language, makes reference to specific dates.
13. Skyrms claims that Goodman's paradox shows that uncritical applications of Rule S not only lead to ridiculous predictions but also, predictions that contradict one another. Give an example of your own to illustrate how Rule S can lead to assigning high probabilities to arguments with contradictory predictions.
14. Skyrms claims, "For any prediction whatsoever, we can find a regularity whose projection licenses that prediction." To illustrate Skyrms claim, imagine I greet new students as they enter my class and I ask each of them their names. The first student is named Bob; the second Jane, and the third is Suzy. Using a technique like Skyrms does in the example involving "snarfs" and "murkle", find some regularity (i.e. rule) that would predict the next student who will enter is named "Jazz Hands."