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Abstract Existing causal discovery algorithms are often evaluated using two
success criteria, one that is typically unachievable and the other which is too
weak for practical purposes. The unachievable criterion – uniform consistency –
requires that a discovery algorithm identify the correct causal structure at a
known sample size. The weak but achievable criterion – pointwise consistency –
requires only that one identify the correct causal structure in the limit. We
investigate two intermediate success criteria – decidability and progressive
solvability – that are stricter than mere consistency but weaker than uniform
consistency. To do so, we review several topological theorems characterizing
which discovery problems are decidable and/or progressively solvable. These
theorems apply to any problem of statistical model selection, but in this paper,
we apply the theorems only to selection of causal models. We show, under several
common modeling assumptions, that there is no uniformly consistent procedure
for identifying the direction of a causal edge, but there are statistical decision
procedures and progressive solutions. We focus on linear models in which the
error terms are either non-Gaussian or contain no Gaussian components; the
latter modeling assumption is novel to this paper. We focus especially on which
success criteria remain feasible when confounders are present.
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1 Introduction: Varieties of Success

Shimizu et al. [2006] inaugurated a new era in causal discovery by demon-
strating that if functional relationships are linear, noise terms are independent
and non-Gaussian, and there are no unobserved confounders, then all causal
relationships are uniquely identified from observational data, even without
assuming faithfulness. The LiNGAM framework, as it was henceforth known, is
significantly more friendly to causal discovery than the previously well-studied
linear Gaussian regime, which drops the requirement of non-Gaussianity. When
noise terms are Gaussian, only the Markov equivalence class of the structure
generating the data is identifiable [Spirtes et al., 2000]. Although some non-
trivial causal information can be extracted from observational data, one would
usually not be able to uniquely identify the full causal structure. Prior to the
introduction of the LiNGAM framework, theorists of causal discovery had
been focused on the hardest case: although the assumption of Gaussian noise
made the subject analytically tractable, it made learning causal structure from
observational data very difficult. Since then, many new and exciting identifia-
bility results have been proven under a variety of modeling assumptions (For
example, Hoyer et al. [2009] and Zhang and Hyvärinen [2009]. See Glymour
et al. [2019] for a review.) These are significant theoretical developments, but
an identifiability result is only the first step towards characterizing the difficulty
of a learning problem.

An identifiability result suggests that a learning problem is not hopeless, but
it does not mean that the problem is easy–in fact, it does not even mean that
the problem can be solved by empirical means.1 For this reason, it is necessary
to go beyond identifiability results and analyze in what sense, if any, a causal
discovery problem can be solved. For the most part, these discussions orient
themselves around two solution concepts: pointwise and uniform consistency.
The latter is a very strong notion of success which is achievable only if there
exists a discovery method and a sample size n such that, no matter which
causal structure is generating the data, the output of the method is correct
with high probability for samples larger than n. The former is a very weak
notion of success which requires only that there exists a discovery method
such that, for every causal structure that may be generating the data, there is
some sample size n after which the output of the discovery method is correct
with high probability. The crucial difference between the two cases is whether
the the sample size n depends on (or is “uniform over”) the causal structure
generating the data. If there is no such dependence, we can be confident in

1 For an artificial but illustrative example, suppose we wanted to learn whether the mean
of a continuous random variable were rational or irrational. The problem is identified, since
rational-valued possibilities cannot induce precisely the same distribution as irrational-valued
ones, but it is hopeless from a learning perspective so long as our observations are recorded
with finite precision.
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the outputs of the method so long as the sample is large enough. Otherwise,
the situation is much worse: not only do we not know a priori how large a
sample size is “large enough”, but we may get no sign from the method that
the crucial sample size has been achieved.

If we are lucky, the problem we are interested in admits of a uniformly
consistent solution. Unfortunately, typical causal discovery problems do not. It
is possible to strengthen standard assumptions to allow for uniformly consistent
solutions [Zhang and Spirtes, 2003, Bühlmann et al., 2014], but these stronger
assumptions are unattractive in that they rule out geometrically large sets of
causal structures [Uhler et al., 2013]. Uniform consistency, it seems, comes
only at the cost of implausbily strong assumptions. On the other hand, weaker
assumptions are sufficient to admit pointwise solutions. But the esentially
asymptotic nature of this latter success concept leaves a lot to be desired from
pointwise consistent methods. One such method always gives rise to another in
the following way: while the sample size is less than 105, pick your output out of
a hat; and after sample size 105, do as the original method recommends. Both
the original method and the silly new one are both pointwise consistent—this
success concept does not give us the resources to praise the one and condemn
the other.

The trouble is that pointwise consistency is compatible with perverse finite-
sample performance. In the linear Gaussian paradigm, Kelly and Mayo-Wilson
[2010] show that, even when a causal orientation is identified, any pointwise
consistent method can be forced to “flip” its judgement about the direction
of the arrow, i.e. there are causal structures in which the method outputs
one orientation with high probability at sample size n1 < n2, only to output
the opposite orientation with high probability at n2 > n1. See Figure 1. The
number of such flips that the method can be forced into is bounded only by
the number of variables in the model. Moreover, there must be intermediate
sample sizes at which the output of the method is esentially the outcome of
a fair coin-flip. Note that this is not a failing of the method, but merely a
reflection of the inherent difficulties which present themselves in the linear
Gaussian setting—any consistent method can be made to exhibit the same
behavior.

In the linear Gaussian setting, “flipping” is the price of consistency; is the
same true for (unconfounded) LiNGAM? Once again, the non-Gaussian setting
is significantly friendlier to causal discovery: Genin and Mayo-Wilson [2020]
show that, even though uniformly consistent methods do not exist, there are
pointwise consistent discovery methods that avoid flipping. In other words:
although uniform consistency is too strong a success concept to be feasible
and pointwise consistency is too weak to be satisfactory, there are intermediate
success concepts that are weak enough to be feasible in the LiNGAM regime
and strong enough to rule out flipping behavior. For example, we say that a
method is an α-decision procedure if it is pointwise consistent and, at every
sample size, the probability that it outputs an incorrect orientation is bounded
by α. So long as α is small, such a method cannot exhibit flipping behavior
since flipping requires that there is some sample size at which the method
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Fig. 1 Causal “Flipping” - For any pointwise consistent method, there is a linear Gaussian
parametrization of model M3 that will force the method first to conjecture model M1 at
some sample size n1 and then conjecture model M2 at some sample size n2 > n1. In other
words, in the linear Gaussian setting, the probability that a consistent method outputs a
model with an X → Y edge vs. a Y → X edge can be forced to alternate between arbitrarily
close to one and arbitrarilty close to zero, as shown in the lower right graph. See [Kelly and
Mayo-Wilson, 2010].

outputs an incorrect orientation with high probability. Genin and Mayo-Wilson
[2020] show that in the unconfounded LiNGAM regime, α-decision procedures
for causal orientation exist for every α > 0. In broad strokes, such decision
procedures succeed by suspending judgement until they discern a clear signal
in the data that allows them to (with high probability) correctly orient an edge.
Since the signal only becomes clearer with larger samples, flipping is avoided.

The preceding discussion conceals an ambiguity. It is clear that a method
which outputs X ← Y when in fact X → Y has made an incorrect orientation.
The results of Genin and Mayo-Wilson [2020] show that we can construct
methods that bound the probability of such misorientations to be arbitrarily
small. But what about a method which omits an edge between X and Y
when, in fact, such an edge exists? Unfortunately, it is not possible to bound
the probability of such false negatives, since weaker and weaker edges can
approximate the absence of an edge arbitrarily well. However, it is still possible
to prevent flipping behavior. Say that a method is α-progressive if it is pointwise
consistent and, for any two sample sizes, n1 < n2 the probability of correctly
inferring the presence and orientation of an edge decreases by no more than α.
This is yet another success notion intermediate between poinwise and uniform
consistency. Genin and Mayo-Wilson [2020] show that in the unconfounded
LiNGAM regime, α-progressive methods exist for the problem of inferring the
presence and orientation of an edge, where α can be chosen to be arbitrarily
small (though not zero). In broad strokes, progressive methods infer that no
edge exists until they detect a clear signal in the data that allows them to
(with high probability) correctly orient an edge. They can be fooled into false
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negatives by weak edges, but they will never flip between the absence and
presence of an edge, or between competing orientations.

To summarize: in the (unconfounded) LiNGAM regime, although uniformly
consistent methods do not exist, it is possible to do better than mere pointwise
consistency. The precise sense of “better” depends on how much causal infor-
mation you are willing to presuppose. The question of causal orientation is
decidable, presupposing that some edge exists. On the other hand, the question
of the presence and orientation of an edge is progressively solvable, though not
decidable. Both senses of success are better than mere pointwise consistency
and preclude flipping between competing answers.

The preceding naturally raises the question of what happens when we allow
for the presence of unobserved latent variables. Hoyer et al. [2008] and, more
recently, Salehkaleybar et al. [2020] demonstrate that if, in addition to the usual
LiNGAM assumptions, we assume causal faithfulness, then causal ancestry
relationships between observed variables are identified even in the presence
of unobserved latents. In other words: if two faithful, confounded LiNGAM
models generate the same distribution over the observed variables, then for
every pair of observed variables X,Y , the models must agree on whether X
is causally upstream of Y, Y is upstream of X, or neither is upstream of
the other. Note that the models do not have to agree on which variables are
direct causes of which others, only on which variables are ancestors of which
others. Moreover, although all models generating the same distribution over
the observed variables must agree on the causal ancestry relations between
them, they may disagree on the strength of the causal effects.

But, as we have emphasized, identifiability results are only the first step
in understanding the inherent difficulty of a causal discovery problem. As
one might expect, allowing for confounders makes learning orientations more
difficult. Genin [2021] shows that, although there exist pointwise consistent
methods for learning the presence and orientation of causal ancestry relation-
ships, causal ancestry is no longer decidable in the presence of unobserved
latents. In other words: flipping between orientations returns once we allow
for the presence of confounders. However, this disappointing result suggests
several adjustments to the LiNGAM model that would recover decidability.
In particular, Genin [2021] proposes that the standard assumptions might be
strengthened to preclude exogenous noise terms with Gaussian components.2 In
this paper, we investigate a slightly stronger adjustment: no linear combination
of noise terms can have a Gaussian component. We call the resulting regime
the FLAMNGCo (“flamingo”) model, for “Faithful Linear Acyclic Model with
No Gaussian Components”. This adjustment recovers decidability, even in the
presence of unobserved confounders.

The methods used to prove these results are largely topological and draw
heavily from Kagan et al. [1973]. Many of the theorems stated here are already
proven elsewhere, with the exception of the results in Section 7. We suppress
the proofs of most lemmas and provide only the proofs that we take to be most

2 X has a Gaussian component if X = Y + Z, for Gaussian Z and Y independent of Z.
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Table 1 Three Varieties of Decidability
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† Outputs expressing suspension of judgement are here considered correct.

illuminating, as befits an introduction. We attempt to provide here all the
prerequisites for understanding the key points of the proofs. Reader beware:
although the results here suggest discovery algorithms, they do not, on their
own, provide any. The results here stand to causal discovery as complexity
theory stands to the design of algorithms. They reveal the inherent difficulty of
causal discovery problems under various assumptions, which sets the standard
for what counts as a good solution. Of course, that is not the same as actually
furnishing such a solution, which we do not attempt here. What we do here
is provide refinements of identifiability results which, ideally, would guide the
design of future algorithms.

We emphasize that the discovery concepts that we investigate – and the
topological theorems that characterize them – are applicable in other cases
of model selection. In such cases (e.g., polynomial regression), uniform con-
sistency is unattainable and pointwise consistency is too lenient. So although
we focus exclusively on causal discovery, our results, we hope, will inspire
researchers in other areas of model selection to develop algorithms that possess
the intermediate success concepts that we investigate.

The rest of the paper is organized as follows. In the next section, we give
mathematical definitions for the various success notions we have discussed in
this introduction. In section 3 we introduce the topological concepts and results
that are invoked in the following. Section 4 introduces a menagerie of linear
causal models. Section 5 states and proves the decidability and progressive
solvability results for LiNGAMs with no latent variables. Section 6 shows
that, although pointwise consistent solutions exist, the problem of causal
orientation is no longer decidable when we allow for potential confounders. The
final section shows how decidability (and progressive solvability) are recovered
when strengthen the LiNGAM assumptions to rule out linear combinations of
exogenous terms with Gaussian components.
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2 Varities of Success: Mathematical Definitions

LetM be a set of statistical models. Let O be the set of all random vectors
taking values in Rp, the space of observable outcomes. We assume there is a
function P : M 7→ PM that maps each model inM to a random variable in O,
although we often equivocate between the random variable and the probability
measure it induces on the Borel algebra over Rp. In other words: the function
P specifies a measurement model which maps the models inM to observable
random vectors. We lift P (·) to sets of models in the obvious way: if A ⊆M,
let P [A] = {P (M) : M ∈ A}.

A question Q is a countable set of disjoint subsets ofM. The elements
of Q are called answers. Note that the answers do not have to cover all of
the models in M. For all M ∈ ∪Q, let QM denote the unique answer in Q
containing M. The answer to question Q is identified iff P (M) ̸= P (M ′)
whenever QM ̸= QM ′ .

Given a question Q, we define a method λ = ⟨λn⟩n∈N to be a sequence of
measurable functions λn : Rnp → Q ∪ {M}, where λn maps samples of size n
to answers to the question; a method may also take the valueM to indicate
that the data do no fit any particular answer sufficiently well, and so we callM
the uninformative answer. We require that the boundary region ∂λ−1n (A)
has Lebesgue measure zero for all n and every answer A in the range of λn, as
otherwise the method λ will be impossible to implement in practice.3

Method λ is pointwise consistent for Q if for all ϵ > 0 and M ∈ ∪Q,
there is n such that P k

M (λk = QM ) > 1 − ϵ for all k ≥ n. We say that Q
is decidable in the limit iff there is a pointwise consistent method for Q.
Method λ is uniformly consistent for Q if for all ϵ > 0 there is n such
that for all M ∈ ∪Q, P k

M (λk = QM ) > 1− ϵ for all k ≥ n. We say that Q is
uniformly decidable iff there is a uniformly consistent method for Q.

For α > 0, method λ is an α-decision procedure for Q if (1) λ is pointwise
consistent for Q and (2) Pn

M (M /∈ λn) ≤ α for all M ∈ ∪Q and all sample sizes
n. A question is statistically decidable (or simply decidable) if there is an
α-decision procedure for α > 0.

For α > 0, method λ is an α-progressive solution for Q if (1) λ is pointwise
consistent forQ and (2) Pn2

M (λn2 = QM )+α > Pn1

M (λn1 = QM ) for allM ∈ ∪Q
and all sample sizes n2 > n1. A question is progressively solvable if it has
an α-progressive solution for all α > 0.

Clearly, uniform decidability implies statistical decidability. Further, statis-
tical decidability implies progressive solvability: if the chance of conjecturing
the wrong answer is never greater than α, then the chance of producing the
right answer can never drop by more than α. As the toy example in the next
section shows, the converse of both those implications fails.

3 See [Genin and Kelly, 2017, p. 239]’s definition of “feasible tests” for further explanation.
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3 Topology, Or the Geometry of Success

Topology is often described as the study of geometric properties conserved
by stretching, but not cutting or gluing. That makes it sound remote from
our concerns here. But topology is a kind of qualitative geometry, abstracting
from numerical/metrical measures of distance, in favor of qualitative notions
of “separation” and “arbitrary closeness.” These qualitative notions are just as
important for understanding what can be learned from data as they are for
understanding the geometry of cutting and gluing.4 Statistical models that
are “arbitrarily close/similar” are difficult to distinguish by observation. In
contrast, models that are “separated” are more easily distinguished by data.
In this section, we introduce some general topological definitions and explain
how they can be used to characterize which statistical inference problems are
hard and which are easier to solve.

In topology, a point w is a limit point of a region A if there are points
lying in A that get arbitrarily close to w. These points may never arrive at
w, but they are said to approximate w arbitrarily well. Roughly speaking,
two regions are separated if neither contains limit points of the other. Two
separated regions can become connected if you “glue” them together. And two
connected regions can become separated if you “cut” them apart. So cutting
and gluing fail to preserve qualitative relations of separation. As we shall see,
this rough notion of separation can be refined in various ways.

Suppose we have two coins, either of which may be biased. We want to
answer the question “Which (if either) of the coins are biased?”, but we are
not interested in how far the coins deviate from fairness nor whether they are
biased towards heads or tails. We can plot the degrees of bias of the coins
on the X and Y axes of the plane, as shown in Figure 2. In each quadrant,
regions of different colors represent different possible answers/hypotheses to
our question, and both the number of answers and the difficulty of answering
the question depend upon how rich our background knowledge is.

The first quadrant of Figure 2, for example, depicts the situation in which
background knowledge determines that (1) exactly one coin is biased and that
(2) there is a known lower bound ϵ > 0 for the degree (if any) to which a
given coin deviates from fairness. In other words, this quadrant represents a
case in which the question “Which coin is biased?” has precisely two possible
answers/hypotheses: (1) “Only coin 1 is biased, and its bias deviates from
1/2 by at least ϵ1 > 0” and (2) “Only coin 2 is biased, and its bias deviates
from 1/2 by at least ϵ2 > 0”. Those two hypotheses are represented by the red
and blue lines. This is a fortunate situation because there exists a uniformly
consistent method for deciding between the red and blue hypotheses. Using
min{ϵ1, ϵ2}, we can compute the smallest sample size by which a standard
confidence region would allow us to, with high probability, correctly decide the
question.

4 We acquire this perspective on topology from Kelly [1996] and subsequent work by Kelly
and his students.
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Fig. 2 The four quadrants exhibit questions which are (i) uniformly decidable; (ii) decidable,
though not uniformly; (iii) progressively solvable, though not decidable and (iv) not decidable
or progressively solvable.

The second quadrant of Figure 2 depicts the situation in which exactly
one of the coins is biased but there is no known lower bound on how much
that coin deviates from fairness. Again, there are two possible answers to our
question: “Only coin 1 is unfair” and “Only coin 2 is unfair.” And again, those
two hypotheses are represented by the red and orange lines. However, notice
the red and blue lines become arbitrarily close; although they do not intersect,
they share a common limit point, the white dot, which represents the case
that both coins are perfectly fair (a case that is, by assumption, ruled out by
background knowledge).

In this case, uniform solutions no longer exist. Why? Roughly, both coins
may be arbitrarily close to fairness. That is, no matter how large of a sample
size n you name, there is a possible coin of bias M = 1/2 + ϵ that would be
indistinguishable from a fair coin after only n many flips. Thus, one cannot
distinguish (a) the case in which coin 1 is fair and coin 2 has some tiny bias ϵ
from (b) the case in which coin 2 is fair but coin 1 has some tiny bias.

In this case, one cannot name a sample size a priori by which one is
guaranteed, with high probability, to be able to answer the question. However,
using a standard confidence region procedure, we could suspend judgement until
the region excludes either the red or the blue hypothesis. By collecting larger
and larger independent samples, we will eventually decide the question, without
exposing ourselves to a high probability of inferring an incorrect hypothesis at
any stage. In other words: the question in the second quadrant is decidable,
although it is not uniformly decidable.

The third quadrant of Figure 2 depicts the situation in which background
knowledge determines only that at most one of the coins is biased. There are
now three possible answers: only coin 1 is unfair; only coin 2 is unfair, and
neither is unfair. The new third possible answer is represented by the yellow
dot at the hinge of the two lines.
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If we ever want to converge to the right answer in the yellow (both fair)
possibility, we must expose ourselves to a high chance of error in nearby blue
and red possibilities. Thus, the problem is not decidable in the above sense: we
cannot bound the chance of error.

However, progressive convergence to the truth is still possible. The intuitive
way of achieving this is to conjecture “yellow” so long as a standard confidence
region is consistent with yellow. Otherwise, conjecture a disjunction of all
remaining hypotheses compatible with the confidence region.

What about the fourth quadrant? Here, background knowledge determines
nothing about the coins: the bias of either coin may take any value. We ask: are
an even (yellow) or an odd (black) number of coins biased? This question is not
even progressively solvable. The way to see this is to notice that the distribution
at the origin is arbitrarily well approximated by distributions on the axis; and,
in turn, any axis distribution is arbitrarily well approximated by distributions
in the sector. Thus, for any consistent method, there are sufficiently subtle
sector possibilities in which the method can be made to flip between even and
odd and then back to even (See Kelly and Mayo-Wilson [2010] and Genin and
Kelly [2019] for more on the topology of flipping).

Figure 2 suggests that the topological relationships of the competing hy-
potheses determine in which sense the question is solvable. But how, exactly
do they determine this? To illuminate this, we need a few more topological
concepts. The topological closure of a region A, which we write cl(A), is the
result of adding to A all of its missing limit points, if any. A region is topo-
logically closed if it is identical with its closure. It is open if its complement is
closed. Finally, it is clopen if it is both closed and open.

In the first quadrant, the blue and red hypotheses are both closed. In
this case, the two hypotheses are not only disjoint, but their closures are also
disjoint, i.e. cl(red) ∩ cl(blue) = ∅. In the second quadrant, neither the blue
nor the red hypothesis is closed since they are missing a limit point at the
origin. Since they are both missing the same limit point, their closures intersect:
cl(red) ∩ cl(blue) ̸= ∅. On the other hand, each is disjoint from the closure of
the other: red ∩ cl(blue) = ∅ and blue ∩ cl(red) = ∅. In the third quadrant,
some answers intersect the closures of other answers, since yellow ⊆ cl(red) and
yellow ⊆ cl(blue). However, it is possible to order the answers yellow, red, blue
such that each answer is disjoint from the closures of the answers that precede
it. In the fourth quadrant, there is no such ordering of the answers: however
we enumerate yellow and black the second answer will be consistent with the
closure of the first. In what follows we shall see that it is these topological
relations that turn out to be decisive for whether a question is decidable, or
progressively solvable.

The example in Figure 2 is rather simple; the relevant distributions are
completely characterized by a parameter in the unit square. Moreover, our
ordinary intutions about the topology of the unit square are reliable guides to
how difficult the various possibilities are to distinguish. However, it is unclear
how to represent causal hypotheses in a standard Euclidean space and, even if
we managed to do it, why should the standard Euclidean metric be informative
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about how hard causal models are to distinguish from each other? Indeed, we
cannot rely on our usual Euclidean intuitions. However, there is a topology
on probability distributions that does reliable capture this: the weak topology.
We define the weak topology in what follows, but first we state the theorem
characterizing decidability. The theorem is a minor modification of Theorem
3.2.4 in Genin and Kelly [2017].

Theorem 1 Let cl(·) bet the closure operator induced by the weak topology.
Suppose that every element of PM is absolutely continuous with Lebesgue
measure. Then, Q is decidable iff PA ∩ cl(PB) = ∅ for each A,B ∈ Q.

Note that this condition entails that the question is identified, i.e. that
PA ∩ PB = ∅ for each A,B ∈ Q. To ensure this paper is self-contained, we
define the weak topology below. But what is important is that, by the above
theorem (and others below) the weak topology captures the sense in which
distinct sets of probability measures can be distinguished by finite samples. The
above theorem says that if Pn ⇒ P in the weak topology, then the question
A1 = {Pn : n ∈ N} vs. A2 = {P} is not decidable. Conversely, if A1 does
not contain a sequence of measures P1, P2, . . . converging to P in the weak
topology, then the question A1 vs. A2 = {P} is decidable. In our running
example, the map from parameters endowed with the Euclidean topology to
probability distributions endowed with the weak topology enjoys a special
property: a parameter x in the square is in the closure of a set of parameters
A iff Px the distribution induced by x is in the weak topological closure of the
set of distributions PA.

5 That is why our ordinary Euclidean intuitions track
the relevant properties in this simple example.

To define the weak topology, let P = PM denote the set of all probability
measures induced by models inM. The weak topology on P is defined by
letting a sequence of Borel measures Pn converge weakly to P, written Pn ⇒ P
iff Pn(A)→ P (A), for every A such that P (∂A) = 0, where ∂(·) is the boundary
operator in the usual topology on Rp. Henceforth, we write cl(·) for the closure
operator in the weak topology.

As promised, we give a topological condition that is sufficient for progres-
sive solvability; necessary conditions are currently unknown. For a proof see,
Theorem 3.6.3 in Genin [2018].

Theorem 2 Suppose that every element of PM is absolutely continuous with
Lebesgue measure. If there exists an enumeration A1,A2, . . . of the answers to
Q such that Aj ∩ cl(Ai) = ∅ for i < j, then Q is progressively solvable.

Theorem 2 has important implications for causal discovery. It implies, for
example, that there is a progressive solution to the question “To which Markov
equivalence class does the unknown causal model belong?” if one assumes
the underlying model is either discrete or linear Gaussian. See [Genin, 2018,
Theorem 3.6.5] for a proof.

Limiting decidability also has a topological characterization, first stated by
Dembo and Peres [1994] and simplified somewhat in Genin and Kelly [2017].

5 The technical term for this kind of map is a homeomorphism.
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Theorem 3 Suppose that every element of PM is absolutely continuous with
Lebesgue measure. Suppose that (1) Q is identified and (2) each element of Q
is a countable union of sets closed in the weak topology, then Q is decidable in
the limit.

Unfortunately, there is no purely-topological condition that ensures a prob-
lem is uniformly decidable. Nonetheless, the simple example involving two coins
above motivates a necessary condition for uniform decidability. Recall, the
problem depicted in the upper-left quadrant of Figure 2 is uniformly decidable,
but the problem in the upper-right quadrant is not. The difference between
the two problems is that, in the upper left quadrant, the topological closures
of the two possible answers are disjoint, whereas in the upper right, the two
answers have overlapping closures.

Theorem 4 Suppose every element of PM is absolutely continuous with respect
to Lebesgue measure. If there are two distinct answers A,B ∈ Q such that
cl(PA) ∩ cl(PB) ̸= ∅, then Q is not uniformly decidable.

Proof Let PM ∈ cl(PA) ∩ cl(PB). Hence, there are sequences M1,M2 . . . ∈ PA
and N1, N2 . . . ∈ PB such that PMj

, PNj
⇒ PM .

Suppose for the sake of contradiction that Q is uniformly decidable, and let
λ be a uniformly consistent method. Then there is some sample size k such that
for all P j

Mn
(λk = A) > 1/2 and P j

Nn
(λk = B) > 1/2 for all n and all j ≥ k.

By assumption PM ∈ PM is absolutely continuous with respect to Lebe-
suge measure, and thus, so is P k

M . Because λ is a method, it follows that
P k
M (∂λ−1k A) = 0, i.e., P k

M (∂(λk = A)) = 0. By definition of convergence in the
weak topology, we know that P k

Mj
(λk = A), P k

Nj
(λk = A)⇒ P k

M (λk = A) as j
approaches infinity. Thus, for any ϵ > 0, there is some large j such that

|P k
Mj

(λk = A)− P k
Nj

(λk = A)| < ϵ

But by choice of k, we have P k
Mn

(λk = A) > 1/2 for all n. So if we choose

ϵ = P k
Mj

(λk = A)− 1/2, then it follows that P k
Nj

(λk = A) > 1/2. Since A ≠ B,
that contradicts that fact that P k

Nj
(λk = B) > 1/2.

4 Linear Causal Models

An acyclic linear causal model in d variables6 M is a triple ⟨X, e, A⟩,
where X = ⟨Xi⟩ is a vector of d random variables, e = ⟨e1, e2, . . . , ed⟩ is a
random vector of d exogenous noise terms, and A is a d× d matrix such that

1. Each variable Xi is a linear function of variables earlier in the order, plus
an unobserved noise term ei:

Xi =
∑
j<i

AijXj + ei;

6 In the following d refers to the total number of (potentially hidden) variables and p ≤ d
to the number of observed variables.
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2. the noise terms e1, . . . , ed are mutually independent.

On our definition, the variables in a linear causal models are enumerated in
agreement with their causal order. This simplifies the presentation somewhat,
although we have to take care to distinguish between the causal model and the
vector of observed variables that it gives rise to. The latter is some subset of
the variables in X that arrives correctly ordered only in exceptional cases.

In matrix notation, we can write a linear causal model as X = AX + e.
Because no Xi causes itself, A has only zeroes along its diagonal. By virtue
of the causal order, A is lower triangular, i.e. all elements above the diagonal
are zero. The random vector X also admits a “dual” representation: X = Be,
where B = (I −A)−1. Since the inverse of a lower triangular matrix is lower
triangular, the matrix B is also lower triangular, although its diagonal elements
are all equal to one. For any linear causal model M = ⟨X, e, A⟩, we write |M |
for the length of the vector X. Moreover, we let X(M), e(M), A(M) and B(M)
be X, e, A and (I −A)−1, respectively.

Every linear causal model M gives rise to a direct cause relation →M by
setting j →M i iff Aij(M) ̸= 0. In turn, the direct cause relation gives rise to
a directed acyclic graph G(M) over the vertices {1, . . . , |M |}. A causal path
of length m from i to j in G(M) is a sequence of vertices π = (v1, . . . , vm)
such that v1 = i, vm = j and vi →M vi+1. Let Π

n
ij(M) be the set of all causal

paths of length n from i to j in G(M). Let Πij(M) be the set of all causal
paths from i to j in G(M). Let Π(M) be the set of all causal paths in G(M).
Write i⇝M j as a shorthand for Πij(M) ̸= ∅. Write j ◦M i when j ̸⇝M i and
j ̸ ⇝M i. If π = (v1, . . . , vn) is a sequence of vertices in {1, . . . , |M |}, let the
path product×M π be the product of all causal coefficients along the path π
in G(M), i.e.×M π =

∏n
i=1 Avi+1,vi(M). Note that π ∈ Π(M) iff×M π ̸= 0.

It is easy to verify that7

Ak
ij(M) =

∑
π∈Πk

ji(M)

×Mπ.

In other words Ak
ij(M) is the sum of all path products for paths of length k from

i to j. So Ak
ij(M) ̸= 0 implies j ⇝M i. By a result of Carl Neumann’s, B(M) =∑|M |

k=0 A
k(M).8 So Bij(M) =

∑
π∈Πji(M)×M π. In other words Bij(M) is the

sum of all path products for paths from i to j. So Bij(M) ̸= 0 implies j ⇝M i.
The converse does not necessarily hold since non-zero path products may sum
to zero. We say that model M is faithful if the total causal effect from Xi to
Xj is nonzero if there is a causal path from Xi to Xj . In other words: M is
faithful if Bij(M) ̸= 0 whenever j ⇝M i.

7 Of course, it is the matrix product that is intended here.
8 The spectral radius ρ(A) of a square matrix A is the largest absolute value of its

eigenvalues. Neumann’s result states that if ρ(A) < 1 then (I − A)−1 exists and is equal
to

∑∞
k=0 A

k. Since the eigenvalues of a triangular matrix are exactly its diagonal entries,
ρ(B(M)) = 0 for any acylic linear causal model M . By acyclicity, there are no paths longer
than |M |, so

∑
k>d Ak = 0.
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An acyclic linear causal model M is non-Gaussian (a LiNGAM) if in
addition to satisfying (1) and (2), each of the noise terms is non-Gaussian.
A LiNGAM has no Gaussian components if there is no linear combination
of its noise terms

∑
biei such that

∑
biei = Y + Z, where Y and Z are

independent random variables and Z is Gaussian. Let Lind be the class of all
acyclic linear causal models on d variables, and let Lngd,Flngd,Flngcod

respectively denote the classes of non-Gaussian models, faithful non-Gaussian
models and faithful non-Gaussian models with no Gaussian components in
d variables. Let Lin≤d =

⋃
p≤d Linp denote the classes of linear models in d

or fewer variables, and define Lng≤d,Flng≤d,Flngco≤d similarly. Finally,
Lin,Lng and Flng,Flngco respectively represent the classes of all acyclic
linear causal models, all acyclic linear non-Gaussian models, and all faithful
acyclic linear non-Gaussian models over some finite number of variables.

It is sometimes reasonable to introduce a priori constraints on the maximum
size of a coefficient in a LiNGAM model. For example, if c is the number of
particles in the universe, let Flngc be the set {M ∈ Flng : maxi,j |Bij(M)| <
c}. Let Flngc

d be Flngc ∩ Flngd. For any M ⊆ Lin, let Mi→j be the set
{M ∈M : i→M j}. DefineMi⇝j andMi◦j similarly.

What justifies assuming the true causal model is non-Gaussian, or more
strongly, that it lacks Gaussian components? In most applications, the vari-
ables under investigation are bounded : mass, velocity, gross domestic product,
population size, etc. are all bounded either from above or below, and therefore,
cannot contain Gaussian components.

4.1 Parsimonious Models

Let O be the set of all probability distributions on Rp. We are interested in
when a vector of observed random variables could have arisen from a linear
causal model. Accordingly, say that a random vector O = (O1, . . . , Op) ∈ O
admits a linear causal model M ∈ Lind if there is a permutation α of (1, . . . , d)
such that Oi = Xα−1(i)(M) for 1 ≤ i ≤ p. In other words: O = (O1, . . . , Op)
admits M if there is a way to order the d variables of X(M) such that the first
p are identical with O1, . . . , Op. We say that the permutation α embeds O
into M. If α embeds O into M, then

O = BO(M)eO(M),

Here, BO(M) is the first p rows of PαB(M)Pα, and eO(M) is Pαe(M), and Pα

is the permutation matrix corresponding to α. Given an embeding α, we can
extend the causal order over the elements of M to the Oi by setting Oi ⇝M Oj

if α−1(i)⇝M α−1(j) and Oi ◦M Oj if α−1(i) ◦M α−1(j). We shall see that, if
we restrict attention to models in Flng, only one such order can arise for any
vector O.

Say that O admits a LiNGAM model if there is d such that O admits
M ∈ Lngd. Trivially, if O admits a LiNGAM model in Lngd, then it also
admits some model in Lngf for f > d. However, we say that a modelM ∈ Lngd
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is parsimonious (in Lng) for O if O admits M and O admits no M ′ in Lngf

with f < d. It is immediate that if O admits a LiNGAM model, it admits some
parsimonious LiNGAM model. Similar remarks apply if O admits a model in
Lngc

d,Flngd, or Flng
c
d.

Thus, forM∈ {Lind,Lngd,Lng
c
d,Flngd,Flng

c
d}, define:

OM := {O ∈ O : (∃M ∈M) M is parsimonious inM for O}.
For M ∈ {Lin,Lng,Lngc,Flngd,Flng

c}, let OM≤d
= ∪j≤d OMj

and
OM≥d

= ∪j≥d OMj
. Let OM<d

,OM>d
be defined similarly. Finally, let

OM = OM≥p
. We can characterize the parsimonious models by a simple

condition on the matrix BO(M). For a proof, see Theorem 4.3 in Genin [2021].

Theorem 5 Suppose that M ∈ Lngd is faithful. Then, M is parsimonious for
O = (O1, . . . , Op) iff no column of BO(M) is proportional to any other.

The following theorem allows us to work with a “canonical” model for every
O that admits a faithful LiNGAM. For a proof, see Corollary 4.4 in Genin
[2021].

Theorem 6 Suppose that O admits M ∈ Flng. Then there is M ′ ∈ Flng
such that (i) O admits M ′ (ii) M ′ is parsimonious for O and (iii) Oi ⇝M Oj

iff Oi ⇝M ′ Oj .

Theorem 6 remains true if we substitute Flngco everywhere for Flng.
The following variation can be proven with the same means.

Lemma 1 Suppose that O admits M ∈ Lin. Then there is M ′ ∈ Lin such
that (i) O admits M ′ (ii) no column of BO(M ′) is proportional to any other
(iii) Oi ̸⇝M Oj implies Oi ̸⇝M ′ Oj .

5 LiNGAM: The Unconfounded Case

One would expect that if two linear causal models have similar causal structure,
then they induce similar distributions over the observable variables. That is the
import of the following theorem, whose proof is a straightforward application of
Slutsky’s theorem. In a slogan: similar causal models have similar observational
consequences.

Theorem 7 Let M = Lin and let P map each M ∈ M to a random vector
admitting M . Let (Mn) be a sequence of models inM. If A(Mn)→ A(M) and
e(Mn)⇒ e(M), then P (Mn)⇒ P (M).

But what about the converse? We know it cannot be true in general, but is it
true that unconfounded LiNGAMs that have similar observational consequences
must have similar causal structures? That is the more significant question—an
affirmative answer implies that the observational distribution is a reliable
guide to the causal structure, at least for LiNGAMs with no unobserved latent
variables. In this section, we prove the following partial converse to Theorem 7.
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Theorem 8 Let M ⊆ Lngc
p and let P map each M ∈ M to a p-dimension

random vector admitting M . Let (Mn) be a sequence of models in M. If
P (Mn)⇒ P (M), then there is a subsequence (Mni

) such that A(Mni
)→ A(M)

and e(Mni
)⇒ e(M).

To get a feeling for this theorem, note that it implies the full identifiability
of the unconfounded LiNGAM model. For suppose that two fully observed
M,M ′ ∈ Lngc

p induce identical distributions P (M) = P (M ′). Letting (Mn)
be the constantly M sequence, Theorem 8 implies that A(M) = A(M ′) and
e(M) = e(M ′). In other words: If M and M ′ give rise to the same observational
distribution, they must have identical causal structures and their exogenous
terms must be identically distributed.

In fact, much more follows from Theorem 8. It implies rather directy that (1)
the problem of learning the orientation of a direct edge, presupposing that
some edge exists, is statistically decidable and (2) the problem of learning
the presence and orientation of an edge is progressively solvable, though not
decidable. In other words: these two problems are the causal analogues of the
second and third quadrants in Figure 2.

Theorem 9 Let M ⊆ Lngc
p and let P map each M ∈ M to an absolutely

continuous p-dimension random vector admitting M . Then,

1. Q = {Mi→j ,Mi←j} is decidable, but not uniformly decidable;
2. Q = {Mi◦j ,Mi→j ,Mi←j} is progressively solvable, but not decidable.

The proof of Theorem 9 follows straightforwardly from the topological charac-
terizations in Section 3 and Theorem 8.

Proof (Theorem 9) (1) By Theorem 1, showing that P (Mi→j)∩cl(Mi←j) = ∅
in the weak topology onM suffices to demonstrate decidability. Let M ∈Mi→j .
Suppose for a contradiction that there are (Mn) inMi←j such that P (Mn)→
P (M). By Theorem 9, Aji(Mni

)→ Aji(M) for some subsequence (Mni
). But,

since the Mni
are all inMi←j , acylicity implies that Aji(Mni

) = 0, whereas
Aji(M) ̸= 0. So the constantly zero sequence Aji(Mni

) converges to a non-zero
limit. Contradiction. To show that the question is not uniformly decidable,
it’s enough to observe that models with weak edges of either orientation
can approximate the absence of an edge arbitrarily well and, therefore, that
Mi◦j ⊆ cl(Mi→j) ∩ cl(Mi←j). Appealing to Theorem 4, the question is not
uniformly decidable.

(2) By Theorem 2, the question is progressively solvable if every element
in the enumeration Mj◦i,Mi→j ,Mj→i is disjoint from the closures of the
previous elements. By (1), it suffices to show thatMi→j ,Mj→i are disjoint
from cl(Mj◦i). Arguing by contradiction as in (1), it is straightforward to
show that this must be the case. Undecidability follows by Theorem 1 and the
observation thatMi◦j ⊆ cl(Mi→j).

To prove Theorem 8, we first have to collect some lemmas. The first is the Lukacs-
King theorem [1954], which is perhaps not so well known as its consequence,
the Darmois-Skitovich theorem [1953, 1953].
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Theorem 10 Let X1, . . . , Xm be independent random variables, X ′ =
∑

i αiXi

and X ′′ =
∑

i βiXi. Then, X
′, X ′′ are independent iff (a) each Xi such that

αiβi ̸= 0 is Gaussian; and (b)
∑m

i=1 αiβiVar(Xi) = 0.

The second lemma illuminates how weak convergence of random variables
interacts with marginal dependence. For an elementary proof, see Genin and
Mayo-Wilson [2020].

Lemma 2 Suppose that the random vector (X,Y ) is absolutely continuous
with Lebesgue measure and that X,Y are dependent. Then, if (Xi, Yi)⇒ (X,Y )
all but finitely many of the Xi, Yi are dependent.

Finally, say that a matrix is a mixing matrix if and only if some column has
two non-zero entries. The following is proven by Genin and Mayo-Wilson [2020,
Lemma 2.1]

Lemma 3 Suppose that A,B are square matrices of the same dimension having
unit diagonals. Suppose that B is lower triangular and the result of the matrix
multiplication AB is not a mixing matrix. Then A = B−1.

We now have all the ingredients we need to give a proof of 8. The proof has
the virtue of being rather elementary and not relying on facts about the ICA
algorithm as is typical for work on the LiNGAM model.

Proof (Theorem 8) Suppose P (Mn)⇒ P (M). Let A = A(M), e = e(M) and
An = A(Mn), en = e(Mn). It follows that

(I −An)
−1en ⇒ (I −A)−1e.

Since we have assumed that the An are bounded, it follows by the Bolzano-
Weierstrass theorem that there must be some subsequence (Ani

) converging in
the Euclidean metric to a matrix A′. It follows by Slutsky’s theorem that

eni
⇒ (I −A′)(I −A)−1e.

The matrix (I −A′) has unit diagonal since each of (I −An) does. (I −A)−1

also has unit diagonal. Moreover, (I −A)−1 is lower triangular.

Suppose that (I −A′)(I −A)−1 is a mixing matrix. Let

e′ = (I −A′)(I −A)−1e

By Lukacs-King, there must be two elements of e′ that are dependent. By
Lemma 2, all but finitely many of the same elements of eni

must also be
dependent. Contradiction. Therefore, (I −A)(I −B)−1 is not a mixing matrix.
By Lemma 3, A = B and e′ = e. Therefore, the Ani are converging to A and
the eni

are converging to e.
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Fig. 3 Note that the exogenous noise terms ϵ1, ϵ3 switch places. Although the left and
right-hand models generate the same distribution over (X1, X2) they disagree on the total
causal effect of X1 on X2 whenever b ̸= 0. When ac = −b, the lhs model is unfaithful and
the models disagree, not only on the size of the effect, but on the presence of an edge.

X1 X2

L
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X1 X2
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ϵ2 + bϵ3

c
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ab+ c

Fig. 4 The left and right-hand models generate the same distribution over (X1, X2) although
they differ in the number of latents. The hidden mediator L can be “absorbed” into the
exogenous noise term for X2. When c = 0, but ab ̸= 0, the two models differ on whether X1

is a direct cause of X2, or merely an ancestor.

6 LiNGAM: The Confounded Case

Unsurprisingly, learning causal structure becomes significantly more difficult
in the presence of hidden variables. The confounded LiNGAM setting does
not enjoy anything like the total identifiability of the unconfounded case, even
if we assume faithfulness. For one, structures which differ on the strength,
though not the direction, of direct edges between observed variables can
generate identical distributions over the observed variables (see Figure 3).
Furthermore, the number of hidden variables cannot be identified: models with
fewer latents can always be perfectly mimicked by models with more, potentially
causally disconnected, latents. Moreover, models with latent “mediators” can
be perfectly imitated by models with only exogenous latents (see Figure 4).
For this reason, causal relations involving latents are not identified and we
cannot even identify direct edges among observed variables. The good news is
that the causal ancestry relation among observed variables is identified so long
as we assume faithfulness. In other words if two faithful, but not necessarily
fully-observed, LiNGAMs generate the same observational distribution, then
they must agree on which observed variables are causally upstream of which
others. As a warm-up we prove this identifiability result, elsewhere given by
Hoyer et al. [2008] and Salehkaleybar et al. [2020]. We attempt to keep things
elementary, and we do not appeal to any facts about the ICA algorithm.

Theorem 11 LetM = Flng and let P map each M ∈M to a p-dimensional
random vector (O1, . . . , Op) admittingM. If P (M) = P (M ′), then Oi ⇝M Oj

iff Oi ⇝M ′ Oj.
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X1 X2

U1 + V1 U2 + V2

X1,m X2,m

J1,m U2

J2,m U1

1 1

−1 2−1 + 1
m 1

Fig. 5 The (X1,m, X2,m), which lie in O1←2
Flngc4

, converge in probability to (X1, X2), lying in

O1→2
Flngc2

. Note that although error terms approach Gaussianity and the model approaches

unfaithfulness, no term in the sequence is unfaithful and no noise term is Gaussian. For
definitions of error and exogenous terms, see the proof of Theorem 13.

We need only one additional resource for this result, due to Kagan et al. [1973].
For a proof, see their Lemmas 10.2.2 and 10.2.4.

Theorem 12 Suppose that X = Ae = Bf , where A and B are p × r and
p× s matrices and e = (e1, . . . , er), f = (f1, . . . , fs) are random vectors with
independent components. Suppose that no two columns of A are proportional
to each other. If the i-th column of A is not proportional to any column of B,
then ei is normally distributed.

Proof (Proof of Theorem 11) Suppose that O = (O1, . . . , Op) admits M,M ′ ∈
Flng. We show that Oi ⇝M Oj iff Oi ⇝M ′ Oj . By Theorem 5 and 6, there
are F, F ′ ∈ Flng such that 1. O admits F, F ′; 2. Oi ⇝M Oj iff Oi ⇝F Oj ;
3. Oi ⇝M ′ Oj iff Oi ⇝F ′ Oj and 4. no two columns of BO(F ) are proportional;
5. no two columns of BO(F ′) are proportional. By (1) and (2), it suffices to
prove that Oi ⇝F Oj iff Oi ⇝F ′ Oj . But since the situation is symmetrical, it
suffices to prove that Oi ⇝F Oj only if Oi ⇝F ′ Oj .

Suppose for a contradiction that Oi ⇝F Oj but Oi ̸⇝F ′ Oj . Let α be a
permutation embedding O in F . Let B,C be BO(F ), BO(F ′), respectively. Let
e, f be eO(F ), eO(F ′), respectively. Then

O = Be = Cf .

Since Oi ̸⇝F ′ Oj , Cji = 0. Moreover, Cii = 1 By faithfulness of F , Oi ⇝F Oj

implies that Bji ̸= 0. By Theorem 12, there must be a column k ̸= i and real
number a ̸= 0 such that Bik = aCii ̸= 0 but Bjk = aCji = 0. Since Bik ̸= 0,
it follows that α−1(k)⇝F α−1(i). Since Oi ⇝F Oj by assumption, it follows
that α−1(i)⇝F α−1(j). By transitivity of ⇝F , α

−1(k)⇝F α−1(j). However,
Bjk = 0. So F is unfaithful. Contradiction.

The bad news is that the orientation of the ancestry relation is no longer
decidable in the potentially confounded LiNGAM setting, even assuming
faithfulness.

Theorem 13 LetM = Flngc and let P map each M ∈M to a 2-dimensional
random vector admitting M. Then the question Q = {Mi⇝j ,Mi ⇝j} is not
decidable.
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Proof (Theorem 13) Let Z1, Z2, U1, U2,W1,W2 be mutually independent, ab-
solutely continuous random variables. Assume that Z1, Z2 are Gaussian with
identical variance, while the others are non-Gaussian. Let V1 = Z1 + Z2 and
V2 = Z1 − Z2. By Lukacs-King, V1, V2 are independent and therefore, so are
U1 + V1 and U2 + V2. Let J1,n = Z1 +

1
nW1 and J2,n = Z2 +

1
nW2. Let M

be the faithful, fully-observed LiNGAM on the lhs of Figure 5. Let Mn be
defined as the faithful, but confounded, LiNGAMs on the rhs of Figure 5, where
the X1,n.X2,n are the observable variables. Then the P (Mn) = (X1,n, X2,n)
converge weakly to P (M) = (X1, X2). By Theorem 1, Q is not decidable.

In fact, “flipping” returns in this potentially confounded LiNGAM setting:
it is no longer possible to converge to the right orientation without exposing
yourself to a high chance of mis-orienting the causal relation. Although we
omit the details of this construction, for appropriate choices of noise terms
U1, U2, V1, V2, it is possible to approximate each model in the sequence of models
on the rhs of Figure 5 by a sequence of models, this time with four hidden
variables, and in which the orientation is once again reversed. That means that
for any pointwise consistent method for learning the causal ancestry relation,
there are faithful but confounded LiNGAM models in which the method can be
forced to flip between a high probability of outputting one orientation at sample
size n1 < n2 and a high probability of outputting the opposite orientation at
sample size n2 > n1, where the number of such flips is limited only by the
number of hidden variables. The good news, such as it is, is that the presence
and orientation of the causal ancestry relation remains decidable in the limit.
For a proof, see Sections 6 and 7 in Genin [2021].

Theorem 14 LetM = Flngc and let P map each M ∈M to a p-dimensional
random vector admittingM. Then, the question Q = {Mi◦j ,Mi⇝j ,Mi ⇝j} is
decidable in the limit.

7 The Flamingo Model, Or: Decidability Returns

The results of the previous section show that learning causal orientation in
faithful, but not fully observed, LiNGAM models is a difficult problem. Not so
difficult that it is impossible to construct pointwise consistent methods, but
difficult enough that no consistent method can guarantee a finite-sample bound
on the probability of orientation errors.

In view of the positive results for the unconfounded setting, this negative
result for potentially confounded models is something of a disappointment.
However, the example in Figure 5 suggests several different adjustments to the
framework that may recover decidability. The first is the relatively well-trodden
path of strong faithfulness. As m grows, the direct path from U2 to X1,m comes
closer and closer to cancelling the path via X2,m. Strengthening faithfulness
would preclude this possibility. But faithfulness is already a controversial
assumption and strengthenings would do nothing to appease its critics.9 While

9 For an influential critique of faithfulness see Hoover et al. [2001] and Cartwright [2007].
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precisely cancelling paths would be a miracle, approximate cancellations are
to be expected from equilibrated systems. Moreover, Uhler et al. [2013] show
that strong versions of faithfullness can rule out a topologically large set of
models. The second path of escape is to strengthen the assumption of non-
Gaussianity. As m grows, J1,m and J2,m converge to the Gaussians Z1 and
Z2. Assuming that noise terms are bounded away from Gaussianity would
preclude this possibility. But although precisely Gaussian noise terms would
be a kind of miracle, the central limit theorem makes approximate Gaussianity
less implausible.

We pursue a different possibility. A random variable X has a Gaussian
component if it can be expressed as the sum Y +Z where Y,Z are independent
and Z is Gaussian. It is clear that the error terms in Figure 5 violate this
condition — indeed properties of the Gaussian are essential to ensuring that
V1 and V2, and therefore U1 + V1 and U2 + V2 are independent. In light of
uniqueness results by Kagan et al. [1973], we require that no linear combination
of the exogenous noise terms has a Gaussian component. We do not attempt
to settle the question of whether this is significantly less plausible than the
assumption of non-Gaussianity itself. We also require that there is a known,
potentially very large, upper bound d on the number of hidden variables. For
example, let d be the number cardinality of the set of all particles in the
universe, or perhaps the cardinality of its power set.

Theorem 15 Let M = Flngcoc
≤d and let P map each M ∈ M to some

absolutely continuous p-dimensional random vector admittingM. Then,

1. Q = {Mi⇝j ,Mi ⇝j} is decidable, but not uniformly decidable;
2. Q = {Mi◦j ,Mi⇝j ,Mi ⇝j} is progressively solvable, but not decidable.

To prove this theorem, we first need to collect some lemmas. For a proof of
the following, see Corollary 6.4 in Genin [2021].

Lemma 4 Suppose the k-dimensional random vectors en have independent
components. Consider a sequence of p-dimensional random vectors Xn = Bnen,
where the Bn are p×k matrices and Bn → B. If the Xn converge in distribution
to X, then X = Be, where e is a k-dimensional random vector with independent
components.

Kagan et al. [1973] prove the following, see their Theorem 10.3.7.

Theorem 16 Suppose that X = Ae = Bf , where A and B are p × r and
p× s matrices and e = (e1, . . . , er), f = (f1, . . . , fs) are random vectors with
independent components. Suppose that no two columns of A are proportional to
each other and no two columns of B are proportional to each other. Moreover,
suppose that no linear combination of variables in e has a Gaussian component.
Then every column of A is proportional to some column of B and vice versa.

Proof (Theorem 15)
(1) Let p ≤ f ≤ d and suppose M ∈ Mi⇝j . Let O = P (M). Let M∗ ∈

Flngcoc
f be parsimonious for O. Let A = BO(M∗) and e = eO(M∗). Then,
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O = Ae, where no linear combination of e has a Gaussian component and (by
parsimony) no column of A is proportional to any other.

Let p ≤ g ≤ d and let (Mn) lie inMi ̸⇝j ∩Flngcoc
g. Let On = P (Mn). Let

Bn = BOn
(Mn) and en = eOn

(Mn). Suppose for a contradiction that On ⇒ O.
Each of the Bn are p× g matrices. By the Bolzano-Weierstrass theorem, since
the Bn are uniformly bounded, there is a p × g matrix B and a convergent
subsequence Bnm

→ B. By assumption, Bnm
enm

converge in distribution to
O. By Corollary 4, O = Bf where f is a vector of independent components.
Therefore O = Ae = Bf .

Since the g × g matrices A(Mnm) are bounded, there must be a converging
subsequence A(Mnj

). Letting D be the limit of this subsequence and X = Df ,
we have that M ′ = ⟨X, f , D⟩ is a model in Ling admitting O. By analysis of
zeroes in the matrices A(Mnj

), it must be that Oi ̸⇝M ′ Oj . By Lemma 1 there
is M† ∈ Lin≤g such that (1) M† admits O; (2) Oi ̸⇝M† Oj and (3) no two
columns of B† = BO(M†) are proportional. Letting e† = eO(M†), we have
that O = Ae = B†e†.

By (2), B†ji = 0 and B†ii = 1. By Theorem 16, there must be a column

k ̸= i of A proportional to column i of B†. So Aik ̸= 0 and Ajk = 0. It
follows that Ok ⇝M∗ Oi and Oi ⇝M∗ Oj . By transitivity of the ancestry
relation Ok ⇝M∗ Oj . But since Ajk = 0, faithfulness implies Ok ̸⇝M∗ Oj .
Contradiction.

We have shown thatMi⇝j ∩ cl(Mi ̸⇝j ∩ Flngcoc
g) = ∅. Since g was ar-

bitrary, it follows that there are open sets Og containingMi⇝j and disjoint
from Mi ̸⇝j ∩ Flngcoc

g for each g with p ≤ g ≤ d. Therefore, the finite in-

tersection O =
⋂

p≤g≤d Og is an open set containingMi⇝j and disjoint from

Mi ̸⇝j ∩ Flngcoc
≤d =Mi ̸⇝j . In other words:Mi⇝j ∩ cl(Mi ̸⇝j) = ∅. Since

Mi ⇝j ⊆Mi̸⇝j ,Mi⇝j∩cl(Mi ⇝j) = ∅. By symmetry,Mi ⇝j∩cl(Mi⇝j) = ∅.
Decidability follows by Theorem 1. The argument for failure of uniform decid-
ability is unchanged from that in Theorem 9.

(2) Consider the enumeration of the answers Mi◦j ,Mi⇝j ,Mi ⇝j . By (1),
Mi⇝j ∩ cl(Mi ̸⇝j) = ∅. SinceMi◦j ⊆Mi̸⇝j ,Mi⇝j ∩ cl(Mi◦j) = ∅. By iden-
tical reasoning,Mi ⇝j ∩ cl(Mi◦j) = ∅ andMi ⇝j ∩ cl(Mi⇝j) = ∅. Progressive
solvability follows by Theorem 2. The argument for the failure of solvability is
unchanged from that in Theorem 9.

8 Conclusion

Researchers in causal discovery continue to produce many new and exciting
identifiability results. But demonstrating identifiability proves only that discov-
ery is not completely hopeless — it is only the first step in understanding how
difficult discovery is. Success notions intermediate between uniform decidability
and decidability in the limit can guide the search for modeling assumptions
that are neither so weak as to preclude short-run error bounds nor so strong as
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to secure uniform convergence. In this paper we propose two such notions: de-
cidability and progressive solvability. We show that they are feasible in the fully
observed LiNGAM setting, even without assuming faithfulness, and infeasible
in the confounded LiNGAM setting, even if we assume faithfulness. In light of
this latter result, we propose an adjustment to the LiNGAM framework that
recovers decidability and progressive solvability even when hidden variables
may be present. It is our hope that the success concepts we propose, as well as
the topological methods we adopt, prove frutiful in the future development of
causal discovery.
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