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Abstract

In medicine and the social sciences, researchers often measure only
a handful of variables simultaneously. The underlying assumption
behind this methodology is that combining the results of dozens of
smaller studies can, in principle, yield as much information as one
large study, in which dozens of variables are measured simultaneously.
Mayo-Wilson [2011, 2013] shows that assumption is false when causal
theories are inferred from observational data. This paper extends
Mayo-Wilson’s results to cases in which experimental data is avail-
able. I prove several new theorems that show that, as the number of
variables under investigation grows, experiments do not improve, in
the worst-case, one’s ability to identify the true causal model if one
can measure only a few variables at a time. However, stronger statis-
tical assumptions (e.g., Gaussianity) significantly aid causal discovery
in piecemeal inquiry, even if such assumptions are unhelpful when all
variables can be measured simultaneously.

Introduction

In medicine and the social sciences, researchers often measure only a
handful of variables simultaneously. A sociologist investigating poverty,
for example, might begin by studying race, education and income. If
she is lucky, she will be able to integrate her data with psychologists’
evidence about poverty, emotion and motivation. The sociologist might
later incorporate economists’ data about unemployment, inequality,
and poverty. And so on. As she acquires more evidence, the sociolo-
gist will begin to construct a causal collage, i.e., a theoretical pastiche
assembled from the results of dozens of studies of differing but causally-
related phenomena.

The imaginary sociologist’s methodology is common in medical re-
search and the social sciences. Relatively rare is the longitudinal study
that tracks dozens of variables. Rather, evidence is often collected
piecemeal, i.e., a few variables at a time. Unfortunately, a neglected



but critical assumption underlies all piecemeal inquiry. Namely, piece-
meal inquiry assumes that one large study, in which dozens of variables
are measured simultaneously, provides no more information than the
sum of dozens of smaller studies. Mayo-Wilson [2011, 2013] shows that
assumption is false. Even if all potential confounding variables are mea-
sured in one study or another, when data is collected piecemeal, causal
theories might be dramatically underdetermined by evidence in ways
they would not have been had more variables been measured simulta-
neously. Mayo-Wilson calls this the problem of piecemeal induction.

Mayo-Wilson [2011, 2013], however, focuses exclusively on causal
inference from observational data. It is well-known that, under some
assumptions, experiments/interventions! allow one to infer both (i)
whether or not two variables are spuriously correlated due to an un-
measured common cause, and (ii) the direction of a causal relationship
if one exists. Therefore, one might guess that experiments can reduce
the extent of underdetermination in piecemeal causal inference. I argue
this guess is half right.

After reviewing standard assumptions for causal discovery in sec-
tion one, I argue in section two that the“problem of piecemeal induc-
tion” extends to experimental data: even if all potential confound-
ing variables are measured in one experiment or another, causal theo-
ries can be dramatically underdetermined by evidence.? This problem
raises three questions that I address in section two. First, what type
of information is lost in the piecemeal construction of causal theories
from experimental data, and how much is lost? Second, how often
does the problem arise? Third, when, if ever, is no information lost
in integrating the findings of many experiments? Most of my results
are negative. Theorems 5 and 8 show that significant amounts of in-
formation about the existence of causal relations can be lost during
piecemeal inquiry, even when experiments are available. Theorem 7
suggests that information loss might be extremely common.

Nonetheless, I do not endorse skepticism towards medical research
and the social sciences, where piecemeal inquiry is ubiquitous. Rather,
in section three, I argue that the theorems in section two and in [Mayo-
Wilson, 2013] have a simple explanation: some common methods for
causal discovery (namely, those that use conditional independence con-
straints alone) are far weaker in piecemeal inquiry. So in section three,
I state three preliminary results that suggest that, by exploiting more
fine-grained statistical information about the variables under investi-
gation, piecemeal causal inquiry might be feasible.

Before beginning, I should clarify how my results below relate to ex-

! As standard, I use the word exzperiment to refer to settings in which at least one vari-
able is manipulated. A randomized controlled trial (RCT) is a paradigm of an experiment.
2Proofs of all new theorems are in the technical appendix.



isting literature. There are already a number of algorithms for discov-
ering causal structure from combinations of small observational studies
and experiments.? In this paper, I characterize what, in principle, can
be learned from such algorithms, when latent variables are not present.
In formal terms, my theorems describe the equivalence classes of the
outputs of these algorithms, which Tillman and Eberhardt [2014] ad-
mit they do not do because “in the case of overlapping datasets, the
equivalence classes very quickly become very large.”

1 Preliminaries

1.1 Causation and Probability

In the United States, the federal funds rate influences consumer mort-
gage rates, but one cannot “see” the causal relationship for at least
three reasons. First, the causal relationship is noisy. Second, both
rates are affected by other economic variables. Finally, mortgage rates
always lag changes in the federal reserve’s policies. In general, because
of statistical noise, unmeasured confounders, and lack of spatiotempo-
ral contiguity, scientists cannot observe all causal relationships directly.
Instead, they must infer causes from probabilistic regularities. Proba-
bilistic regularities come in many forms, but in the first two sections
of the paper, I focus on facts about conditional independence.*

I represent causal relationships among a set of variables V using
directed, acyclic graphs (DAGs), like the ones below.? This repre-
sentation is now standard in much research on causation [Pearl, 2000,
Spirtes et al., 2000]. An arrow V — U indicates that, relative to the
variables in the graph, the variable V is a direct cause of U. If there
is a sequence of arrows V3 — Vo — ...V}, and no arrow between V; and
V,, then V; is called an indirect cause of V,,. For example, relative
to the set of variables in the left graph in Figure 1, Age is an indirect
cause of Income, but it is a direct cause in the right graph.

3See [Tillman and Spirtes, 2011], [Tsamardinos et al., 2012, and [Triantafillou and
Tsamardinos, 2015] for algorithms that work with observational data in the presence of
latent confounding. Section six of [Tillman and Eberhardt, 2014] extends these algorithms
to experimental data.

“Two events A and B are conditionally independent given C if P(A, B|C) =
P(A|C) - P(B|C). This definition extends to random variables in the obvious way.

5For the remainder of the paper, I use the uppercase letters G and H to denote DAGs,
and the upper case letters U, V, and W to denote vertices in graphs. I use V to represent
a causally sufficient set of variables under investigation, and I use calligraphic letters like
U and €& to denote subsets of V. Finally, I use the scripted letters %,7 and # to denote
subsets of the power set P(V) of V.
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Figure 1: Directed, acyclic graphs

A set of variables V is causally sufficient if for any pair V1, Vs € V,
if W is a common cause of V; and V5, then W € V. For example, if
the right graph in Figure 1 accurately represents the world, then the
set of variables {Income, Hearing Loss} is not causally sufficient be-
cause it omits a common cause, namely, Age. Given this background,
I can state two standard assumptions about the relationship between
causation and probability:

Causal Markov Condition (cMc): If V is causally sufficient, two vari-
ables in V are conditionally independent of their non-effects in V' given
their direct causes in V.

Causal Faithfulness Condition (CFC): No two variables are condition-
ally independent unless CMC entails so.

These principles are not uncontroversial, but an enormous amount
of research in causal discovery assumes one or both conditions.® As an
example of CMC, consider the graph on the right in Figure 1. If the
set of variables {Age, Income, Hearing Loss} is causally sufficient,
then cMC entails that Income is conditionally independent of Hearing
Loss given Age, whereas CFC entails that Income and Hearing Loss
are unconditionally dependent. So for example, Ada’s income provides
some information about whether Ada suffers from hearing loss because
her income provides some information about her age. However, Ada’s
income would be irrelevant for predicting whether she suffers from
hearing loss if one already knew her age.

The cMC and CFC are important because, if a set of variables V
is causally sufficient, then one can associate every possible causal DAG
over V with a set of assertions about conditional independence. For
example, if the set {Age, Income, Hearing Loss} were causally suf-
ficient and if the rightmost graph in Figure 1 were true, then Income

SFor an extensive discussion of both principles, see [Spirtes et al., 2000]. For further
defenses of the cMc, see [Hausman and Woodward, 2004] and [Steel, 2005]; for criticisms,
see [Cartwright, 2002, 2007]. For criticisms of CFC, see [Freedman and Humphreys, 1999]
and [Cartwright, 2007].



would be independent of Hearing Loss given Age. In contrast, if In-
come were a direct cause of Hearing Loss or vice versa, then no such
conditional independence would hold. So the cMC and CrC allow one
to distinguish among competing causal theories given observed proba-
bilistic regularities.

Unfortunately, even under the assumption that a set of variables is
causally sufficient, not every pair of causal DAGs can be distinguished
by conditional independence facts alone. Say two causal DAGs are I-
indistinguishable if, by the cMC and CFC, they entail the same set
of conditional independence facts.”

When are two causal DAGs |-indistinguishable? Verma and Pearl’s
theorem below provides a precise answer. Two definitions are necessary
to understand the theorem. First, the skeleton of a causal DAG G is
the undirected graph that results from ignoring the direction of the
arrows in G. For instance, the graphs V; < Vo — V3 and V; — V5 «
V3 both have the same skeletons. Second, three variables Vi, Vs, V3
form an unshielded collider in a graph G if (i) V4 and V3 are direct
causes of Vo, and (ii) neither V; nor V3 is a direct cause of the other.
Verma and Pearl show:

Theorem 1 [Pearl and Verma [1995]] Two causal graphs are |-indistinguishable
if and only if they have the same skeletons and unshielded colliders.

Verma and Pearl’s theorem can provide guidance about what ob-
servational studies to conduct. Suppose two different graphs plausibly
describe the causal relationships among several variables. If the two
graphs are |-distinguishable, then there is some conditional indepen-
dence that is entailed by one but not the other. For example, one graph
might entail that Income (V7) is independent of Hearing Loss (Vz)
given U = {Age, Profession}. In principle, a researcher could then
use a statistical test to determine whether V; is in fact independent of
Vs given U if she could comeasure the variables {V1,V2} UU, i.e., if
she could conduct a single study in which all variables in {V7, Vo} UlU

74I” stands for independence. Causal theories that cannot be distinguished by condi-

tional independence facts might nonetheless be distinguishable using background knowl-
edge, temporal information, and other statistical assumptions (e.g. that variables are non-
Gaussian and linear combinations of their causes [Shimizu et al., 2006]). I discuss these
issues further in Section 3. Formally, two graphs are what I call “l-indistinguishable” if
their d-separation relations are identical (see Appendix), and so l-indistinguishability is a
purely graph-theoretic relation that does not require any probabilistic notions. Nonethe-
less, it is easiest to explain l-indistinguishability using its relationship to a mathematically
equivalent notion of “Markov equivalence,” which is a relationship between Bayesian Net-
works, i.e., pairs of the form (G, p) where G is a DAG containing random variables as its
vertices and p is a probability distribution over the variables in G satisfying particular
conditional independence facts. Again, see Section 3.



are measured simultaneously. The result of the statistical test would
then provide evidence for one theory over the other.

Unfortunately, it might be financially prohibitive, scientifically in-
feasible, or even unethical (e.g., for privacy reasons) to comeasure some
sets of variables. Instead, researchers often conduct several studies and
hope that the conditional independences among the comeasured vari-
ables are sufficient to distinguish among rival causal theories. Mayo-
Wilson [2011, 2013] shows that, unfortunately, this isn’t always pos-
sible: there are I-distinguishable causal graphs that cannot be distin-
guished using piecemeal data alone.

For example, consider the two DAGs in Figure 2. Assuming the
CFC, both DAGs entail that all three variables are pairwise dependent;
this is intuitive because V; is a cause of both V5 and V3 in both graphs,
and so V7 ought to be associated with both V5 and V3. Similarly, V5 is
a cause of V3 in both graphs, and hence, the two variables should be
dependent. Hence, if one only knew which pairs of variables were corre-
lated, one would not be able to distinguish between the two graphs. To
distinguish between the two graphs, one must know whether V; is con-
ditionally independent of V5 given V5, but that requires comeasuring
all three variables.

Vi i

/ VRN

Va Vs Va

Vs

Figure 2: Graphs indistinguishable by passive observation of pairs
of variables

Importantly, Mayo-Wilson [2011, 2013]’s arguments do not depend
upon the existence of latent /unmeasured confounding variables. Rather,
he assumes that, when social scientists and medical researchers inte-
grate the results of many observational studies, the combined set of
variables is causally sufficient. This assumption allows him to inves-
tigate how piecemeal measurement of variables affects what can be
learned via causal inference, even if researchers find themselves in the
very lucky position of having identified a causally sufficient set of vari-
ables. In this paper, I likewise investigate what can be learned from
piecemeal inquiry when researchers have identified a causally sufficient
set of variables, but I investigate what can be learned from experimen-
tal (rather than observational) data.

1.2 Experiments

What is the value of experiments? Let’s consider an example. Suppose
medical researchers are investigating whether drinking wine reduces



the chances of developing heart disease. An observational study finds
that wine consumption and incidence of heart disease are negatively
correlated, but it’s unknown whether the correlation is due to a causal
connection or a latent cause (e.g., wealth).

To investigate further, researchers conduct a randomized controlled
trial (RCT) in which half of the subjects are randomly selected to drink
a glass of wine a day; the other half is asked to drink wine no more
than once a week. When the experiment ends, it is found that the daily
wine-drinkers develop heart disease with the same frequency as the
weekly ones. Researchers conclude that drinking wine does not reduce
the chances of developing heart disease and that there is likely some
common cause (e.g., wealth) that affects both wine-drinking habits and
one’s chances of getting heart disease.

What justifies the researchers’ conclusion?® And why was an ex-
periment rather than an observational study necessary to reach this
conclusion? To answer these questions, scientists must make assump-
tions about how experiments alter causal structure.

Let G be a causal theory like that one pictured below that describes
(possible) causal relationships among heart disease, wine-drinking, wealth,
and access to medical care. Next, suppose some variable V' in G is
manipulated, as for example, the wine-drinking habits of study partic-
ipants in our example. Finally, define G||V to be the graph obtained
by taking G and eliminating all of the arrows that are directed into V.
Two examples are Figure 3.

J J|{Wine}
Wealth Wealth
Wine / Edical Care | Wine Edical Care
Heart Disea< Heart Disea<

81 will not discuss either the ethics or epistemological necessity of randomization in
treatment. See [Kadane and Seidenfeld, 1990] and [Worrall, 2007] for critical discussions
of randomization.
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Figure 3: Graphical representation of experiments/interventions

The graph G||V is intended to represent the causal relationships
among the variables in G after an experiment is conducted in which
researchers manipulate the variable V. Why does G||V represent this?
Since the variable V is controlled by experimenters, it is no longer
affected by its causes.’

Now consider the two rival theories in the example above. The
first postulates that drinking wine reduces the chances of developing
heart disease, and the second postulates that the correlation between
the two variables is due to at least one unmeasured common cause.
These two theories are represented graphically by J and H respectively.
Suppose the variable Wine-drinking (call it V') is manipulated an in
experiment. Then the causal relationships between the variables in
such an experiment would be represented by either the graph J||V or
the graph H||V, depending upon which is true.

Notice that the two graphs J||V and H||V differ in an impor-
tant way. In H||V, Wine-Drinking is a direct cause of Heart Disease.
Hence, if H were the true underlying causal structure, it would follow
(by the cFC) that the two variables would be correlated in an experi-
ment in which participants wine-drinking habits were manipulated. In
contrast, in J||V, there is no path from wine-drinking to heart disease
whatsoever. Therefore, if J were the true causal theory, then the two
variables would be uncorrelated in the experiment (by the cMc). These
results mirror the above intuitions exactly. Moreover, they show that
arguments concerning the value of experiments can be made precise by
using the CMC and CFC in conjunction with a particular representation

9The way in which experiments are represented here is most appropriate for model-
ing the effects of medical treatments in RCTs in which patients comply perfectly with
treatment. In such (rare) trials, researchers’ choices completely determine a patient’s
treatment. Such experiments are often called “hard” or “surgical” interventions. In this
paper, I restrict my attention to hard interventions and ignore “soft” interventions, which
introduce a new cause of a variable but fail to eliminate other causal influences. See [Ny-
berg and Korb, 2006], [Eberhardt, 2007], and [Eaton and Murphy, 2007] for discussions of
soft interventions.



of experiments - namely, the representation in which particular edges
are removed from a causal graph.

Perhaps most importantly, these techniques allow one to character-
ize what can be learned (i) from experiments in which several differ-
ent variables are manipulated, and (ii) from sequences of experiments.
Consider issue (i) first. Although medical researchers typically manip-
ulate only one variable (namely, type and dosage of a treatment) in an
RCT, it seems possible that more could be learned from experiments
in which several variables are subject to an intervention. How should
one model such complex interventions? One answer is to represent a
complex intervention as a conjunction of simple ones.

More precisely, suppose the true causal theory among a collection of
variables is represented by a causal graph G. Next, suppose an experi-
ment is conducted in which several variables - call them V;, V5, ..., Vi
- are all subject to an intervention. One can represent the causal re-
lationships among the variables in such an experiment by the causal
graph G||{V1, Va, ..., Vi }, which is defined to be the result of removing
from G all edges that point into any of the variables V7, V5, ... Vi. An
example is below. In general, if £ is a set of variables that are manip-
ulated in an experiment, let G||€ denote the causal graph obtained by
deleting all edges into any of the variables in £.

G G|[{V2, Vs}

Vi——V, Vi Va

T T

Vs Vy V3 Vy

Figure 4: Causal graphs after multiple interventions

Social scientists and medical researchers often draw causal conclu-
sions from several experiments, not just a single one. How can one
represent what can be learned from a sequence of experiments? Re-
call, two causal graphs G and H are l-indistinguishable if they entail
the same set of conditional independence facts. If an experiment is
conducted in which the variables £ are manipulated, therefore, two
causal theories G and H are indistinguishable just in case G||€ is |-
indistinguishable from H]||E.

This extends naturally to sequences of experiments. For example, if
variable set & is manipulated in one experiment and & is manipulated
in a second, then G and H will be indistinguishable just in case G||&;
is l-indistinguishable from H||&; and G||&; is l-indistinguishable from
H||&. And so on for longer sequences of experiments. In general,
given a series of experiments & = {&1,&s,...,E}, define two graphs



G and H to be &-experimentally indistinguishable just in case G||€ is
l-indistinguishable from H||€ for all experimental sets £ in &. Several
examples are below.

By appropriately choosing which experiments to conduct, one can
learn far more from experiments than one could from passive observa-
tion alone. To see why, say a sequence of experiments £ satisfies the
pair condition just in case for any (unordered) pair of variables V'
and W there is some experiment in £ in which V' is manipulated and
W is passively observed. According to the following theorem, underde-
termination is eliminated if one can conduct a sequence of experiments
satisfying the pair condition:

Theorem 2 [Eberhardt et al. [2006]] Let G and H be two distinct
causal DAGs over a causally sufficient set of variables V. Suppose V is
passively observed, and then a series of experiments & is conducted. If
& satisfies the pair condition, then G is &-experimentally distinguish-
able from H. If & does not satisfy the pair condition, then there exist
graphs that are &-experimentally indistinguishable.

In other words, if a set of variables is causally sufficient, one can
learn the true causal graph from passive observation and any sequence
of experiments satisfying the pair condition. Hence, in circumstances
in which it is possible (and ethical) to perform a number of inter-
ventions, underdetermination of causal theories can be eliminated by
experiment. Further, with a little work, Eberhardt’s theorem provides
an upper bound on the number of experiments that one needs to con-
duct in order to determine the true causal graph; it describes how
quickly causal graphs can be learned from series of interventions.

Yet to apply Eberhardt’s theorem all variables in V must be comea-
sured. Can one draw strong causal conclusions from experimental data
if this is not the case?

2 Piecemeal Causal Inference from Exper-
iments

2.1 An Example

Suppose medical researchers are investigating the effects of eating fast
food on incidence of heart disease. Suppose that the true causal rela-
tionships are represented by the graph below. That is, eating fast food
(indirectly) causes heart disease in two different ways: (1) it hardens
one’s arteries, and (2) it increase the amount of plaque in one’s arter-
ies. By Eberhardt’s theorem, one could learn the true causal theory
below under two assumptions, namely, that one can comeasure all four
variables in an observational study, and that one can conduct a series
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of experiments satisfying the pair condition. In fact, if one conducted
a single (unethical) experiment in which participants’ fast-food eat-
ing habits were manipulated and all four variables were comeasured,
then one would (with enough data) be certain the causal relationships
among the four variables were represented by the graph below.

Fast Food
Arterial Plaque Arterial Rigidity

~

Heart Disease

Figure 5: A causal graph underdetermined by comeasurement of all
sets of three or fewer variables

However, suppose that only three variables can be comeasured in
any particular experiment, and further suppose that any variable that
is manipulated in an experiment is one of the three that is comeasured.
For example, if an experiment is conducted in which subjects are ad-
ministered medication that breaks up arterial plaque, then researchers
can comeasure only two of the other variables under investigation (in
addition to arterial plaque). If researchers consider complex interven-
tions in which several variables can be manipulated simultaneously,
then there are a total of 28 possible experiments and four (passive)
observational studies that they might conduct.'® Additionally, there
are four observational studies in which no variables are subject to an
intervention.

What can be learned from these 32 experiments and studies? In
particular, can it be learned that consumption of fast food does not
cause heart disease via another mechanism (perhaps directly) as shown
in the diagram below?

Fast Food
Arterial Plaque Arterial Rigidity

~

Heart Disease

0T here are (g) different ways to choose which three variables are observed. Given
three variables, one can perform 3 = (‘I’) many interventions on one variable, 3 = (
on two variables, and 1 = (3) on all three variables. So there are (i) (3+3+1) =28

3

possible experiments. Not all such experiments (e.g., intervening on all three variables

simultaneously) will be informative.
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Figure 6: A causal graph that is indistinguisable from the graph in
Figure 5 if only three variables can be comeasured in any experiment

The answer is “no.” To see why, consider an experiment in which
fast food eating habits, arterial plaque, and heart disease are comea-
sured. Suppose that subjects’ level of arterial plaque is manipulated
by some medication in the experiment. In such an experiment, medi-
cal researchers would still find a correlation between incidence of heart
disease and fast food eating habits. Why? By assumption, researchers
do not manipulate the degree to which subjects’ arteries are hardened,
and so there is still a path by which eating fast food causes heart
disease, namely, by hardening the arteries.

By symmetric reasoning, if another experiment were conducted in
which subjects’ arteries were made softer by medication, one would
nonetheless detect a correlation between heart disease and fast food
eating habits. Why? In such an experiment, subjects’ levels of arterial
plaque would be left unmanipulated, and so eating fast food would still
exert causal influence on the development of heart disease.

The only experiment that would sever all causal paths between
fast food eating habits and heart diseases is one in which both arterial
plaque and rigidity are subject to an intervention. By assumption,
however, researchers can comeasure at most three variables. Thus,
if both arterial plaque and rigidity are manipulated (and hence mea-
sured), then researchers cannot observe both remaining variables. So
researchers cannot learn that such a complex intervention eliminates
the correlation between heart disease and fast food eating habits.

These considerations suggest that, if only three variables can be
comeasured, then one cannot rule out the existence of a direct causal
connection between heart disease and fast food eating habits regardless
of whether one can conduct experiments. This can be proven formally:
the so-called problem of piecemeal induction persists even when ex-
perimentation is possible. In the next section, therefore, I investigate
three questions raised by this problem. First, what type of information
is lost in the piecemeal construction of causal theories from experimen-
tal data, and how much is lost? Second, how often does the problem
arise when experiments are available? Third, when, if ever, is no in-
formation lost in integrating the findings of many experiments?

2.2 The Problem of Piecemeal Induction for Ex-
perimental Data

In previous sections, I argued that a single experiment can be repre-
sented by a subset £ of the variables under investigation; £ represents

which variables are subject to an intervention, and the remaining vari-
ables are assumed to be passively observed. If not all variables can be
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comeasured, however, then an experiment ought to be represented by
a pair (€,U), where £ represents those variables that are manipulated,
and U represents all variables that are comeasured. I will assume that
£ is a subset of U, so that, when researchers conduct an intervention,
they know the effect of the intervention on the variables that are ma-
nipulated. A set of experiments &, therefore, is just a set of pairs
(&1,Ur), (E2,Us), and so on.

With this representation of experiments, one can now make precise
the notion of indistinguishability in piecemeal causal inquiry from ex-
perimental data. Given a set of experiments & = {(&1,Un), (Ea,Ua), ... (En,Un)},
say two causal theories G and H are &-indistinguishable just in case
G||€ is U-indistinguishable from H ||€ for all experiments (£,U) in &.11
Here, the notion of U-indistinguishability is like I-indistinguishability,
except that one restricts one’s attention to the variables in ¢/ only.
That is, two graphs are U-indistinguishable if they entail that the same
set of conditional independences hold among the variables in U«. The
next theorem shows that experiments do not eliminate the problem of
piecemeal induction.

Theorem 3 Let V be any set of variables of size at least two, and let
& be any set of experiments such thatV is never comeasured (i.e. there
is no pair (E£,V) in &). Then there exist distinct causal theories Gq
and Go with different adjacencies that are &-indistinguishable.™

By Verma and Pearl’s theorem, notice that the theories G; and
G5 in the above theorem are distinguishable by passive observation
alone if all variables can be comeasured. Hence, the theorem raises the
question: do experiments have any value in mitigating the problem of
piecemeal induction? Intuitively, the answer is “yes”, and this intuition
can be made precise and justified. I will argue that, often, experiments
provide evidence in two ways that passive observations cannot, namely,
(1) by indicating the direction of a causal connection (whether direct
or indirect), and (2) by indicating the ezistence (or absence) of a direct
causal connection.

I should pause for a moment to discuss the importance of the sec-
ond point. Under the assumption that all variables can be comea-
sured, Verma and Pearl’s theorem guarantees that, if one has identi-
fied a causally sufficient set of variables, one can learn whether any two
variables are directly causally connected by passive observation alone.

H1f every pair in & is of the form (£, V) (i.e., all variables are observed in the interven-
tion) and (B,V) € & (i.e. all variables are passively observed simultaneously), then the
&-indistinguishability class is identical to the interventional equivalence class induced by
Z={&:(&,V) € &} in the sense of [Hauser and Bithlmann, 2012].

12This theorem follows immediately from the next, and so only the latter is proven in
the appendix.
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Hence, one might conclude that, if one has identified a causally suf-
ficient set of variables, experiments only play a role in indicating the
direction of some causal connection (i.e., they are only useful for the
first reason above). I will argue that this inference is hasty: even if a set
of variables is causally sufficient, experiments can play a valuable role
in indicating the existence or absence of causal connections precisely
in the circumstances most frequently encountered by social scientists
and medical researchers, namely, those in which causal theories must
be constructed piecemeal.

I will now consider the two uses of experiments in order. It is
fairly easy to see that experiments (represented as above) resolve all
ambiguities concerning the direction of causation, even when only two
variables can be comeasured. Why? Recall, by the cMcC, two variables
V and W are unconditionally dependent if and only if at least one of
the following three conditions holds: (1) V is a cause of W, (2) W is
a cause of V', and/or (3) the two share a common cause. I claim that
researchers can learn which of the three options holds by conducting
no more than two experiments in which only V' and W are comeasured.

For example, consider the causal theory above concerning fast food
habits, arterial plaque, arterial rigidity, and heart disease. Suppose
medical researchers are interested in the relationship between arterial
plaque and heart disease; they have noticed a correlation between the
two, and they wish to know whether the correlation arises from a di-
rect causal connection or from some common cause. In other words,
researchers have conducted an observational study in which only arte-
rial plaque and incidence of heart disease were comeasured, but they
believe the discovered correlation may be attributable to a latent com-
mon cause. They decide to conduct an experiment.

In the experiment, researchers give some patients a pill that dis-
solves arterial plaque, and they give others a pill that increases plaque.
After several years, researchers still observe a correlation between ar-
terial plaque and heart disease. What can explain said correlation? In
particular, can the correlation be explained by a common cause be-
tween plaque and heart disease? Or can it be explained by a theory in
which heart disease is a (direct or indirect) cause of arterial plaque?

The answer to both questions is “no.” By assumption, the exper-
iment breaks all edges into arterial plaque in the underlying causal
graph. Thus, after the experiment, all causal paths between heart dis-
ease and arterial plaque are pointed “away” from the variable arterial
plaque. In particular, the two variables share no common cause (as,
if there were a common cause, there would be a path from the com-
mon cause “into” arterial plaque), and further, heart disease cannot
be a cause of arterial plaque (as if it were, there would be a path
from heart disease “into” arterial plaque). So the correlation in the
experiment has only one explanation, namely, that arterial plaque is a
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cause of heart disease.'® Further, if arterial plaque is a cause of heart
disease in the experiment, it must likewise be a cause even when no
intervention is performed.

Notice, this argument is completely general: if one knows that V'
and W are directly causally connected, then conducting one exper-
iment in which V is manipulated is sufficient to reveal whether V
causes W or vice versa. Combined with Verma and Pearl’s theorem,
this observation entails the first half of Eberhardt’s theorem. Why? By
Verma and Pearl’s theorem, one can learn whether any two variables
are directly causally connected via passive observation if all variables
can be comeasured in a single study. Further, if one can conduct a se-
ries of experiments satisfying the pair condition, then the above argu-
ment shows that one can determine the direction of each direct causal
connection. So one can learn the true underlying causal structure.

Importantly, the above argument is applicable even if one cannot
(passively) comeasure all variables. Notice that, in the experiment
involving arterial plaque and heart disease, researchers’ conclusions
depended only upon the observed correlation between heart disease
and arterial plaque. That is, their conclusions depended in no way
upon observations of any other variables, nor upon the previous ob-
servational study in which a correlation was discovered. This suggests
that experiments are particularly powerful because they allow one to
reach causal conclusions even when no more than two variables can be
comeasured. Again, this intuition can be made precise.

Say two causal graphs G; and G, are k, j-indistinguishable if
in every experiment in which at most k variables are comeasured and
at most j are subject to an intervention, the theories G; and G5 sat-
isfy the same set of conditional independences. In the special case
in which j = 0, say G; and G are k-indistinguishable. To show
that experiments mitigate the problem of piecemeal induction, there-
fore, one can examine the way in which k-indistinguishability and k, 1-
indistinguishability differ. The argument just given is an informal proof
of the following theorem:

Theorem 4 Suppose G and H are 2,1-indistinguishable. If V is a
(direct or indirect) cause of W in G, then it is likewise so in H.

Theorem 4 shows that experiments can aid in detecting the direc-
tion of a causal connection, even when one can comeasure at most two
variables in any study. To see how experiments aid in learning the
existence (or absence) of a causal connection, it will be helpful to con-
sider a toy example in which some variable V' is a common cause of

13Importantly, this argument does not rule out the possibility that, if no interventions
are performed, the two share a common cause. It simply shows that plaque is a cause of
heart disease.
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nine others - call them Wy, W5, ... Wy. Suppose that none of the nine
variables W1, Ws, ... Wy is a cause of any other, and so the causal rela-
tionships among the ten variables can be represented by the graph G in
the figure below. Next, assume that researchers can passively observe
at most two variables in any given study. Under this assumption, the
true graph cannot be distinguished from any complete causal theory,
i.e., a theory which states that all of the variables are directly causally
connected. One such graph is depicted in the figure below. Here, the
truth G differs from the rival complete graph H by 36 edges.

G H

V

W Wy | Wi-Wa - Wg Wy
N

Figure 7: Graphs that are 2 indistinguishable, but 2, 1
distinguishable

Wi

Importantly, if the true causal theory were represented by G in the
above figure and no more than two variables could be passively ob-
served in any study, then one could not tell whether any two variables
were directly causally connected. That is, for any pair of variables X
and Y under investigation, there is some causal theory indistinguish-
able from the truth in which X and Y are directly causally connected,
and there is another theory indistinguishable from the truth in which
they are not. Thus, absolutely nothing could be learned about the true
causal structure G from passive observation of two variables at a time.

What could be learned if experiments were available? The answer
is, “everything.” In the above example, although the true causal theory
is 2-indistinguishable from many others (including complete graphs), it
is 2, 1 distinguishable from only itself. This follows almost immediately
from Theorem 4. Why? Suppose some causal graph J is indistinguish-
able from the truth G. Then, by Theorem 4, J must entail that V is a
cause of Wy, ..., Wy as G does. Now, suppose for the sake of contra-
diction that W; is a cause of W; in J for some choice of ¢ and j. Since
J is indistinguishable from G, it follows from Theorem 4 that W; is a
cause of W, in G as well. But no such causal connection exists in G,
and so none must exist in J either. So the causal graph J is identical
to G.
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The above example suggests that two k, j-indistinguishable graphs
might differ, in the worst-case, by fewer edges than do k-indistinguishable
graphs. Unfortunately, this is not always the case. When £k =n — 1
or k =n — 2, two causal theories might be k, j-indistinguishable, and
yet one graph might contain one or (";1) edges respectively that the
other does not; these are exactly the same number of edges as in the
case of passive observation.'* However, I conjecture that experiments
do reduce the worst-case bounds in all “non-trivial” cases, i.e., in all
cases which k is neither two nor n — 1.

By how many edges can two k, j-indistinguishable graphs differ?
The next theorem provides a rather messy lower bound for when at
most one variable is subject to an intervention (i.e. j =1).

Theorem 5 Suppose there are n variables under investigation and
k <mn. Let h be %=2 rounded down, and let M = (n —1) — h(k — 1).
Then there exist graphs G and H such that G is k, 1-indistinguishable

from H, and yet H contains f(n,k) edges that G does not, where
1. fln,k)=n—k ifh=1,
2. fln,k)=2n+1) -3k if h =2, and
3. f(nk) = (k—12(";") + (k—1)(h— 1)+ Mh if h > 3.

I conjecture that each of these lower bounds is also an upper bound,
but verifying that conjecture is future work. If this conjecture were
true, then despite their messy and uninformative appearance, the bounds
in Theorem 5 would show how experiments aid in discovering the pres-
ence or absence of causal connections. Why? If only passive obser-
vation were possible, two k-indistinguishable graphs might differ by
g(n, k) = ("7]2““) many edges.'® Some quick algebra shows that ¢ is
a quadratic function of n — k, and so the number of edges by which
two k-indistinguishable graphs might differ increases rapidly as either
(a) the number of variables becomes large or (b) the number of vari-
ables one can comeasure in a study decreases. In contrast, notice that
f(n, k) is bounded above by a linear function of n — k under certain
conditions, and hence, f increases far less rapidly than g. Only when
h > 3 is f a quadratic function of n — k.

The above theorems provide partial answers to the first question
posed at the end of the last the section, namely, “what type of infor-
mation is lost in the piecemeal construction of causal theories, and how
much is lost?” Theorem 4 shows that, given experiments in which no
more than two variables can be comeasured and at most one can be
subject to an intervention, no information concerning the direction of
causation is lost by the piecemeal construction of theories. In contrast,

4See Theorem 6 in [Mayo-Wilson, 2012].
'5See Theorem 6 in [Mayo-Wilson, 2012].
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Theorem 5 shows that, in the worst-case, quite a bit of information
might still be lost concerning the presence or absence of causal con-
nections, but that experiments still provide information that passive
observation could not.

Now consider the second question ( “when is no information lost?”).
[Mayo-Wilson, 2013)’s Theorem 8 shows that, if the underlying true
causal theory contains relatively few edges, then piecemeal inquiry
leads to no loss of information. Specifically, if a DAG contains fewer
than 2k — 2 edges, then comeasuring k variables at a time is sufficient
to determine its l-equivalence class. An analogous result holds when
experiments are available, as is shown by the following theorem:

Theorem 6 Suppose there are n wvariables under investigation. As-
sume that, in any given experiment, at most k < n many variables can
be comeasured and at most one variable can be manipulated. Finally,
assume that the true causal theory postulates fewer than 2k — 2 direct
causal links. Then the true causal theory can be uniquely determined.
In other words, the k,1-indistinguishability class of any causal theory
G, which has fewer than 2k — 2 edges, contains only G itself.

Notice that, by definition, if two theories are k,1 distinguishable,
then they are k, j distinguishable for all j > 1. So the above theorem
shows also that, when the true causal graph is sufficiently sparse, then
simple interventions/experiments are sufficient to discover it. This con-
clusion should be compared with results that show that, in the worst-
case, complex interventions involving many variables may be necessary
to discover certain causal structures.'6

Thus far, I have characterized how much causal information is lost
in the worst-case when many experiments are combined, and I also
showed that, in the best-case (i.e. when the true causal theory is
sufficiently simple), the truth can be determined uniquely. So one
might ask, “How often does the problem of piecemeal induction arise?”

Say that a causal theory G; is k,j underdetermined if its k, j-
indistinguishability class contains a theory Gs such that G; and G2 are
not I-indistinguishable. In other words, G; and G5 can be distinguished
by passive observation alone if all variables can be comeasured, but
they can’t be distinguished if only & many variables can be comeasured
at a time, even if up to j many of the observed variables may be subject
to an intervention. Let pj j(n) be the proportion of DAGs containing
n many variables that are k, j underdetermined.

When only passive observation is possible (i.e., when j = 0), [Mayo-
Wilson, 2013] (Theorem 9) shows that the proportion py o(n) of graphs
over n many variables that are k, 0-undetermined approaches 1 as n ap-
proaches infinity. The following result shows that interventions do not

Thanks to David Danks for suggesting this point.
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reduce the frequency of underdetermination as the number of variables
becomes large.

Theorem 7 For any natural number k and any 5 < k, the proportion
pk;(n) of graphs over m many variables that are k,j-undetermined
approaches 1 as n approaches infinity.

The news gets worse. Given a causal theory G, define the ex-
tent of k,j-underdetermination of G to be the maximum num-
ber of distinct causal theories G1, Ga,...,G,, such that (i) G is k, j-
indistinguishable from G; for all i < m, and (ii) each pair of the theo-
ries G,G1,Go, . .., G,y are |-distinguishable if all variables are comea-
sured. Let Ej j(n) be the average extent of k-underdetermination over
all causal graphs concerning n variables. Informally, Fj, ;(n) measures
how much piecemeal inquiry increases underdetermination, as it makes
precise how many theories (on average) one can no longer distinguish.

When only passive observation is possible (i.e., when j = 0), [Mayo-
Wilson, 2013] (Theorem 10) shows that the size of k, O-indistinguishability
classes Ej o(n) becomes arbitrarily large as n approaches infinity. The
next result shows that interventions do not reduce the asymptotic size
of indistinguishability classes as the number of variables grows.

Theorem 8 For any natural numbers k and j < k, the average ez-
tent of k, j-underdetermination Ej ;(n) becomes arbitrarily large as n
approaches infinity.

What is the philosophical upshot of these theorems? It’s not clear.
Theorem 7 says that, relative to a uniform distribution over the set
of all DAGs consisting of n variables, the probability that a randomly
chosen graph is k, j-underdetermined is high if n is large. However,
it’s rare that researchers will find all such graphs to be equally plau-
sible given background theory. Of course, scientists are interested in
large variable sets precisely in the circumstances in which the causal
relationships among the variables are complex and varied, which is a
reason to suspect the k, j-underdetermination might be common. But
detailed case studies are necessary to determine the frequency of k, j-
underdetermination in different empirical sciences.

Furthermore, although the fraction of &, j-underdetermined graphs
approaches one as the number of variables is increased, neither the
theorems above nor their proofs provide any information about how
quickly that limit is reached. If n must be enormous in order for py ;(n)
to be significantly greater than zero, then researchers will know that
the problem of piecemeal induction is sufficiently rare. Similar remarks
apply to Ex,(n). A combination of simulations and detailed case
studies might reveal that, in some fields, pi ; and Ej j(n) are small for
realistic values of k and j.
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Finally, the skeptical nature of my theorems thus far is, in part, a
result of the fact that I have assumed researchers have a paucity of ev-
idence. Researchers rarely know only facts about conditional indepen-
dence. Social scientists and medical researchers often have substantial
domain-specific knowledge that constrains plausible causal theories.
But even if one restricts one’s attention to purely statistical evidence,
researchers will typically know more than just which variables are con-
ditionally independent of which others. For example, researchers will
know if a variable is continuous or if it can take only finitely-many
values. They might know that some variables are normally-distributed
whereas others are not. Researchers might have good reason to be-
lieve, given other evidence, that some variables are linear functions of
others. And so on. Call these distributional assumptions.'” The
next section investigates what can be learned in causal inference when
distributional assumptions are available.

3 Distributional Assumptions

In this section, I argue that distributional assumptions can mitigate
the problem of piecemeal induction. Section 3.1 introduces a novel
distinction between Il-indistinguishability and what is typically called
“Markov equivalence.” I prove that, if not all variables can be comea-
sured simultaneously, then assuming the cMC and CFC allows one to
distinguish causal graphs that cannot be distinguished by conditional
independence facts alone.

In section 3.2, I investigate what can be learned using four types
of stronger distributional assumptions, namely, the assumptions that
the underlying causal model is (1) discrete multinomial, (2) noisy-or,
(3) linear Gaussian, or (4) linear non-Gaussian. Here, I prove only two
preliminary results, but the results highlight two important method-
ological points. First, although some distributional assumptions (e.g.,
that the true joint distribution is multivariate Gaussian) are known
to be uninformative (in a sense to be clarified) when all variables are
comeasured, those same assumptions are essential in piecemeal inquiry.
Conversely, assumptions that are fruitful when all variables can be
comeasured (e.g., that the true model is linear but non-Gaussian) may
not be as helpful in piecemeal inquiry. Section 3.3 concludes with a
brief discussion of what can be learned from a combination of experi-
ments and distributional assumptions.

1730 distributional assumptions include both parametric assumptions (e.g., that the true
model is linear Gaussian) and non-parametric ones (e.g., that the model is non-Gaussian).
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3.1 Markov Equivalence vs. I-Indistiguinshability

Fix a set of variables V. Define a causal model over V to be a pair
of the form (G, p), where G is a causal graph and p is a probability
measure over the variables in G. Given a set of causal models M, say
a probability distribution p is M-compatible with G if (G,p) € M.

Say G is M-indistinguishable from H if every probability distri-
bution that is M-compatible with G is M -compatible with H and vice
versa. Thus far, I have focused on when M consists of all pairs (G, p)
such that the variables in G satisfy the cMC and CFC with respect to
p.1® Such causal models are called Bayesian Networks, and so let
M gn be the set of Bayesian networks.!?

In the causal discovery literature, it is common to say two graphs
G and H are Markov equivalent if they are M py-indistinguishable.
By definition, Markov-equivalence and I-indistinguishability are math-
ematically equivalent.?’ That mathematical equivalence, I believe, has
led some practitioners to infer that, if one assumes only the cMc and
CFC, one can distinguish between two causal graphs if and only if the
graphs encode different conditional independence facts. In other words,
one might infer that the cMC and CFC entail only that the observed
data will (in the limit) satisfy certain conditional independence con-
straints. As I now show, that inference is valid only if one assumes
that all variables can be comeasured simultaneously.

Given a set of variables )V, a subset Y C V, and a probability
distribution p over V, the marginal distribution py describes the prob-
abilities of events involving all and only the variables in Y. For ex-
ample, if V = {Wealth, Wine, Medical Care, Heart Disease} and
U = {Wealth, Wine}, then py will specify the probability that a
wealthy person drinks wine frequently, but it will not specify how prob-
able it is that wealthy people have access to medical care.

If p describes the true underlying probability distribution among a
set of variables V), and if a researcher conducts a series of observational
studies % in which one comeasures U in the first study, comeasures Us
in the second study, and so on, then she will acquire estimates of the
marginal distributions py, , pu, and so on. Thus, given a set of causal
models M and set of observational studies % = {U1,Us, ..., Uy}, say
G is % M-indistinguishable from H if

1. For all distributions p that are M-compatible with GG, there is a

18Saying that G satisfies the CMC “with respect to p” means that every variable in G is
conditionally independent with respect to p of its non-descendants given its ancestors.

1990 “q is M gy compatible with H” means “gq is Markov and faithful to H.”

2ONote, I have defined “Bayesian network” using the Markov and faithfulness conditions.
If one defines “Bayesian network” in terms of a condition that requires a probability
distribution to factor in a particular way, the equivalence of Markov-equivalence and I-
indistinguishability requires a proof. See [Lauritzen et al., 1990].
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distribution ¢ that is M-compatible with H such that py; = qy
for all Y € %, AND

2. For all distributions p that are M-compatible with H, there is a
distribution ¢ that is M-compatible with G such that py, = qy
foralld € % .

% M -indistinguishability formalizes what one could learn if one as-
sumes that the true causal model belongs to M and that one can
accurately estimate the marginal distribution p;; for each set of vari-
ables in U € % . The obvious way to generalize the notion of Markov
equivalence to piecemeal inquiry, therefore, is as follows. Say G is % -
Markov-Equivalent to H if the two graphs are % M gy-indistinguishable.

Although Markov equivalence and I-indistinguishability are equiv-
alent, their piecemeal analogs are not, as the next theorem shows.
Before stating the result, a bit of motivation. Suppose (G,p) is the
true causal model, and assume a researcher conducts a series of obser-
vational studies %/. Finally, imagine she makes no assumptions about
the type of probability distribution generating the data other than it
satisfies CMC and CFC with respect to the true DAG. Then if the re-
searcher learns only the outcomes of conditional independence tests,
then she will be unable to distinguish G from graphs H that are % -
indistinguishable from G. In contrast, if she pays attention to features
of the marginal distributions she observes (in addition to the indepen-
dence structure), she will be unable to distinguish G from graphs H
only if G and H are % M gy indistinguishable.

Theorem 9 If G and H are % -Markov-FEquivalent, then they are % -
indistinguishable. The converse is false in a fairly strong sense. Sup-
pose ¥V & % and that V contains at least three variables. Then there
exist U -indistinguishable graphs G and H that are not % -Markov-
Equivalent.

Theorem 9 says that, even when one makes no distributional as-
sumptions other than the cMC and CFc, fine-grained statistical ev-
idence — such as the probability that a person who drinks a glass of
wine a day also develops heart disease — can sometimes help distinguish
causal graphs during piecemeal inquiry in ways that conditional inde-
pendence facts — like that wine-drinking is not independent of heart
disease — cannot.

Why is Theorem 9 true? Suppose that (G, p) is the true underlying
causal model and that a researcher has conducted a series of observa-
tional studies 7. Further, assume the graph H is %/ -indistinguishable
from G. That means there is probability distribution ¢ that is M gy
compatible with H such that ¢ entails the same conditional indepen-
dence facts as p with respect to all the subsets of variables comeasured
in the studies of %. So if a researcher knew only the outcomes of
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conditional independence tests, she would be unable to rule out the
possibility that (H,q) generated her data. However, although p and
q might entail the same conditional independence facts, the marginal
distributions of g over % might differ from those of p. So although ¢
will be consistent with known conditional independence facts, it might
conflict with other known features of p.

Why does the same reasoning not show that Markov equivalence
and |-indistinguishability come apart? The answer is that if (1) p is
M py compatible with G and (2) G is l-indistinguishable from H,
then p dtself is M gy compatible with H, by definition of M gy-
compatibility. In contrast, it is possible that (1) p is M gx compatible
with G, (2) G is % -indistinguishable from H, and (3) p is not be M gy
compatible with H because p may not entail the set of conditional in-
dependences encoded by H over all of V.

In short, theorem 9 suggests that attending to more than condi-
tional independence can eliminate some underdetermination in piece-
meal inquiry. In the next subsection, I show that a few stronger, but
commonly satisfied, distributional assumptions are powerful tools in
piecemeal inquiry.

3.2 Stronger Distributional Assumptions

If M represents the set of causal models that are possible a priori,
then intuitively, the difficulty of causal discovery will vary with the
size of M: the larger M is, the more difficult discovery will be. In this
section, I vindicate that intuition. I prove that, if it is known that the
true causal model belongs to one of four classes of models that have
been studied extensively, then causal discovery becomes easier.

Discrete Multinomial Models: A discrete, multinomial model (DMM)
is a causal model in which all the variables take at most finitely many
values. Let D denote the set of DMMs. Discrete models are ubiquitous
in medical research and the social sciences. Let DT denote the class
of bMMs with a positive distribution, i.e., the class of pairs (G, p) such
that p(Vi =r1,Va =7rq,...,V,, =r,) > 0 for all values of V,...,V,,.

Noisy-Or Models: A special class of DMMs are called noisy-or mod-
els. Suppose Jane gets headaches routinely, and suppose that her
headaches are often (but not always) caused by allergies or a cold (or
both). So there are three variables under investigation, and all three
are binary: either Jane has a headache or not, either she has a cold or
not, and either she has allergies or not.

Suppose that if Jane has a cold, she does not always develop a
headache and similarly for allergies. In each case, other factors must
be present for Jane to develop a headache. For instance, Jane’s cold
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might produce a headache only if she forgets to take an aspirin. Group
all the relevant factors into a single variable B.,4 such that, if Jane
has a cold and the factors B.,q are present, then she will develop
a headache. Similarly for allergies. Finally, suppose that, although
Jane’s headaches are often caused by allergies or a cold, there is some
chance that she develops a headache even if she has neither a cold or
allergies. In sum, Jane will develop a headache if and only if

e Jane has a cold and B4 are present, or
e Jane has allergies and Bgjiergies are present, or
e Some other unknown factor produces a headache.

In other words, the variable Headache is a logical disjunction of its
causes, which is why the causal relationships described here are an
example of a “noisy or” model. What makes the disjunction “noisy”
is that the factors beyq (or ba”e,«gies) need to be present in order for
the presence of a cold or allergies to have an effect.

In general, given a causal graph G among a collection of observ-
able, binary variables V), a noisy-or model is determined by a series
of equations of the following sort. For each variable V', there is some
unobservable “noise term” FEy such that, if Ey takes the value one,
so does the variable V. Moreover, these error terms are independent.
Similarly, for each direct causal connection W — V| there is some
unmeasured variable By such that, if both W and By take the
value one, so does V. These variables By are likewise independent,
and they are also independent of the error terms. In symbols, one can
write any variable V' as a function of its parents PAG(V') as follows:

V=Eyv \/ (BwvAW).
Weprag(V)

Let NNV denote the class of noisy-or models.

Linear Gaussian: In noisy-or models, all variables take two values,
and each variable is a logical disjunction of its parents. In linear Gaus-
sian models, all variables are normally distributed, and each is a linear
function of its parents. Formally, given a causal graph G among a col-
lection of observable variables, a linear Gaussian model is determined
by a set of real numbers and equations as follows. For each variable
V in the graph, the model contains some normally distributed error
variable Fy, and for each direct causal connection W — V| there is
some real number by that represents the “strength” of the connec-
tion between W and V. So one can write any variable V' as a function
of its parents PAg (V') as follows:

V =FEy + Z bwyv - W
Weprag (V)
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Note the similarity between noisy-or and linear Gaussian models. If
one systematically replaces the “or” with addition and “and” with mul-
tiplication in the equations of the noisy-or models, then one obtains a
linear model. Let LG denote the class of all linear Gaussian models.

Linear Non-Gaussian: In a linear non-Gaussian model, variables
are once again linear combinations of their parents and an indepen-
dent noise term; the only difference from LG is that the error terms
€, for each variable v are assumed to be anything but normally dis-
tributed. Let Lingam denote the class of all linear non-Gaussian
models.

What can be learned when one assumes the true causal model be-
longs to one of these four groups? It turns out that for bMMs and
linear Gaussian models, distributional assumptions seem to be of no
use if all variables can be comeasured.

Theorem 10 [Geiger et. al. 1990] Suppose G and H are |-indistinguishable.
Let M be either the class of discrete models or linear Gaussian ones.
Then G and H are also M -indistinguishable.?!

However, the same assumption is tremendously powerful in piecemeal
inquiry, and this is already implicitly widely-recognized. To see why,
say G and H are Mk indistinguishable if they are % M indistinguish-
able and % consists of all subsets of size k.

Theorem 11 Let M be the class of linear Gaussian models, and sup-
pose that G and H are M 2-indistinguishable. Then G and H are
M -indistinguishable, and hence, |-indistinguishable.

In other words, if the true causal model is known to be linear Gaus-
sian, then comeasuring two variables at a time provides as much in-
formation about causal structure as passively observing all variables
at once.?? The proof of Theorem 11 is trivial,?® but its importance,

*'To my knowledge, theorem 10 was first proven by Geiger et al. [1990]. In the linear
Gaussian case, the theorem was generalized by Richardson and Spirtes [2002] to include
causal theories with latent variables in the presence of selection bias. An alternative
proof in the discrete case was given by Meek [1995]. A constructive proof for the linear
Gaussian case is given in [Mayo-Wilson, 2012]. Theorem 10 ought to be contrasted with
results of [Shimizu et al., 2006], which shows that G is M-indistinguishable from only
itself if M = Lingam. [Hoyer et al., 2009] show that M-indistinguishability differs from
I-indistinguishability when M contains nonlinear additive noise models, but as far as I am
aware, there is no general characterization of M-indistinguishability for noisy-or models
or for when M contains nonlinear additive noise models.

22 At this point, I should reminder readers that all of the equivalence classes I have intro-
duced characterize indistinguishability “in the limit” i.e., with arbitrarily large samples.

Z3Here’s the proof, which was suggested to me by Frederick Eberhardt. If every pair of
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I think, has been overlooked. Geiger’s theorem might, on first glance,
suggest that the assumption of normality is inert in causal inference.
Theorem 11 shows this is the wrong interpretation. Rather, because
the assumption that all variables can be comeasured is so strong, some
distributional assumptions appear useless. But this is akin to arguing
that a hammer is useless because, on some occasions, one has access
to a set of power tools. Recall that if one jettisons the normality as-
sumption and relies exclusively on conditional independence facts, then
two causal theories over n many variables might postulate as many as
(";1) different direct causal connections if only two variables can be
comeasured in any study.

I conjecture that a result similar to theorem 11 is likewise true for
linear non-Gaussian models.?* Why? In such models, the joint effect
of several variables is the sum of the individual effects: causes do not
interact. So one might expect to be able to learn about direct causal
connections by investigating pairwise interactions among the variables.

The case for noisy-or models is less clear. In the proof of Theorem
9, I construct two causal theories that are 2-indistinguishable but not
M 2-indistinguishable if M = NV is the set of noisy-or models. So the
noisy-or distributional assumption provides information beyond what
can be inferred from conditional independence constraints alone. That
provides some optimism, as well as the structural similarity between
noisy-or and linear models. But it is unclear how to use pairwise mea-
surements of a noisy-or model to derive all conditional independence
constraints; further research is necessary.

What about discrete models generally? Here is a very preliminary
result.

Theorem 12 Let M C D™ be the class of positive DMMs with only
binary variables. There exist causal theories G and H that are 2-
indistinguishable but not M 2-indistinguishable.

For reasons explained in the appendix, my proof of theorem 12
is not easily generalizable, and in particular, it does not help one
understand the relationship between k-indistinguishability and Mk-
indistinguishability if k¥ > 2 or if M consists of models with dis-

variables is comeasured, then it follows that every variable V' is measured in some study.
So one can calculate the mean of each variable V. Similarly, if V' and W are comeasured in
an observational study, then one can calculate the covariance of V' and W. Thus, if one can
comeasure all pairs of variables, one can calculate the entire covariance matrix and mean
vector. If the true model is linear Gaussian, then the unknown probability distribution
is completely characterized by the mean vector and covariance matrix. Hence, any two

models that are M 2-indistinguishable are likewise M -indistinguishable.

from the statement of the theorem,

24But one will need to eliminate the last clause, “and hence, l-indistinguishable”,
as M-indistinguishability does not entail I-

indistinguishability if M = Lingam.
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crete variables that are not binary. So an open question is whether
stronger distributional assumptions about discrete models might aid
one in piecemeal causal inference.

3.3 Combining Experiments and distributional As-
sumptions

Of course, distributional assumptions can be combined with experi-
ments. For example, by theorem 11, it follows that, if the true model
is linear Gaussian, then any graph that is 2, 0-indistinguishable from
the truth will have the same edges as the true graph. By Theorem
4, if researchers can manipulate any variable under investigation, then
any graph indistinguishable from the truth will postulate that V is a
(perhaps indirect) cause of W only if the true graph does. Hence, if the
true model is known to be linear Gaussian and one can conduct any
experiment in which two variables are comeasured and one is manipu-
lated, then the true graph can be determined. That fact follows from
a more general result in Hyttinen et al. [2010], where it is shown that
the same fact remains true even if (i) the true causal graph is cyclic,
(ii) there are latent variables, and/or (iv) the CFC fails. The moral is
the combining experiments and distributional assumptions can yield
informative conclusions even in piecemeal inquiry.

4 Conclusions and Future Work

I have argued that, if causal conclusions are inferred from conditional
independence facts alone, piecemeal inquiry can dramatically increase
underdetermination. However, theorem 9 suggests that finer-grained
statistical information about the joint distribution - even in the absence
of parametric or non-parametric assumptions - can help distinguish ri-
val causal theories. Because my results are preliminary, the primary
contribution of this paper, I would argue, is to highlight several im-
portant types of open questions about the piecemeal construction of
causal theories from experimental data. Here, I discuss six categories
of questions.

First, even when the problem of piecemeal induction is inevitable,
it is possible that scientific institutions might be able to plan sequences
of experiments so as to minimize the type of causal information that
is lost. Eberhardt et al. [2006] proves a series of results that char-
acterize how many experiments are necessary, in the worst-case, to
discover the true causal graph. One can ask similar questions about
the worst-case number of experiments necessary to determine that k, 1-
indistinguishability class of the true graph. Or, given existing studies
and experiments, one can ask which larger subsets of variables ought
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to be comeasured next to reduce underdetermination.

Second, many of the above results assume that one can manipulate
any variable under investigation and that every subset of variables of a
fixed size can be comeasured. Neither of these assumptions is typically
true. Even if some variables can be manipulated (e.g., arterial plaque
through medication), intervening on others (e.g., to induce heart dis-
ease) might be unethical, practically impossible, or both. Similarly, not
every subset of k many variables can be comeasured. Future research
ought to characterize what can be learned from series of experiments
that are not so “combinatorially nice.”

Third, Theorem 9 shows that, even in the absence of parametric or
non-parametric assumptions, the cMC and CFC entail that there erist
rival causal models that can be distinguished by their marginal distri-
butions, even if the marginal distributions of the two models entail the
same conditional independence facts. Unfortunately, my proof does
not provide a general method for determining which graphs are com-
patible with arbitrarily given marginal distributions, and so it cannot
be used to devise a causal discovery algorithm from piecemeal data.

Fourth, all of my results assume CFC and that causal graphs are
acyclic. What can be learned if one or more of these assumptions is
dropped? Fifth, section three characterizes % M -indistinguishability
classes only when M is the set of linear Gaussian models. For ev-
ery other set of causal models M, a precise characterization of % M-
indistinguishability remains an open problem.

Finally, the above representation of experiments is not always re-
alistic. Why? I have assumed that, when a variable V' is manipulated,
the causal influence that any other factors exert on V is eliminated.
Such “hard” interventions are rarely possible in the social sciences.

Under the assumption that all variables can be comeasured in an
experiment, Eberhardt [2007] and Eberhardt and Scheines [2007] in-
vestigate what can be learned from sequences of “soft” interventions,
in which the experiment does not sever causal relationships between
the manipulated variable and its causes. They show that soft interven-
tions can be extremely informative when all variables are co-measured.
But do soft interventions improve upon what can be learned by passive
observation alone in piecemeal inquiry?

An example motivates optimism. Let G be the graph V; — V5, —
V3. The 2-indistinguishability class of G contains all complete graphs
and any graph with two edges and no unshielded colliders. The 2, 1-
indistinguishability class of G contains only G and the graph obtained
by adding an X; — X3 edge to G. Now suppose we define a j, k “soft
intervention” class to be one in which we can introduce (and observe)
J many new causes and observe k many variables in the original set.
For instance, a soft intervention might allow one to introduce a new
cause Z of V5 and observe the relationship between Z, V5 and V3. It
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is easy to show that that the 2, 1-“soft intervention” class of G is the
same as the hard one. So soft interventions sometimes improve upon
passive observation in piecemeal inquiry. Further research ought to
characterize soft-interventional equivalence classes generally.
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Appendix
5 Directed Acyclic Digraphs

5.1 Notation and Definitions

For any finite set V, let DAGy denote the set of all directed acyclic
graphs (DAGs) that have the vertex set V.
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Let G € DAGy and V — W be an edge in G. Then V is called a
parent of W, and W is called a child of V. If V is either a parent or
child of W, then the two vertices are said to be adjacent in G. Let
PAG(V') denote the set of parents of V' in G, and let cHg (V') denote
its children. If V; — V3 «+ V5 € G, then V3 is called a collider with
respect to V7 and V5. If V3 is a collider with respect to V; and V5 and,
in addition, there is no edge between V; and V5, then V3 is called an
unshielded collider with respect to V; and V5.

A path 7 in G is a non-repeating sequence of vertices m = (V1, Vs, ...

such that V; and V41 are adjacent if 1 < i < n. If V; and V;;5 are
both parents of V;;1 in G, then V;,; is said to be a collider on ; if
not, it is a non-collider on 7. Endpoints of a path are, by definition,
non-colliders on the path. A path 7 is called directed if V; is a parent
of V41 for all ¢. If there is a directed path from V to W, then V is
said to be an ancestor of W, and W is said to be a descendant of
V. For any vertex V, let DESCq (V') denote the set of descendants of
Vin G.

Given a path 7 = (V4,Va,...,V,,), let 7 | V; = (V4,...,V;), and
call w | V; the initial segment of 7 that terminates with V;. Similarly,
let 711V, =(V;,...,V,), and call w1 V; the tail of = that begins with
V; and terminates with the end of 7. Given two paths 7; and 79 in a
graph G such that the endpoint of m; is the starting point of 7o, let
w1 — Ty denote the concatenation of the two paths.

In diagrams, I use straight lines to indicate the existence of an
edge. Undirected paths are indicated by curves with no end markers
(like that between V5 and V3), and a directed path is indicated by a
curve with an arrow marker at one end (e.g. there is a directed path
from Vy to V3).

Vi — Vo~ Vs A Vy
Figure 8: Edges, undirected paths, and directed paths

5.2 d-Separation

Fix aset V and G € DAGy,. Let V1, V5 € V be distinct vertices and U C
V\ {V1,Va}. A path 7 between V; and V5 is said to be d-connecting
given U (or active given i) if both of the following conditions hold:
1. Every non-collider on 7 is not in U, and
2. Every collider on 7 is either in U/ or contains a descendant in .
Say Vi and V5 d-connected given U in G if there is a d-connecting
path between the two, and say they are d-separated otherwise. Given

three disjoint vertex sets Vi,Vo, U € V, say that V; and Vs are d-
connected given U if there exists vertices V3 € V; and Vo € Vs, such
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that V; and V5 are d-connected given U; otherwise, say that V; and Vs
are d-separated given U.

Let V be any set. Given % C P(V), let 1% denote the set of all
pairwise disjoint triples (V1, Vo, W) such that V; UVo UW C U for
someU € %. IfV € %, 1 will write IV instead of 1% Let |S| denote
the cardinality of the set S. For each natural number k& < |V, let
U ={U CV: U| <k}, and define I¥ = 1%,

Given G € DAGy and % C P(V), let 1% denote the set of all triples
V1, Vo, W) € I such that V; and V, are d-separated in G given W.
Let Dg denote the relative complement of IZ/ in1%. When V € %,
write lg instead of IZ{. If V1 and V, are d-separated in G given U, we
say that G satisfies the triple (V;,V5,U) (or that the triple holds in
G). In the special case in which V; and V; are singletons {V; } and {V5}
respectively, we write (Vi, Vo, W) € lg instead of (V1, Vo, W) € Ig.

Typically, only paths are said to be d-connecting/active or not. In
some of the theorems below, it will be helpful to consider active variable
sequences, which may contain some vertex twice. Let o be a variable
sequence with endpoints Vi and Vs, and let U C V \ {V1, Va}. Then a
vertex V3 is active on « in G given U just in case either

1. V3 is not a collider on 7 and V3 ¢ U

2. V3 is a collider on 7 and either (i) V3 € U or (ii) there is w €
Descq(V3) NU (or both).

The following lemma, which is a special case of Lemma 3.3.1. in
Spirtes et al. [2000] (pp. 386), asserts that an active variable sequence
indicates the existence of an active path with the same endpoints.

Lemma 1 Let G be any DAG, and suppose that 5 is an active variable
sequence given U with endpoints V- and W. Then there is d-connecting
path between V' and W given U.

6 &-equivalence

I say G, H € DAGy are % -equivalent if 1% = I% and write G =9 H
in this case. When V € %, I will write G = H, and say that G
and H are l-equivalent. Let G € DAGy. Given a subset £ C V),
let G || £ be the graph obtained by removing from G all edges into
the each variable in £. T will use the script letter & to denote sets of
pairs {(&1,U1), ..., (Em,Um)} such that € C U C V. T will call such
pairs experiments, and [ will say that U/ is observed and that the
variables of £ are subject to an intervention. Given G, H € DAGy,
write G =¢ H if Ilé”g = I%Hs for all (£,U) € &. Let [G]e denote the
&-equivalence class of G.

I will study the special case of &-equivalence in which all subsets
of k or fewer variables are observed, and all interventions of size j < k
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are possible. To do so, define:
i ={E U eV?:ECU and [U| <k and |€] < j}.

Write G =5; H if G =5, , H. Similarly, let [G]y; be the & ;-
equivalence class of G. Notice that G = ; H entails that G =
for all [ < j. When j = 0, I drop the subscript and write G =, H,
[G]k, and so on.

The following lemma will be essential. It is a generalization of
Lemma 8 in [Mayo-Wilson, 2013].

Lemma 2 Let G € DAGy be a graph with n vertices, and let k < n.
Suppose that there are k—1 disjoint, directed paths from Vi to Vo in G.
Moreover, suppose that V1 is not a parent of Vo. Let H be the graph
obtained by adding to G' an edge from Vi to Vo. Then G =i ; H for all
J<k.

Proof: Let (£,U) be an experiment such that U] < k. It is necessary
to show that Dzéug = Dlﬁ,ug. First, suppose that V5 € £. Then it follows
that G || € = H || £, as the G and H differ by only one one edge that
points into V5. Hence, it immediately follows that D%HS = le{ﬂ\s-

So suppose that if Vo & £. Then H || £ is the graph obtained by

adding the Vi — V5 edge to G || €. It follows that Déus C D'I“_IHg. So

it suffices to show that D’I“_I”‘g C Dg\lf' To this end, consider any triple
(Z1,Z2,W) in Dl;IHE' By definition, there is a d-connecting path 7z ¢
from Z; to Zy given W in H || €. T will construct a d-connecting path
Tq|e from Zy to Zs given Win G || €. To do so, let the k —1 distinct,
directed paths from V; to V5 be denoted §; through d,_1 respectively.
The proof breaks into two cases, and each case has two subcases.

Case 1: Suppose there is some ¢§; that contains no members of EUW.
Now either 7g¢ is also a path in G || € or it is not.

If mhe is also a path in G || €. Then it’s easy to show that
Tale = TH|e is likewise d-connecting in G || £. Why? Every non-
collider on 7g¢ is not a member of W because 7y ¢ is active given
W in H || £. Moreover, every collider C' on mg¢ is also a collider on
Tr|e- Since 7y is active given W, it follows that either C' or one
of C’s descendants in H || € is a member of W. But since H || £
is obtained from G || £ by adding an edge from V; to Va, and V7 is
already an ancestor of V5 in G || € (as G || £ contains the directed path
d;), it follows that the set of descendants of C'in H || £ and in G || €
are identical.

If Th|e is not a path in G || &£, then it must contain the edge
Vi — Va. Let 8 be the variable sequence obtained by replacing the
edge V7, — V5 with the directed path ;. In other words, define:

B = (maye L Vi) ~ 6 ~ (e T Va).
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The sequence [ is pictured in red below.

i
VA IRVAVaVaVa % EaVaVaVaVaVaVarl RV aVaVaVA)
\_/7

Figure 9:

Notice every variable on (7g e | V1) and (mg)e T V2) other than
V1 and V5 is active on 3 because it is active on 7g) . Moreover, Vi
is a non-collider on both 7 ¢ and 3, and hence, it is active on both.
Similarly, V5 is a collider on 3 if and only if it is collider on g e.
Therefore, it is active given W on 8 because it is on 7p)e. So 3 is an
active variable sequence given W between Z; and Z5. By Lemma 1,
there is an active path mg| ¢ between Z; and Z; given W.

Case 2: Suppose all of the paths d1, s, ...d,_1 contain some member
of EUW. As the paths are disjoint by assumption, it follows that £ Ul
contains at least £ —1 members. Since Z;,Zs € U\ W and EUW C U,
it follows that either (a) Z; € £ and is a member of some path d;, or
(b) Z2 € € and is a member of some path ¢;.

Case 2a: Suppose Z; € £ and is a member of some path §;. Then Z;
is a descendant of V; in G. Again, either (i) 7g )¢ is a path in G || £
or (ii) it is not.

Case 2ai: Suppose that 7y ¢ is a path in G || €. T claim it is active
given W in G || £. Suppose for the sake of contradiction it is not. Since
Tr|e is active given W in H || £, every non-collider on 7 ¢ is not
in W. Hence, every such non-collider is also active given W in G || €.
So if 7y is not active, then there is some collider C' on 7y ¢ that is
active in H || € but not so in G || €. Let C be the collider closest to Z;.
Since 71 € &, it follows that the initial segment of 7 ¢ points away
from Z;. Hence, as C'is the closest collider to Z; on 7y e, it follows
that C' is a descendant of Z; in H || £. As Z; occurs on a directed
path from V; to V5 in H by assumption of Case 2ai, it follows that C'
is also a descendant of V7 in H.

Because C'is active on 7y ¢ in H || £ but not so in G || &, it follows
that C has a descendant in H || £ that is not a descendant in G || €.
Because H || £ is obtained from G || £ by adding the edge V3 — V4,
it must be the case that C' is an ancestor of V5. So C is an ancestor
of V1 in H || £, and hence, also in H. But I have already shown that
C is a descendant of V; in H. So H contains a cycle, contradicting
assumption.
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Case 2aii: Now suppose 7y ¢ is not a path in G || €. Then 7y ¢
contains the edge Vi — V. Let 8 = (6; 1 Z1) — (mge T Vo). If B is
active in G || £, then by Lemma 1, there is a d-connecting path given
W between G || £.

If the variables in /3 are not adjacent in G || £, it follows that d; T Z;
contains some member W; of £ UW other than Z;. Thus:

Wi, 21 € ECEUWCU.

Recall by assumption of Case 2, there are k — 2 many other paths
{6;}j22, each of which contains some member of EUW C U. So U
contains Z1, Z», W; and a distinct element W; from each of the paths
0, where j # i. It follows that Z3 is one of the W;’s, as otherwise U
would contain k£ + 1 many elements. Hence, Z5 is an ancestor of V5
and a descendant of Vi, and in particular, Z> does not equal V; or V5.
Notice that V3 is not equal to any of the elements of U = {Z1, Zo, W1,..., Wi_1}.
So, in particular, Vo ¢ W C U. Hence, V5 is not a collider on
TrH|e- Since mg|e contains the edge Vi — V3, it follows that the
path 7 e T V2 points away from V3 and towards Z;. Since Z is an
ancestor of Vo, the path 7y e T V2 is not directed from V5 to Zs. So it
must contain a collider C' which is closest to V5; so C' is a descendant
of V3. Because 7 ¢ is active given W in H || £, it follows that either
C or one of its descendants is in W. Since W C U \ {Z1,Z>} and
U=A{Z1,Z5,Wh,...,Wi_1}, it follows that C is either equal to W; for
some j, or is an ancestor of some W;. In either case, C is an ancestor
of V5. But I have already shown that C' is a descendant of V5. So G
contains a cycle, contradicting assumption.

Case 2b: Suppose Z; € £ and is a member of some path §;. Again,
either (i) g ¢ is a path in G || £ or (ii) it is not.

Case 2bi: This case is symmetric to Case 2ai.

Case 2bii: Suppose that mp¢ is not a path in G || £, and hence,
it contains the edge V7, — V5. Since Z; € &, it follows that the tail
of Ty e between Vi and Z; points away from Z;. Hence, there is a
collider between Vi and Z3 on 7. Let C' be the collider closest to
V1, so that C is either V5 or a descendant of V5 in H.

Since C'is active on g ¢, it follows that C' or one of its descendants
is in W (and similarly, either V5 or one of its descendants is in W).
Recall, by assumption of Case 2, each path §; contains at least one
member from the set £ U W. Since there are k — 2 disjoint paths
other than §; (i.e., the directed path containing Z5), it follows that
U contains a distinct element W; from each path §; such that j # i.
So U contains 71, Z,C and k — 2 many elements W;. It follows that
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Zy = W; for some j # i, as otherwise, {/ would contain k + 1 many
elements.

Consider f = (§; T Z1) — rev(d; T Zz), where rev reverses the
order of the variables. Clearly, S has endpoints Z; and Z,. Now if g
is an active variable sequence given ¢ in G||€, then Lemma 1 entails
the result.

Suppose for the sake of contradiction that /3 is not active. Since
every variable on 8 other than V5 is a non-collider, it follows that at
least one of the four following cases holds: (1) at least one variable on
(0; T Z1), other than Z; and V5 is a member of EUW, (2) at least one
variable on (0; T Z2) other than Z; and V5 is a member of £EUW, (3)
Vo € &, or (4) neither V5 nor any of its descendants is a member of W.
I ruled out possibility (3) at the beginning of the proof, and possibility
(4) contradicts the first sentence of the second to last paragraph.

So either (1) or (2) must hold. Consider (1) first, i.e., that (§; T Z1)
contains some member W; € £U S other than Z; or V5. So U contains
74,75, W;,C and k — 3 distinct elements W,,, from each of the paths
Om, Where m # i,j. Since Z;,Z> and W, are pairwise distinct, it
follows C' = W,,, for some m # i, j, as otherwise U would contain at
least k + 1 many members. So C' is on a directed path from V; to V5
in H, and hence, an ancestor of V5. But I have shown already that c
is a descendant of V5 in H. This is a contradiction. The proof that (2)
leads to a contradiction is similar.

Theorem 4 If G =51 H and there is a directed path from Vi to Vs, in
G, then there is likewise a directed path from Vi to Va in H.

Proof: Consider the experiment (£,U) = ({Vi},{V1,V2}). Since
G =2, H, it follows that D%”E = DLFII ¢+ By assumption, there is
a directed path from Vi to V5 in G. So there is still a directed path
from V; to V5 in G || €, and that path is clearly d-connecting given the
empty set. So (V1,V5,0) € Dg”g. Because Dléug = Dzﬁ’llg’ it follows
that there is a d-connecting path 7 between V; and V5 in H || £ given
the empty set. By definition of d-connecting, it follows that there are
no colliders on 7. Since all edges incident to V; in H || € point “out of”
V1, it follows that the path 7 is out of V3. Hence, because 7 contains
no colliders and points away from V7, it follows that 7 is a directed
path from V; to V5 as desired.

Theorem 5 Let n,k be natural numbers such that k < n. Let h =
|2=2] and M = (n— 1) — h(k — 1). Then there exist graphs G and H
such that G is k,1-equivalent to H, and yet H contains f(n, k) edges

that G does not, where
1. fln,k)=n—k ifh=1,
2. f(n,k)=02n+1)—-3k if h=2, and
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3. f(nk) = (k—12(";") + (k—1)(h — 1)+ Mh if h > 3.

Proof: Let V be a set with n many elements. Divide the vertices of
V into groups as follows. Make h many groups of size k— 1. Enumerate
those groups as follows: {V11,Vi2,... Vik—1}, {Va1,Vao,... Vas—1}, ...
Vi1, o, Vag—1}. There will be n — (k — 1)h = M + 1 vertices re-
maining. Denote one of those remaining vertices by V4 1, and let the
remainder be enumerated by Vi, 411, Vag1,2, ... Vi, ar. To construct the
graph G, place the variables in a matrix (as shown in Figure 10) so
that V,.. is in the 7" row and ¢ column. Draw an edge from every
vertex in row r 4 1 to every vertex in row r. Call the resulting graph
G. The graph H is a complete graph obtained by adding an edge from
each vertex in row r to each vertex in row s < r in G.

Vige1,1Vag12 e Vig1,m-1
i i
Vi Vo e Vi k=1

)

Figure 10: The graph described in Theorem 5

Notice that, if V is a vertex in row r + 2 and W is a vertex in row
r, then V and W are not adjacent and there are k — 1 disjoint directed
paths from V to W. Hence, by Lemma 2, the edge V' — W can be
added to G without breaking k, j-equivalence. Since H is the result of
adding all such edges to G, it follows that G = ; H.

]

Let G}, denote the DAG (pictured below) containing k vertices { X7,
Xo, W1, ... Wi} (1) an edge from X; to W, for all 1 < i < k, (2) an
edge from W; to X for all 1 <i < k, and (3) an edge from X; to Xs.
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Figure 11: The graph denoted Gy, in the remaining theorems

Theorem 6 Suppose k > 2 and that G has fewer than 2k — 2 edges.
Then [G]k,1 = {G}. Moreover, there is a graph H with exactly 2k — 2
edges such that [H)y ; = {H1, Ha} for all j < k, and moreover, Hy and
Hy are not | equivalent.

Proof: Suppose G =1 H and G has fewer than 2k — 2 edges. Then
G =0 H, and so by Theorem 7 in [Mayo-Wilson, 2013], it follows
that G and H are l-equivalent. Hence, they share the same skeleton
by Verma and Pearl’s theorem. So it suffices to show that all edges
in G and H are oriented in the same direction. To do so, note that if
Vi — V4 is an edge in G, then trivially there is a directed path from
V1 to V4 in G. By Theorem 4, it follows that there is a directed path
from Vj to V5 in H. By acyclicity, it follows that the edge between V;
and V5 in H must be oriented as V; — V5.

For the second part of the theorem, let H; = G_1 and Hs be the
graph obtained by deleting the X; — X5 edge from H;. By Lemma 2,
it follows that Hy =5 ; Ho.

Theorem 7 Fiz a natural number k and any j < g, and let py ;(n)
be the fraction of DAGs G with n > k many variables such that [G]y ;
contains a graph that is not |-equivalent to G. Then py j(n) — 1 as
n — 0o.

Proof: By Lemma 15 in [Mayo-Wilson, 2012], the proportion of DAGs
containing an isomorphic copy of Gy_1 approaches one as n — oo. If
G contains a copy of Gj_1, then by Lemma 2, [G]i ; contains a graph
that is not l-equivalent to GG, namely, the graph in which the X; — X5
edge in G is removed. Hence, py j(n) — 1 as n — oo.

Theorem 8 Fiz any k € N and any j < k. Let Ey ;(G) be the maz-
imum number m of DAGs Hy,Ha,...Hy, such that G =, ; H; and
G # H; for alli < m. Let Ej j(n) be the average Ey, ;(G) for all DAGs
G with n many variables. Then Ej ;(n) — 0o as n — oo.
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Proof: Let m € N. Let H be a DAG containing m disjoint copies of
Gr_1, and let H; be the result of removing the X; — X5 edge from the
ith copy. By Lemma 2, G = ; H; for all i < m, but G # H; as their
skeletons differ. Thus, Ey ;(H) > m. By Lemma 15 in [Mayo-Wilson,
2012], the proportion of DAGs containing m disjoint copies of Gy_1
approaches one as n — co. Since m was arbitrary, Ej ;(n) — co.

7 Bayesian Networks

7.1 Markov Equivalence

In this section, random variables will be denoted by the capital letters
X,Y, and Z, and values of random variables will be denoted z,y, z.
Vectors will be bolded. So X will represent a vector of random vari-
ables, and x is a vector of values of X. Sets of random variables will
be denoted in a scripted font, e.g., A, ), Z. Given some ordering of
the random variables X, let X denote the random vector obtained by
ordering those variables.

Given a probability measure p, write p = X 11 Y| Z if the variables
X and ) are conditionally independent given Z with respect to the
measure p. Let V be any finite set and X = {Xy }y ey be a collection
of random variables indexed by V. A Bayesian network over X is
a pair (G,p), where G € DAGy such that p = WII Y|Z if and only
it W,Y,Z) € lg. For any graph G € DAGy, let P be the set of
probability measures p such that (X,G%,p) is a Bayesian network,
where G is the DAG obtained by replacing V with Xy for all V € V.
Say that two graphs G, H € DAGy are Markov equivalent if P =
P% for any collection of random variables X indexed by V.

Given p € Pg and some U C V, let py; denote the marginal distribu-
tion of p over { Xy € X : U € U}. Given % C P(V), let PZ be the set
Hputuew v € PE}. Say G, H € DAGy, are % Markov-equivalent if
PZ = P¥% with respect to all collections of random variables X'. Write
G =9, H in this case.

Theorem 9 If G and H are % -Markov equivalent, they are also %
equivalent. The converse is false in a fairly strong sense: for allV and
all % not containing V, there exist G and H such that G and H are
U -equivalent but not % Markov equivalent.

Proof: The first claim is trivial. To show the converse is false, let
G = G, be the graph pictured in Figure 11. Let H be the graph
obtained by adding the X; — X5 edge to G.

Suppose X consists exclusively of binary random variables, and
define a Bayesian network (X', G, p) satisfying the following conditions:

e p(X1=0) =3,
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e p(W; = 0/X; = 0) =1 and p(W; = 0[X; = 1) = § for all
1<i<n-—2, and

o p(Xo=1W =w) = 2351

where W = (W1, Wa,...,W,_s) and Yw is the number of non-zero
coordinates in w. Below, I show that the distribution p is faithful
to G. Before doing so, let g be any distribution over X that agrees
with p on all of the marginal distributions over any proper subset of
variables of X. I show that ¢ &= X7 II X5|{W7,...,W,_2}, and hence,
q is not faithful to H. By definition, this entails that G and H are not
% Markov equivalent.
To prove q = X7 I Xo|{W1,...,W,,_a}, it is necessary to show

q(Xo =a9| X1 =21, W =w) = ¢(Xo = 22|W = w)
for any set of values x1,x2, w. There are two cases to consider:

Case 1: Assume that at least one coordinate of w is equal to one.

(Xo=22|W =w) = ¢(Xo=22|W=w,X1=1) ¢(X; =2:[W = w)
+ q(Xog = 22|W =w, X; =0) - ¢(X1 = 2|W = w)
by total probability
= ¢(Xo=2W=w,X;=1) p(X; =1|W =w)
+ Xy =2|W =w, X1 =0) p(X; =0|W =w)
as p&q agree on all marginal distributions over X
= ¢(Xo=W=w,X1=1)-14¢(Xy=22|W =w,X; =0)-0
by definition of p as there is at least one coordinate of w equal to one
= ¢ Xo=2|W=w,X;=1)

Case 2: Assume that all coordinates of w are equal to zero, i.e., w = 0
There are two subcases to consider.
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Case 2a: Suppose x2 = 0. Then:

1 = p(Xy=22=0W =0) =q(X2 =22]W =0)
as p&q agree on all marginal distributions over X
= ¢ Xog=xW=w,X;=1) ¢(X; =1|W =0)
+ q(Xo=x|W =w, X; =0)-¢q(X1 =0|W =0)
by total probability
= ¢(Xog=mW=w,X;=1) ¢X; =1W =0)
+ ¢(Xo=x]W =w,X; =0)-(1-¢(X; =1W =0))
by properties of conditional probability
= ¢ Xo=2]W=w,X; =1) p(X; =1|W =0)
+ ¢(Xog=22lW=w,X;=0)-(1-p(X; =1W =0))
as p&q agree on all marginal distributions over X
As 1> p(X; = 1|W =0) > 0, the last equation holds if and only if:
1=q(Xo =22|W =w, X1 =1) = ¢(X2 = 22|W = w, X; =0)
and hence,

q(XQ = (EQ‘W = O) = q(XQ = (EQ‘W = w7X1 = 1) = q(XQ = £L’2|W = w,X1 = 0)

Case 2b: Suppose 1 = 0. Then p(Xy = 22 = 1|W = 0) = 0 by
definition of p, and so

0 = p(Xo=22=1W =0)
= ¢(Xa=22=1W =0)
as p&q agree on all marginal distributions over X
= ¢ Xo=2]W=w,X;=1) - p(X; =1|W =0)
+ ¢(Xa=2|W =w,X; =0)- (1 -p(X; =1|W =0))

by the same reasoning as in Case 2a.
Asl > p(X; = 1|W = 0) > 0, the last equation holds if and only if:
0=q(Xo =W =w,X; =1) = q(Xy = 22|W =w, X; =0)
and hence,
(X =22)W =0) = q¢(Xo = 22|W =w, X; = 1) = ¢(Xo = 22|W =w, X; =0).

To show p is faithful to G, note that all triples not entailed by G
fall into one of the following five categories:

1. X7 10 X5|Z where Z2 C {W,Wa,...W,_2},

42



2. X; II W;|Z where 2 C X\ {X;,W;} and 1 <i < n — 2,
3. XoIW;|Z where Z C X\ {Xo,W;}and 1 <i<n-—2,

4. W;IIW,|Z where 2 C X\ {X1, Xo,W;,W;} and 1 < i,j <n—2,
5. W; I W;|Z where Xo € Z C X\ {W;,W,;} and 1 <14, <n-—2.

I now show that p likewise does not entail any of the above conditional
independences.

Category 1: It must be shown that p £ X7 II X5|Z where Z C
{Wy,Wa,...W,_2}. By definition, p(Xo = 0|X; = 0,Z =0) =1
whereas p(Xs = 0|2 = 0) < 1 because there is some W; & Z.

Category 2: It must be shown that p £ X; II W;|Z where Z C
X\ {X1,W;}. This is similar to the last case. Note, by defini-
tion of p, it follows that p(W; = 0|X; = 0,Z = 0) = 1, whereas
p(Wi = 0|2 =0) < 1.

Category 3: It must be shown that p £ Xo II W;|Z where Z C
X\ { X2, W;}. To do so, it suffices to show p(Xy = 1|W; = 1,2 =
0) # p(Xe = 1|2 =0). If X; € Z, this is trivial because the condi-
tional probability on the left hand-side is undefined whereas that on
the right is positive. If X7 ¢ Z, it is tedious but routine to verify
that p(Xo = 1|W; = 1,Z = 0) > p(Xy = 1|2 = 0) using (1) the
definition of p, (2) the the law of total probability, and (3) the fact
that p(W = w|Xy = 1) = [y, e p(W; = w;|X; = 1) = ot for
all W C {Wy, Wa,...W,_5}, which is an instance of the factorization
property for Bayesian networks.

Category 4: We must show p = W,1IW;| Z where Z C X\{X1, Xo, W;, W, }.
To do so, use the three facts described in Category 3 to show p(W; =
0jW; =0,Z=0) <p(W; =0/Z=0).

Category 5: It must be shown that p = W; II W;|Z where X, € Z
and Z C X\ {W,;,W;}. To do this, use the three facts described in
Category 3 p(W; = 1|W; = 0,Z\ {X2} =0,Xo = 1) > p(W; =
02\ {X2}=0,X;=1).

7.2 Stronger Distributional Assumptions

Write G ~} H if G and H are % M indistinguishable. In the special
case in which % is all subsets of V of a fixed size k, write G ~M H.
When V € %, we drop the subscript % and write G =M H.

Theorem 12 There are G and H such that G =29 H but G 332D+ H.

43



Proof: Let G be the graph X — Y — Z, and let H be the graph
X — Z =Y. Clearly, G =5 H. Suppose for the sake of contradiction
that G ~P" H.

Suppose X,Y, and Z are all binary random variables, and consider
any two discrete, multinomial models (G, p) and (H, q). Since G ~P"
H, the correlations of any pair of variables with respect to p and ¢
are identical. Hence, I write pyy to indicate the correlation between
V,W € {X,Y, Z} in the two discrete models.

By theorem 2.12 of Danks and Glymour [2001], the correlation
between any two variables in singly connected graphs containing only
binary variables is the product of the correlations along the unique trek
connecting them. Since G contains the trek X — Y — Z, it follows
pPxz = pxy : Ppyz- By the same theorem, since H contains the trek
X — Z — Y, it follows that pxy = pxz - pyz. So p¥, = 1, or in
other words, Y and Z are perfectly correlated. So the distributions p
and ¢ are not positive, contradicting assumption.

]

The last proof cannot be generalized straightforwardly to either (a)
discrete variables taking more than two values, or (b) D k-equivalence
when k > 2. The former generalization is not straightforward because
the the theorem that correlations can be multiplied along treks only
holds for binary variables. The latter generalization is difficult because
the same theorem only applies to singly connected networks, and two
graphs that are k,0-equivalent but not l-equivalent will often contain
multiple treks between two variables (because they will generally con-
tain different orientations).

Theorem 13 For all V and all % CV such that V € %, there exist
G and H such that G =4, H but G %)V H.

Proof: The proof is the same as that of Theorem 9 because the dis-
tribution p in that proof is a noisy or parametrization. In greater
detail, for a graph with n many variables, enumerate the variables
V ={X1, X2, Wy,...W,_2}. Consider the graph G,,_» with the latent
“noise” terms {Ey : V € V}U{Byyv : U — V is an edge in G,,_2} as
shown in Figure 12.
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Figure 12: The graph denoted G,,_2 with noise terms, as described
in Theorem 13

Let p be the unique noisy-or parameterization of G, _o such that
(1) p(Ex,) = p(Ex,) = 1/2, (2) p(Ew, = 1) = 0 for all W;, and (3)
p(Buy =1)=1/2if U — V is an edge in G,,_2. Then

e p(X; =0) = 3 because p(X; = 0) = p(Ex, =0) = 3.

e p(W; = 0|X; = 0) =1 and p(W; = 0/X; = 1) = 3 for all
W;. The former equation holds because p(W; = 0|X; = 0)
p(Ew, = 0) = 1 and the latter holds because p(Ew, = 1) =
and p(WZ = O‘Xl = 1) :p(BXl,Wi = 1) = %

So to show p is the same distribution as in the proof of Theorem 9, we
need to show only that p(Xe = 1|W = w) = 22;’7;1 To do that, we
rely on the following lemma, which can be proven by induction on k.

[

0

Lemma 3 an:l(—l)m'*‘1 . (jfl) o = % for all k > 1.
With that lemma, let Z be the parents of X5 including the error terms

(i.e., Z ={Ex,} U{W; : w; = 1}), and suppose J has size k. Given
m < k,let Z,, ={U C Z: |U| = m} be all subsets of Z of size m.
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Then:

p(Xz = 1IW = w)

(JZz=1)

zZez

So(=pmte N p<ﬂ U1>

m<k Uez,, \Ueu
by the inclusion exclusion principle
1

Syt Y

m<k+1 UEZ,
because Ex,, Bw, x,,- .. Bw,_,,x, are mutually independent
> o ()5
m 27”
m<k-+1
2k —

1
o by the lemma
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