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Causal discovery algorithms are becoming increasingly sophisticated, often using fine-grained
information about the joint distribution (e.g., that noise is additive) rather than relying on coarse-
grained information about which variables are conditionally independent [Hoyer et al., 2009, Peters
et al., 2012, Loh and Bühlmann, 2014]. For example, significant advances have been made in
the study of linear, non-Gaussian causal models (LiNGAMs) [Shimizu et al., 2011, Hoyer et al.,
2008]. If the true model is LiNGAM, then the causal relationships among all measured variables
can be identified in the limit [Shimizu et al., 2006]. Under strong additional assumptions, variants of
maximum-likelihood estimation provide uniformly consistent procedures for identifying the graphical
structure of LiNGAM models [Bühlmann et al., 2014].

The main result of this paper is to show that, without any further assumptions, the direction of
any causal edge in a LiNGAM is what we call statistically decidable [Genin, 2018]. Statistical
decidability is a reliability concept that is, in a sense, intermediate between the familiar notions of
consistency and uniform consistency. A set of models is statistically decidable if, for any α > 0,
there is a consistent procedure that, at every sample size, hypothesizes a false model with chance less
than α. Such procedures may exist even when uniformly consistent ones do not. Uniform consistency
requires that one be able to determine the sample size a priori at which one’s chances of identifying
the true model are at least 1−α; statistical decidability requires no such pre-experimental guarantees.

It is trivial to show that there is no uniformly consistent algorithm for determining the direction of a
causal edge in LiNGAMs; see example in section three. Thus, our main result illuminates how the
notions of uniform consistency and statistical decidability come apart.

Our main result also illustrates how discovery of LiNGAMs differs from their Gaussian counterparts.
As sample size increases, consistent discovery algorithms for (the Markov equivalence class) of
Gaussian models can be forced to “flip” their judgments about whether X causes Y or vice versa, no
matter how strong the effect of X on Y [Kelly and Mayo-Wilson, 2010]. Further, even in the absence
of confounders, the number of such flips is bounded only by the number of variables in the model.
Our main result, in contrast, shows that consistent discovery algorithms for LiNGAMs can avoid
such flipping; whether existing algorithms do avoid flipping is a matter for further investigation.

Finally, our results suggest a practical, implementable way that existing causal discovery algorithms
could be made more sensitive to users’ interests. Many existing causal discovery algorithms are
functions of the data only, and hence, do not allow the user to designate the kinds of error that she
deems acceptable. Our main result shows that, for specified classes of models like LiNGAMs, it is
possible to design algorithms that allow users to see not only the models that best fit the data but also,
whether the data allow one to draw causal conclusions with the reliability desired by the user. It is an
open question whether existing discovery algorithms can be modified in the way we suggest.
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1 Background: Linear Causal Models

A linear causal model in d variables M is a triple 〈X, e, B〉, where X = 〈X1, X2, . . . , Xd〉 is a
vector of d observable random variables, e = 〈e1, e2, . . . , ed〉 is a random vector of d unobserved
noise terms, and B is a d× d matrix such that

1. there is an ordering k(i) of the observable variables Xi such that each variable is a linear
function of variables earlier in the order, plus an unobserved noise term ei:

Xi(ω) =
∑

k(j)<k(i)

BijXj(ω) + ei(ω);

2. the noise terms e1, . . . , ed are mutually independent.

A linear causal model M is non-Gaussian (a LiNGAM) if in addition to satisfying (1) and (2), each
of the noise terms is non-Gaussian. If M = 〈X, e, B〉 is a linear causal model then X = BX + e.
It is clear that, since no Xi causes itself, the matrix B must have all zero diagonal elements. If the
Xi are enumerated in agreement with the causal order (i.e., i < j if and only if Bij = 0), then B
is lower triangular, i.e. all elements above the diagonal are zero. The observables also admit the
following “dual” representation: X = B′e, where B′ = (I −B)−1. Note that the inverse of I −B
always exists. By (1), it is clear that the matrix B′ must have unit diagonal. If the Xi are enumerated
in agreement with the causal order, then B′ is also lower triangular.

Let Ld be the set of all linear causal models on d variables, and let LGd, LNGd ⊂ Ld respectively
denote the sets of linear Gaussian and non-Gaussian models. If M = 〈X, e, B〉, let O(M) =
X, E(M) = e, and B(M) = B. Let PAM (i) = {j : Bij(M) 6= 0}, be the set of parents of i in M .

Each linear causal model M gives rise to a directed acyclic graph (DAG) in a natural way: the DAG
G(M) has a directed edge from j to i if and only if Bij(M) 6= 0. Let DAGd be the set of all DAGs
on d variables. For a set of modelsM, define G[M] := {G(M) : M ∈M}. In the reverse direction,
given a DAG G, we defineMG := {M ∈ Ld : G(M) = G} to be the set of linear models that give
rise to G.

2 Identifiability

It is well known that linear, Gaussian causal models are not, in general, identifiable [Richardson and
Spirtes, 2002, Theorem 8.14] . In other words, there exist pairs of causal models M,M ′ ∈ LGd

such that G(M) 6= G(M ′), (and therefore B(M) 6= B(M ′)) but O(M) = O(M ′). We give a new,
simple proof of this fact. The proof invokes the Lukacs-King theorem [1954], which is perhaps not
so well known as its consequence, the Darmois-Skitovich theorem [1953, 1953].
Theorem 2.1 (Lukacs-King). Let X1, . . . , Xm be independent random variables, X ′ =

∑
i αiXi

and X ′′ =
∑

i βiXi. Then, X ′, X ′′ are independent iff (a) each Xi such that αiβi 6= 0 is Gaussian;
and (b)

∑m
i=1 αiβiVar(Xi) = 0.

Theorem 2.2. Suppose that M = 〈X, e, A〉 is an element of LGd and that there are i, j such that
PAM (j) = PAM (i) ∪ {i}. Then there is M ′ = 〈X′, e′, B〉 ∈ LGd such that O(M) = O(M ′) and
G(M) 6= G(M ′). Typically, M ′ can be chosen so that G(M ′) is just like G(M) except i ← j ∈
G(M ′) whereas i→ j ∈ G(M).

Proof of Theorem 2.2. Let Bij =
AjiVar(ei)

A2
jiVar(ei)+Var(ej)

.

For k ∈ PAM (i), let

Bjk = AjiAik +Ajk;

Bik = Aik −BijBjk.

Let all other entries of B be just like A. Let

e′i = (1−BijAji)ei −Bijej ;

e′j = Ajiei + ej ,

and let e′` = e` for ` 6= i, j.
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We first show that M ′ ∈ LGd. If k is a causal ordering for M, then letting the ordering k′ be just
like k except k′(i) = k(j) and k′(j) = k(i) yields a causal ordering for M ′. To show that the e′ are
mutually independent it suffices to show that e′i, e

′
j are independent. By the Lukacs-King theorem,

this is the case so long as

Aji(1−BijAji)Var(ei)−BijVar(ej) = 0,

or equivalently,
AjiVar(ei)−Bij(A

2
jiVar(ei) + Var(ej)) = 0,

which is immediate from the definition of Bij . Since e′i, e
′
j are mixtures of independent Gaussians,

they are Gaussian. Therefore, M ′ ∈ LGd.

It is obvious that Xk = X′k for k ∈ PAM (i). To show that O(M) = O(M ′), it is sufficient to show
that Xj = X′j and Xi = X′i. The equality of the other X`,X

′
` follows. For the first equality, note

that

X′j =
∑

k∈PAM (j)\{i}

(AjiAik +Ajk)Xk +Ajiei + ej

=
∑

k∈PAM (j)\{i}

AjkXk +AjiXi + ej = Xj .

For the second equality, note that

X′i =
∑

k∈PAM (i)

(Aik −BijBjk)Xk +BijX
′
j + (1−BijAji)ei −Bijej

=
∑

k∈PAM (i)

AikXk + ei = Xi,

since BijX
′
j =

∑
k∈PAM (i)BijBjkXk +BijAjiei +Bijej . We have that G(M) 6= G(M ′), since

Bij > 0 = Aij . Finally, we have that G(M ′) is just like G(M) except that the edge between i and j
is flipped whenever Bjk, Bik 6= 0 for all k ∈ PAM (i). It is straightforward to check that this holds
whenever AjiAik 6= −Ajk and AjkAjiVar(ei) 6= AikVar(ej) for all k ∈ PAM (i).

The situation with respect to identifiability changes dramatically when we restrict attention to the
non-Gaussian case.
Theorem 2.3. Suppose that M,M ′ ∈ LNGd. If O(M) = O(M ′), then M = M ′.

We give a simple proof of this fact. The proof invokes the Lukacs-King theorem, as well as a
convenient lemma, which will also be used to prove our main result. Say that a matrix is a mixing
matrix if and only if some column has two non-zero entries. A leading principle submatrix of a
matrix A is the result of removing all but the first n rows and columns for some n.
Lemma 2.1. Suppose that A,B are square matrices of the same dimension having unit diagonals.
Suppose that B is lower triangular and the result of the matrix multiplication AB is not a mixing
matrix. Then A = B−1.

Proof of Lemma 2.1. By induction on the dimensions of A,B. For the base case, suppose that A,B
are 2× 2 matrices. Then:

AB =

(
1 a12
a21 1

)(
1 0
b21 1

)
=

(
1 + a12b21 a12
a21 + b21 1

)
Since by assumption AB is not a mixing matrix, a12 = 0 and therefore a21 = −b21. It follows that

A =

(
1 0
−b21 1

)
= B−1.

For the inductive step, suppose that the lemma holds for matrices of dimension n× n. Suppose that
A,B are (n + 1) × (n + 1) matrices satisfying the preconditions of the lemma. Since AB is, by
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assumption, not a mixing matrix, it is sufficient to show that AB has unit diagonal.

Let A′, B′ be the n×n leading principle submatrices of A,B respectively. A′, B′ have unit diagonal
since A,B have unit diagonal. B′ is lower triangular since B is lower triangular.

Consider the last column of AB :

AB =


· · · a1,n+1

· · · a2,n+1

· · ·
...

· · · 1




· · · 0
· · · 0

· · ·
...

· · · 1

 =


· · · a1,n+1

· · · a2,n+1

· · ·
...

· · · 1


Since AB is not mixing by assumption, it follows that ai,n+1 = 0 for i < n+ 1. Since A has unit
diagonal an+1,n+1 = 1. Therefore,

(AB)i,j =

n+1∑
k=1

ai,kbk,j =

n∑
k=1

ai,kbk,j = (A′B′)i,j ,

for i, j < n+ 1. Since AB is not a mixing matrix, it follows that A′B′ is also not a mixing matrix.
By the inductive hypothesis A′B′ is the identity matrix. Therefore, AB has unit diagonal. Since AB
is not a mixing matrix, it must be the identity matrix. Therefore A = B−1.

We can now prove Theorem 2.3.

Proof of Theorem 2.3. Let M = 〈X, e, B〉 and M ′ = 〈X′, e′, B′〉 be elements of LNGd. Suppose
that X = X′ and, without loss of generality, that the observable variables are enumerated in agreement
with the causal order of G(M). Since X = X′,

(I −B′)−1e′ = (I −B)−1e,

and e′ = (I − B′)(I − B)−1e. Suppose for a contradiction that (I − B′)(I − B)−1 is a mixing
matrix. Then there is some k such that the kth column of (I −B′)(I −B)−1 has non-zero entries
a, b in rows i, j, respectively. Then e′i = · · · + aek + · · · and e′j = · · · + bek + · · · . Since M ′
is a linear causal model, e′i, e′j are independent. Therefore, by Lukacs-King, ek is Gaussian and
M ∈ Ld \ LNGd. Contradiction. Therefore, (I − B′)(I − B)−1 is not a mixing matrix. Then, by
Lemma 2.1, it must be that B = B′ and e = e′.

3 Progressiveness and Decidability: Between Pointwise and Uniform
Consistency

Our main result is that, if one knows the true causal model is LiNGAM, then the orientation of any
given causal edge is what we call statistically decidable. Moreover, there exists a progressive method
for estimating the entire DAG. The notions of statistical decidability and progressiveness are not yet
widely known, and so in this section, we define the terms precisely in a general statistical setting.
Both of these notions are stronger than pointwise consistency, but weaker than uniform consistency.
In the LiNGAM context, the results of this section allow us to construct consistent methods for
learning the true DAG that do not exhibit the flipping behavior identified by Kelly and Mayo-Wilson
[2010].

LetM be a set of statistical models, which one can often think of as the underlying parameter space.
For instance,M might be [0, 1], representing the value of a Bernoulli parameter. In causal discovery,
M might be Ld, LGd or LNGd.

We assume there is a function P : M 7→ PM that maps each model inM to a probability measure
over a space Ω of observable outcomes. If M ∈ Ld, this is the measure on Rd induced by the O(M).
Henceforth, we assume Ω = Rd. We lift P (·) to sets of models in the obvious way: if A ⊆ Ld, let
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P [A] = {P (M) : M ∈ A}. If A ⊆ Rnd, let ∂A be the boundary of A in the usual topology on
Rnd. Let P := P [M] denote the set of all probability measures associated with the models inM.
The weak topology on P is defined by letting a sequence of Borel measures Pn converge weakly
to P, written Pn ⇒ P iff Pn(A) → P (A), for every A such that P (∂A) = 0. We write cl(·) for
the closure operator in the weak topology. For any natural number k, let P k

M be the k-fold product
measure of PM with itself. This measure describes the probabilities of events in Rkd when we take
k iid samples from PM . If the measures Pn converge weakly to P, the product measures P k

n also
converge weakly to P k (see Theorem 2.8 in Billingsley [1986]).

We define a question Q to be a set of disjoint subsets of M. For example, we might let Q =
{MG ∩ LNGd : G ∈ DAGd} be the question of which DAG represents the causal relationship
among the observable variables. We call elements of a question Q answers. In standard statistical
terminology, estimation problems typically concern maximally fine questions Q = {{M} : M ∈M}
of the model space (e.g., what is the value of Bernoulli parameter inM = [0, 1]?), whereas model
selection problems concern coarser questions. For all M ∈ M, let Q(M) denote the unique
answer/element in Q containing M , if one exists, and let Q(M) beM, otherwise.

A question Q often comes with some sort of metric dQ and/or topology TQ that represents how close
various answers are. For example, if one is interested in estimating a real-valued parameter M ∈
M = R, then the question is Q = {{r} : r ∈ R}, and it is natural to define dQ({r}, {q}) := |r − q|
to be the standard Euclidean distance. If Q is a finite partition ofM (as in some cases of model
selection), then the natural metric on Q is the discrete one.

Given a question Q, we define a method λ = 〈λn〉n∈N to be a sequence of measurable functions
λn : Ωn → Q ∪ {M}, where λn maps samples of size n to answers to the question; a method may
also take the valueM to indicate that the data do no fit any particular answer sufficiently well, and so
we callM the uninformative answer. We require that ∂λ−1n (A) has Lebesgue measure zero for all
n and every answer A in the range of λn.

The familiar notions of statistical consistency and uniform consistency can now be made precise and
contrasted with our notions of statistical decidability and progressiveness. Given a question Q with
topology TQ, say a method λ is (pointwise) consistent if for all ε > 0, all models M ∈

⋃
Q, and all

open setsU ∈ TQ containing Q(M), there is some sample size n ∈ N such that P k
M (λk ⊆ U) > 1−ε

for all k ≥ n. When TQ is the discrete topology, consistency amounts to the claim that for all ε > 0
and models M ∈

⋃
Q, there is some n such that P k

M (λk = Q(M)) > 1 − ε for all k ≥ n. If Q
comes with a metric dQ, say a method λ is uniformly consistent if for any δ, ε > 0, there is some
sample size n such that P k

M (dQ(λk,Q(M)) < δ) > 1− ε for all models M ∈
⋃

Q. Again, when
dQ is equivalent to the discrete metric, a method λ is uniformly consistent if for any ε > 0, there is
some sample size n such that P k

M (λk = Q(M)) > 1− ε for all models M ∈
⋃

Q and all k ≥ n.

Uniform consistency is an extremely strong demand. For instance, when Q is finite, uniform
consistency requires that for any positive ε > 0 one can name a sample size a priori (i.e., before
seeing any data) at which the probability of conjecturing the true, informative answer exceeds 1− ε.
Example 1: We claim there is no uniformly consistent procedure for determining the direction of an
edge for LNGd on d = 2 many variables. The argument is straightforward and easy to generalize
to arbitrarily many variables. If one had a uniformly consistent method and could therefore name a
sample size a priori by which one could tell whether the edge were directed from 1 to 2 or vice versa,
one could also name a sample size a priori by which one would know whether there was an edge
between 1 and 2 at all. But that is impossible because edge coefficients in linear causal models may
be arbitrarily small/weak.

In greater detail, letM = LNG2. Let G be the DAG 1 → 2 and H be the DAG 2 → 1. Define Q
to be the question {MG,MH}, equipped with the discrete metric. Let e = 〈e1, e2〉 be the uniform
distribution on the unit square. For each positive n ∈ N, define Xn = 〈Xn

1 , X
n
2 〉 to be the random

vector such that Xn
1 = e1 and Xn

2 = 1/n · e1 + e2. Let Mn = 〈Xn, e, Bn〉 be the resulting linear
model, where Bn is the 2× 2 matrix that has 1/n in the upper right corner and zeroes everywhere
else. So each Mn generates the DAG G. Similarly, for each n, define Y n

1 = e1 + 1/n · e2 and
Y n
2 = e2; let Nn be the resulting linear model with DAG H . By Slutsky’s theorem, Yn,Xn ⇒ e

and PMn , PNn ⇒ P, where P is the distribution on R2 generated by e.
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Now suppose for a contradiction that method λ is uniformly consistent for Q. Then, there must be
some sample size k such that for all n,we have that P k

Mn(λk =MG) > 1/2 and P k
Nn(λk =MH) >

1/2. Since P is the uniform distribution on the unit square, P k is absolutely continuous with Lebesgue
measure on R2k and P k(∂λ−1k (MG)) = 0. Therefore, P k

Mn
(λk = MG), P k

Nn
(λM = MG) ⇒

P k(λk =MG) as n grows large. Therefore, for large enough n, |P k
Mn(λk =MG)− P k

Nn(λk =
MG)| is small and PM

Nn
(λk =MG) > 1/2. Contradiction. �

We introduce two intermediate notions of success between pointwise and uniform consistency. The
first requires that the method never produce a false answer with probability greater than α, for some
fixed α > 0. The method can avoid false conclusions by sometimes producing the uninformative
answerM. Given some α > 0, say that a method λ is an α-decision procedure if (1) λ is consistent
and (2) Pn

M (M 6∈ λn) ≤ α for all models M ∈
⋃

Q and all sample sizes n. Call a question
statistically decidable (or simply decidable) if there is α-decision procedure for all α > 0.

Theorem 3.1. Suppose that P : M 7→ PM is injective and every element of P [M] is absolutely
continuous with Lebesgue measure. Suppose Q is countable. Then, Q is decidable iff P [A] is open
in the weak topology on P [M] for each A ∈ Q .

Proof. The theorem is a minor modification of Theorem 3.2.4 in [Genin, 2018]

Many interesting questions are not decidable. We introduce another intermediate success notion that is
achievable when no decision procedures are available. Say that a consistent method is α−progressive
if the chance of outputting the correct answer increases "almost monotonically" as samples increase,
i.e. Pn1

M (λn1
= Q(M)) − Pn2

M (λn2
= Q(M)) < α for all n1 < n2 and all M ∈

⋃
Q. Say that a

question Q is progressively solvable iff there exists an α-progressive method for Q for every α > 0.
Progressiveness ensures that collecting a larger sample is never a disastrous idea. Failing to satisfy
progressiveness amounts to building in a disposition to fail to replicate true results. Surprisingly,
many standard frequentist methods do not satisfy this criterion [Chernick and Liu, 2002]. However, it
is often possible to satisfy progressiveness even though you cannot bound the chance of producing
false conclusions. Genin [2018] proves the following (see Theorem 3.6.3).

Theorem 3.2. Suppose that P : M 7→ PM is injective and every element of P [M] is absolutely
continuous with Lebesgue measure. Suppose that (1) Q is a countable partition ofM and (2) there
exists an enumeration A1,A2, . . . , of the elements of Q such that Ai ∩ cl(Aj) = ∅ whenever i > j.
Then, for every α > 0 there exists a consistent, α-progressive method for Q.

We are now ready to state and prove our main result.

4 Main Result

Say that the model M ∈ Ld has causal coefficients bounded above by c if |Bij(M)| ≤ c for all
i, j. Let LNGc

d ⊆ LNGd bet the set of all M ∈ LNGd such that (1) P (M) is absolutely continuous
with Lebesgue measure and (2) M has causal coefficients bounded above by c. In most applications,
if we know a priori that the true model belongs to LNGd (and that noise is continuous), then there is c
such that we also know that the true model belongs to LNGc

d. Typically, it suffices to let c equal the
number of particles in the universe.

In this section, we prove the following theorem.

Theorem 4.1. LetMi→j = {M ∈ LNGc
d : i→ j ∈ G(M)}. Then, P [Mi→j ] is open in the weak

topology on P [LNGc
d].

By the example in the previous section, it follows that there are statistical decision procedures for
determining the orientation of a causal edge although there is no uniformly consistent procedure for
the same question.

The following are easy corollaries of Theorem 4.1.

Corollary 4.1. The question Q = {Mi→j ,Mi←j} is statistically decidable.

Corollary 4.2. LetMi◦j = LNGc
d \ {Mi→j ,Mi←j}. The question Q = {Mi◦j ,Mi→j ,Mi←j}

is progressively solvable.
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Corollary 4.3. Let MG = {M ∈ LNGc
d : G(M) = G}. Then, Q = {MG : G ∈ DAGd} is

progressively solvable.

Proof of Corollary 4.1. Immediate from Theorems 2.3, 3.1 and 4.1.

Proof of Corollary 4.2. By Theorem 2.3, the elements of Q are disjoint. It is sufficient to show
that the orderingMi◦j ,Mi→j ,Mi←j satisfies the conditions of Theorem 3.2. By Theorem 4.1,
Mi→j ,Mi←j are both open in the weak topology and so is their union. ThereforeMi◦j is closed
and ∅ =Mi→j ∩cl(Mi◦j) =Mi←j ∩cl(Mi◦j). By Theorem 4.1,Mi←j andMi→j are separated
by open sets in the weak topology, soMi←j ∩ cl(Mi→j) = ∅.

Proof of Corollary 4.3. Let � be the partial order on DAGs over d variables induced by setting
G � G′ iff G′ has all the edges that G has. By the order extension principle, it is possible to
extend this partial order to a total order �∗ over all DAGs on d variables. Let A1,A2, . . . ,An be
an enumeration of the elements of Q that agrees with �∗, i.e. if i < j then all M ∈ Ai, N ∈ Aj

have G(M) �∗ G(N). Then, if i < j, there is some edge a → b such that all M ∈ Aj have
a→ b ∈ G(M) but no N ∈ Ai have a→ b ∈ G(N). By Theorem 4.1, Aj is separated from Ai by
the open setMa→b and Aj ∩ cl(Ai) = ∅.The corollary follows by Theorems 2.3 and 3.2.

By Corollary 4.2, there exist progressive methods for learning causal orientation, even when we
do not know a priori whether any given edge exists. By conjoining the conclusions of a collection
of such methods (one for each possible edge), it is possible to construct consistent methods that
converge to the true DAG as sample sizes increase, without exhibiting the flipping behavior identified
by Kelly and Mayo-Wilson [2010].

It remains to prove Theorem 4.1. The proof of Theorem 4.1 relies mainly on Lemma 2.1 and the
Lukacs-King theorem. However, it also depends on the following lemma.

Lemma 4.1. Suppose that the random vector (X,Y ) is absolutely continuous with Lebesgue measure
and that X,Y are dependent. Then, if (Xi, Yi) ⇒ (X,Y ) all but finitely many of the Xi, Yi are
dependent.

Proof. Let P be the measure on R2 induced by (X,Y ) and Pn be the measure induced by (Xn, Yn).
If (X,Y ) are dependent, there must be b, c ∈ R such thatA = {(x, y) : x ≤ c, y ≤ d}, B = {(x, y) :
x ≤ b}, C = {(x, y) : y ≤ c}) and P (A) 6= P (B)P (C). Since P is a.c. with Lebesgue measure
we have that P (∂A) = P (∂B) = P (∂C) = 0. Therefore Pn(A) ⇒ P (A), Pn(B) ⇒ P (B) and
Pn(C)⇒ P (C), from which it follows that for all but finitely many n, Pn(A) 6= Pn(B)Pn(C).

Proof of Theorem 4.1. Suppose for a contradiction that P [Mi→j ] is not open in the weak topology.
Then there is M = 〈X, e, B〉 inMi→j and Mn = 〈Xn, en, An〉 all in LNGc

d \ Mi→j such that
Xn ⇒ X. Suppose, without loss of generality, that the observable variables are enumerated in
agreement with the causal order of G(M). Since Xn ⇒ X:

(I −An)−1en ⇒ (I −B)−1e.

Since we have assumed that the An are bounded, it follows by the Bolzano-Weierstrass theorem that
there must be some subsequence (Ani) converging in the Euclidean metric to a matrix A. It follows
by Slutsky’s theorem that

eni
⇒ (I −A)(I −B)−1e.

The matrix (I −A) has unit diagonal since each of (I −An) does. (I −B)−1 also has unit diagonal.
Because the observable variables are, by assumption, enumerated in agreement with the causal order
of G(M), we have that (I −B)−1 is lower triangular.

Suppose that (I −A)(I −B)−1 is a mixing matrix. Let

e′ = (I −A)(I −B)−1e

Then, by Lukacs-King, there must be two elements of e′ that are dependent. Therefore, by Lemma
4.1, all but finitely many of the same elements of eni

must also be dependent. Contradiction.
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Suppose that (I − A)(I − B)−1 is not a mixing matrix. By Lemma 2.1, A = B. But since
M ∈Mi→j and the Mn are in LNGc

d \Mi→j , we have that Bij 6= 0 but (Ani)ij = 0 for all ni. So
the Ani cannot converge to B. Contradiction.

Thusfar, we have proven the existence of statistical decision procedures and the existence of progres-
sive methods for several important questions about LiNGAMs. It is therefore natural to ask, “Which
causal discovery algorithms that are currently in use, if any, are α-statistical decision procedures or
α-progressive, and for which questions and which values of α?” We do not know the answers to
those questions, but it is easy to show that some existing algorithms have worst-case error rates that
empirical scientists might find alarming.

Example 2: We used the DirectLiNGAM algorithm [Shimizu et al., 2011, Hyvärinen and Smith,
2013] to analyze 1000 simulated samples of size 50 and 500, each drawn the following LiNGAM. The
underlying DAG is X1 → X2 → X3. The exogenous variable X1 = e1 is uniform on {1, 2 . . . , 20},
and the variables X2 and X3 have independent Bernoulli error terms e2 and e3 respectively, each
with parameter 1/2. We let X2 = X1 + e2 and X3 = X2 + e3, so that all edge coefficients are either
zero or one. The results are displayed in the table below.

Sample Size Models with X2 → X3 Models with X3 → X2

50 55% 45%
500 92% 8%

The good news is that DirectLiNGAM, as one would suspect, identifies the correct direction of the
X2 → X3 edge over 90% of the time at sample size 500. The bad news is the algorithm is only
slightly better than chance at sample size 50. Thus, DirectLiNGAM appears not to be an α-decision
procedure for the edge orientation question, even for values of α near 1/2.

�

In Example 2, DirectLiNGAM’s poor performance at sample size 50 is to be expected: the number of
possible values for X1 is large in comparison to the sample size, and so the simulated samples often
do not contain every combination of values in the support of the random variables. There are likely
no algorithms that are reliable in such settings. So we are not suggesting that DirectLiNGAM or
related algorithms should be abandoned. But Example 2 indicates two ways in which some discovery
algorithms could be modified to better address users’ interests, which is important as algorithms are
adopted by working scientists and policy-makers.

First, algorithms should, we think, be designed to indicate “not enough evidence” in response to
weak data (which is represented by returning the uninformative answer in our framework). In our
simulations, DirectLiNGAM always orients the edge between X2 and X3 in some way, even at low
sample sizes. Taking a stand is not always necessary. Second, to determine when to take a stand,
users could be prompted for their desired error probability α, as long as the question is decidable or
progressively solvable.

5 Conclusions and Future Research

We have proven that, when the data is generated by a LiNGAM, there exist statistical decision
procedures and progressive methods, depending upon one’s question. As noted above, our work
immediately raises the question, “For which questions about LiNGAMs and for which values of α, if
any, are existing algorithms α-statistical decision procedures? α-progressive?”

Our research raises at leas three other important questions for future research. First, our results assume
that the observable variables are causally sufficient, i.e., that there are no unobserved common causes
of two observed variables. Which questions about LiNGAMs are decidable or progressively solvable
in the presence of confounders? Second, for what other classes of causal models are questions
about edge orientation (or questions about the entire DAG) decidable and/or progressively solvable?
Finally, in many applications, not all variables in a causal model can be observed simultaneously
[Mayo-Wilson, 2013, 2018]. Which causal questions about LiNGAMs and other non-parametric
models, if any, are decidable and/or progressively solvable when only a few variables can be observed
at any given time?
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