Lecture Notes for Chapter 8 of MACROECONOMICS: An Introduction

\qquad How the Fed Moves the Economy

Copyright © 1999-2008 by Charles R. Nelson

In this chapter we will discuss -

\bullet ROI (what?) and capital budgeting.

- How the impact of interest rates on the demand for investment goods gives the Fed a lever to move the economy.
- How the impact of Fed actions are divided between output (real GDP) and prices.
\bullet The Quantity Theory of Money.

The story in brief:

- Monetary policy moves interest rates.
\qquad
- Interest rates influence demand for capital goods and durable consumer goods. \qquad
- A change in demand affects:
- sales \& production, \qquad
- prices,
- employment \& wages. \qquad
\qquad

Should you buy a new delivery van for your business?

- An MBA will ask "What is the ROI?"
- Return On Investment \qquad
- ROI = Gain/Cost; like yield on a bond.
- Gain = net revenue + (resale value - cost)
- Net revenue includes cost savings, like the coupon on a bond.
- (resale value - cost) is price change, \qquad negative due to depreciation

Suppose

- A new van saves you $\$ 8,000$ in expenses, it costs $\$ 15,000$ now, \qquad worth $\$ 12,000$ in a year.
- Gain is $\$ 8,000+(\$ 12,000-\$ 15,000)$ \qquad
$-\mathrm{ROI}=(8+12-15) / 15=5 / 15=.33=33 \%$
\bullet Sounds good. Should you buy that van?
\qquad
\qquad
\qquad

Potential Investment Projects		
Ranked by ROI		
- Project:	Cost	ROI
- Van	\$15,000	33\%
- Freezer	\$7,500	25\%
- Pasta machine	\$2,000	20\%
- Espresso maker	\$3,000	15\%
- Display shelving	\$12,000	10\%
- Satellite phone	\$1,100	5\%

How the interest rate affects

the demand for capital goods.

How will a change in interest rate affect the market for trucks?

- It will shift the demand curve
- That will alter
- production of trucks
- price of trucks.
- Let's see how supply and demand make this happen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Full capacity is a soft wall

- Not an exact number of units, rather -

A threshold where costs rise sharply.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The "Natural" or "Full Capacity" Level of Real GDP

- For the whole economy there is also a
"full capacity" output.
- Beyond that, increases in production are accompanied by sharply higher prices.
- Also called the "natural" or "full employment" rate of output
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The labor market when Fed stimulates aggregate demand

Workers realize that a dollar buys

 less than it used to.
\qquad
\qquad

\qquad

Limitations of Monetary Policy

- It can stabilize economy near its
'natural' level of output and unemployment.
- It cannot change those 'natural' levels.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Quantity Theory of Money

- Consider this thought experiment:
- Fed boosts money supply 10\%.
- Real GDP is already at its natural level.
- What happens to real GDP and price level?

The sequence will be:

Interest rates fall.

- That increases demand for durable goods, and \qquad thus aggregate demand.
Real GDP rises above natural level.
- Prices start to rise.
- Wages are bid up in the labor market.
\qquad
Higher wages push supply curves up. \qquad
- That causes prices to rise further.
- Output falls back towards its original level. \qquad
\qquad

Using our money demand model:

- Money demand = money supply:
- $\mathrm{M}=\mathrm{k}(\mathrm{i}) \cdot \mathrm{GDP}=\mathrm{k}(\mathrm{i}) \cdot \mathrm{P} \cdot \mathrm{Q}$
- M is supply of money, \qquad
- P is the price level (GDP deflator),

Q Q is the level of output (real GDP).
\qquad

- Now Fed boosts money supply by 10%, \qquad to $1.1 \cdot \mathrm{M}$

A year or so later,

$\bullet \mathrm{Q}$ is again be at its natural level, since it grows by 3% per year, at $1.03 \cdot \mathrm{Q}$ \qquad

- Assume " i " is the same after a year, so $\mathrm{k}(\mathrm{i})$ does not change. Thus:
- $1.10 \cdot \mathrm{M}=\mathrm{k}(\mathrm{i}) \cdot(\mathrm{x} \cdot \mathrm{P}) \cdot(1.03 \cdot \mathrm{Q})$
$\bullet x$ must be 1.07 . since solving we have
- $\mathrm{x}=1.10 / 1.03=1.068-1.10-1.03=1.07$ \qquad
- So the price level has risen by 7\%!

Real growth absorbs 3\% of

 the 10% more money, the remaining 7% boosts price level.With nominal GDP higher by 10%, supply and demand for money are again in balance at the original interest rate!

\qquad
\qquad
\qquad

Does it still work today?

- 1960 to 1996: M1 was multiplied by 7.8.
- Real GDP multiplied by a factor of 3.
- Holding interest rate constant, k(i) constant,
- P should have multiplied by $7.8 / 3$, about 2.6 .
\qquad
- In fact, P rose even more: \qquad
- It was 4.7 times its 1960 level in 1996.

Why didn't the QTM work exactly?

$-\mathrm{k}(\mathrm{i})$ varies inversely with interest rate.

- T bond yield up from 4% to 7%. \qquad
- k(i) fell from . 27 in 1960 to .15 in 1996.
- Factors other than the interest rate affect k over long periods (credit cards reduce need for cash).

\qquad
\qquad

