
\qquad

In this chapter we will discuss-

- How savings becomes investment.
\qquad
- Banks and other financial intermediaries - their role in the economy.
\qquad
- Stocks and bonds. \qquad
- How to find out what the interest rate is.
- Long and short term interest rates \qquad - how they have behaved over time.

■ The "yield curve."
\qquad
\qquad

How can Blue Skies Airlines buy a 787?

- If it borrows from a bank it agrees to: π Repay the principal on schedule.
π Pay interest, say, 10%.
π Pledge the 787 as collateral. \qquad
■ Why is Blue Skies willing to pay interest?
■ Where did the bank get the $\$ 125$ million?

What does the bank do?

- It provides four services:
\qquad
- 1. Lower transactions costs
- 2. Lower information costs
- 3. Liquidity \qquad
- 4. Diversification

Transactions costs:

- What would it be like if households lent to Blue Skies directly?
- What would be the costs?

■ Banks are convenient! \qquad

- Lower costs for savers and borrowers.

Information costs:

- What if households had to gather
\qquad information about Blue Skies?
π Is Blue Skies a good credit risk?
π Is the loan a good deal?
π What happens if Blue Skies fails to pay?
ォ Good luck!
- Banks specialize in knowing this.
- Lower costs for savers and borrowers. \qquad
\qquad

Liquidity:

- Convertible into cash quickly at low cost.
- Bank's loan to Blue Skies is illiquid, but saver's deposit at the bank is liquid.
- Banks convert illiquid assets (loans) into liquid assets (savers' deposits).
- For providing liquidity bank gets the spread between interest earned on loan and interest paid on deposits.

Diversification:

- Each depositor participates in all loans. \qquad
- A bad loan has only a fractional impact.
- Bank deposits are insured by the Federal Deposit Insurance Corporation. \qquad
■ That shifts risk to all of us!

What are "Financial intermediaries?"

- Channels of saving to investment. \qquad
- Banks are only one. All offer:

ォ Lower transaction costs
π Lower information costs
\rightarrow Liquidity
ォ Diversification

- Many offer tax benefits.
- Examples include>>>

Life insurance......

■ "Whole life" is insurance and savings.

- Not highly liquid.
- Income earned free of current tax.
- The insurance companies make long term loans in real estate.

Pension funds......

- Not liquid
- Contribution not taxed until retirement. \qquad
- Neither are dividends and interest earned by the fund. \qquad
- "Defined contribution" plans invest in stocks and bonds.
- IRAs are do-it-yourself pensions funds.

Mutual funds......

- Each mutual fund share participates in a portfolio of stocks and bonds.
- Fastest growing, largest intermediaries.
- Many types of mutual funds.

л Growth, income, small cap, large cap, bond, balanced, international, internet, Asia, etc!

- Offer IRAs and variable annuities.

Mutual funds provide:

- Liquidity
π "Open end" funds sell \& redeem shares every day at market value.
■ Low transaction cost, "no load funds."
- Low information cost
π they select investments.
π easy to get information on funds.
- Diversified holdings of many stocks.

Source of confusion:
 "Investment" has 2 meanings.

- 100 shares of Amazon.com are a financial investment.
- Amazon's new warehouse is a capital investment.
- Both are part of process that turns savings into new capital goods.

Stocks

- Each share is an equal owner.
- Shares are "stock."
- The value of shares is determined by supply and demand.
π on the floor of the NYSE, and NASDAQ.
- Stocks are very liquid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wall Street

- Large cap stocks traded on NYSE, an actual place.
- Small cap stocks traded on NASDAQ, a virtual marketplace.
入 Exceptions: Microsoft and Intel.
- "Transparency": transactions - price and number of shares are displayed on "ticker tape" and broadcast world wide.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SEC is the umpire on Wall Street.

\qquad

- Securities and Exchange Commission established by 1934 law.
- All securities must be cleared by SEC.
- All public companies must file regular \qquad audited reports with SEC.
- Guiding principle is "full disclosure" - \qquad give investors all relevant information, then let market decide value. \qquad
\qquad

If Blue Skies Airline sells shares

\qquad

■ "Investment bank" markets new shares

- What do investors get for $\$ 10$ per share? π Right to cast one vote per share.
π Participation in profits and dividends.
π Limited liability.
π But you can lose your $\$ 10$!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

But stocks are risky!

If firm prospers, profits and dividends rise.

- If not, may receive no dividend
- Investor can reduce risk by diversifying, owning shares in many companies.
\qquad
- Easily done in a mutual fund.

What is a bond?

- A contract between \qquad
π the issuer of the bond, the borrower
π and the owner of the bond, the lender. \qquad
- Pays face value at maturity and interest in the form of periodic "coupons." \qquad
- At maturity, a bond ceases to exist.
- Described by issuer, coupon, \& maturity.
- Prices are quoted for face value of $\$ 100$,
\qquad determined by supply and demand.

\qquad

What if the issuer fails to pay?

- Bond in default.
- In bankruptcy bondholders may get nothing
\qquad

■ "Credit risk"

- Usually bonds are issued by governments \qquad and large corporations.
- Smaller firms usually borrow from banks.
- "Junk bonds" bought by large investors.

How is the coupon determined?

- At time of issue, coupon is set so bond will sell at face value, "at par." \qquad
- The less reputable the borrower, the higher is the coupon required. \qquad
- Coupon is determined by the market.
- Bond owner never receives more than promised!

Why do bond prices fluctuate?

- We want to understand how bond prices changes as interest rates change.
- What are some of the different kinds of bonds?
- What are 'Long Term' and 'Short Term' interest rates and how have they moved over time?
- What is the 'yield curve'?

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

"T Bonds, Notes \& Bills" in the WSJ

- "Notes" < 10 years, "bills" < 1 year.
- Min face value is $\$ 1,000$, quoted per $\$ 100$.
\qquad
- "Rate" is the coupon as $\%$ of $\$ 100$.
- "Maturity" is month and year, \& "n" a note.
\qquad
\qquad

■ "Bid" \& "Asked" are the buying and selling prices of the bond in dollars and 32nds. \qquad

- " Ch " is the price change in 32nds of a dollar.
- "Ask Yld" is based on asked price.

New one-year T note.

- What must the coupon be for investors to be willing to pay "par" or $\$ 100$ for it?
- Enough so the new bond yields as much as existing one year notes.
- Conclusion:

The coupon on the new note must equal the interest rate.

What was the interest rate when a bond was issued?

- Have interest rates risen or fallen?
- Have the bond prices risen or fallen?
- How does the price change relate to change in interest rates?

T bonds are not free of risk!

- Future interest rates are uncertain!

■ "Interest rate risk" takes two forms:
■ "Price risk"
π bond price changes when rates change.
■ "Income risk"
π cannot be sure of rate when reinvest.
\qquad

When yield goes from 5% to 6% what happens to price?

- Solve for Price.

Price $=\frac{\$ 100+\text { coupon }}{1+\text { yield } / 100 \%}$

- Coupon is $\$ 5$. π If the yield is 5%,
\qquad

```
Price \(=\frac{\$ 105}{1+.05}=\$ 100\)
``` the price is \(\$ 100\).

Price \(=\frac{\$ 105}{1+.06}=\$ 99\) If the yield is \(6 \%\), the price is \(\$ 99\).
- A rise of \(1 \%\) point in yield results in a \(1 \%\) loss in market value!

\section*{Why does the price fall \(\$ 1\) ?}
yield \(=\frac{\$ 100+\text { coupon }- \text { price }}{\text { price }} \bullet 100 \%\)
yield \(=\frac{\$ 100-\text { price }}{\text { price }} \bullet 100 \%+\frac{\text { coupon }}{\text { price }} \bullet 100 \%\)
yield \(=\) price appreciation yield + coupon yield
- At a price at \(\$ 100\), price appreciation is zero, so the yield is just coupon yield, \(5 \%\).
- When rates rise \(1 \%\) point, price falls to \(\$ 99\), adding \(1 \%\) price appreciation yield.
- The coupon cannot and will not change!

\section*{Bond prices move inversely with interest rates!}
- When rates rise, bond prices fall.
- When rates fall, bond prices rise.
- Coupon and face value are fixed, only the market price can change!
■ Yield adjusts through change in price.
- This is why there is interest rate risk!
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Income risk:}
- T bill has very little price risk.
- But what will be interest rate when it matures?
- Income risk argues for matching maturity to time you will need money.

\section*{The price-yield relationship for long term bonds:}
- Discount (\$100-price) is earned over years, but yield is on a per year basis.
- Exact math is more complex
- Good approximation:
\(\pi\) divide the discount by maturity, \(\pi\) add coupon, then divide by price.

\section*{Example: \\ 10 year bond with coupon \(\$ 7.25\)}
- Issued yesterday at par to yield \(7.25 \%\).
\(\qquad\)
- Today interest rates jump to \(9 \%\).
- Price must drop to about \(\$ 91\) ! Why?
- Price will appreciate \(10 \%\) over 10 years, \(\qquad\) about \(1 \%\) point per year.
- Price appreciation yield of \(1 \%\) + \(\qquad\) coupon yield of \(8 \%=9 \%\) yield.
- Big ouch if you bought that bond! \(\qquad\)
\(\qquad\)

\section*{Consols mature in eternity.}
- Never matures, pays coupon forever.
- Math is easy:
\(\pi\) yield = coupon/price
\(\pi\) therefore: price \(=\) coupon/yield
\(\pi\) Example: If coupon is \(\$ 5\) \& price \(\$ 80\), yield \(=5 / 80=.0625=6.24 \%\)
- A useful approximation for long term bonds
- Try the 30 year \(T\) bond and see if it works.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{How does price change with a change in yield on a consol?}
- Percent change in price equals minus
\(\qquad\) the percentage change in yield.
- Example: long rates rise from \(5 \%\) to \(6 \%\), long term bond prices fall \(20 \%\) !
- When long term rates rose in 1994, bond holders lost about \(15 \%\) !
- Long term bonds have the greatest price risk!
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Behavior of long and short term interest rates:}
- Annualized yield on T bill is
\(\qquad\) benchmark short term rate.
- Yield on long term \(T\) bonds is benchmark long term rate
- All other interest rates of same maturity will be higher, e.g. mortgages
- One exception: tax exempt bonds issued by municipalities.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Some observations:}
- Long and short term rates differ. Why?
\(\qquad\) \(\pi\) very different time horizons \(\pi \mathrm{T}\) bill promises to pay for short time,
\(\qquad\) T bond pays a much longer time \(\pi\) these are different promises. \(\pi\) also, their interest rate risks are different.
■ Interest rates have varied greatly \(\pi\) creating huge gains and losses.

\section*{Expectations Theory of the} Term to Maturity Structure of Interest Rates:
- Investors have the choice between
\(\pi\) Rolling over T bills
\(\pi\) or holding T bonds.
- So they compare long rate today with short rates they expect in the future.
- If they expect short rates to rise, long rate must be higher than short rate.

\section*{Does the expectations theory work?}
- Implies spread between T bond and T \(\qquad\) bill rates forecasts T bill yield.
- If spread is unusually large, that implies T bill rates expected to rise.
- 2004 spread was large, and T bill rates did rise sharply in 2005-06!
- Following chart shows that the spread usually does signal the direction:

\section*{What is the "Yield Curve"?}
- Yield as a function of maturity
- Menu of choices offered to bond buyers
\(\qquad\)
- Typical shape:
\(\pi\) upward slope, reflecting risk premium \(\qquad\) \(\pi\) dip at long end
- Important tool of investment analysis \(\qquad\)
- In the WSJ

■ Online @ bloomberg.com/markets

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

