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Overstory influences on herb and shrub
communities in mature forests of western
Washington, U.S.A.

Donald McKenzie, Charles B. Halpern, and Cara R. Nelson

Abstract: Understanding the relationships between forest overstory and understory communities is essential fer predict
ing changes in the abundance and distribution of understory plants through successional time and in response to forest
management. We used correlation analysis, multiple regression, and nonparametric models to explore the relationships
between overstory characteristics (canopy cover, stand density, and tree-size distributions) and the abundance of species
in the herb and shrub layers in mature forests of western Washington. Overstory variables explained >50% of-the varia
tion in the mean response of total shrub cover and ca. 50% of the variation in cogepfircinatumPursh (the

most common shrub species) and late-seral herbs (species reaching their greatest abundance in late-successional for
ests). Stronger relationships (80-90% variance explained) were found between overstory variables and the maximum
cover of total shrubsA. circinatum,total herbs, and each of three functional groups of herbaceous species. These em
pirical relationships represent both direct resource limitations and time-dependent responses for which overstery charac
teristics may be surrogates. Models of maximum abundance yielded the most consistent results, suggesting the relative
importance of different overstory variables as limiting factors for understory response, although these limiting factors
have different effects on plants with different life-history strategies.

Résumé: Pour prédire les changements dans I'abondance et la distribution des plantes du sous-bois au cours de la suc-
cession et en réponse a I'aménagement forestier, il est essentiel de comprendre les relations entre I'étage forestier do-
minant et les communautés du sous-bois. Les auteurs ont utilisé I'analyse de corrélation, la régression multiple et les
modeles non paramétriques pour explorer les relations entre les caractéristiques de I'étage dominant (recouvrement de
la canopée, densité du peuplement, distributions de la dimension des arbres) et 'abondance des especes dans les strate:
herbacée et arbustive des foréts mares de I'ouest de I'Etat de Washington. Les variables de I'étage dominant expli-
quaient plus de 50% de la variation de la réponse moyenne du recouvrement total du couvert arbustif et environ 50%

de la variation du couvert de I'arbuste le plus commukcer circinatumPursh et des espéces herbacées de la fin de la
succession, qui atteignent leur plus grande abondance dans les foréts de ce stade successionnel tardif. Une relation plus
forte, qui explique 80 & 90% de la variation, a été trouvée entre les variables de I'’étage dominant et le recouvrement
maximum du total des arbustesAd’circinatum du total des herbes et de chacun des trois groupes fonctionnels-des es
peces herbacées. Ces relations empiriques refletent a la fois la limitation directe des ressources et les réponses qui sont
fonction du temps, pour lesquelles les caractéristiques de I'étage dominant peuvent étre des substituts. Les modéles de
'abondance maximale fournissent les résultats les plus consistants, suggérant I'importance relative des différentes varia
bles de I'étage dominant en tant que facteurs limitatifs de la réponse du sous-bois, bien que ces facteurs aient des ef
fets différents sur les plantes possédant différentes stratégies de cycle vital.

[Traduit par la Rédaction]

Introduction overstory trees) determine, in large part, the distribution and
bundance of subordinate layers (e.g., subcanopy trees,
hrubs and herbs). However, the existence or strength of
uch interactions can vary at different points during forest

To what extent biotic interactions shape the spatial an
temporal distributions of species remains among the mo

fundamental questions in ecology (Tilman 1982; Grace an evelo ; g :
X ) X pment, particularly if there are large changes in the
Tilman 1990; Goldberg and Barton 1992). In terrestrial-eco vertical structure of vegetation through time.

systems, and in forests in particular, it is often assumed that In temperate coniferous forests of the Pacific Northwest
the competitive effects of taller vegetation layers (e.g., P . . . ’
strong and predictable relationships between herbaceous and
woody plant layers have been described during early succes
Received December 6, 1999. Accepted July 13, 2000. sion (Halpern and Franklin 1990) and during stand closure
_ o when severe light limitation can lead to dramatic loss of
B coaveten Srisnoss, Colege of Forest Resources, PG, Box UNOCTSIOTY plants (Alaback 1962 Kiinka et al. 1996,
DME L . P Lezberg 1998). Similar relationships have been inferred
55?'20’ University of Washington, Seattle, WA 98195-2100, 1, increases in understory cover and biomass following
B silvicultural thinning of young stands (e.g., Bailey et al.
ICorresponding author. e-mail: dmck@u.washington.edu 1998; Thomas et al. 1999). In contrast, there have been few
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attempts to describe or model these empirical relationships
in mature or late-seral forests (but see McKenzie and
Halpern 1999), forests that are, by comparison, less dynamic
but more complex structurally. We suspect that in these
older forests, strong direct effects may be masked or con
founded by myriad possible interactions among vegetation
layers, by legacies of past disturbance, or simply by the pas
sage of time.

In this paper, we employ correlation analysis, multiple re
gression, and nonparametric models to explore the relation
ships between overstory characteristics and the abundance of
herbs and shrubs in mature forests of western Washington.
In conventional analyses of “mean” response, direct interac
tions between overstory and understory may not be detect
able through the variation induced by other factors. Thus, we
employ an additional approach, in which we estimate “maxi
mum” responses (Thompson et al. 1996; Guo et al. 1998;
Scharf et al. 1998; Cade et al. 1999). This approach is analo
gous to that used to describe biomass—density relationships
in pure, even-aged forests (Yoda et al. 1963) or tree density
maxima in uneven-aged, mixed-species stands (Sterba and
Monserud 1993). Models of maximum response are useful
for quantifying thresholds or limits, and the extent to which
a predictor (e.g., tree cover) constrains a response variable
(e.g., herb cover) within the context of other influences that
comprise the operational environment.

Our goal is to identify those dependent and independent
variables that have strong and predictable relationships and
to interpret these relationships in light of our understanding
of species’ life histories, environmental influences, and
successional development. We examine an array of analyti-
cal approaches, including correlation and regression analy-
sis, regression trees, and linear and nonlinear models of
maximum response. Given the large number of species-level
comparisons possible, we restrict our analyses to the re-
sponses of broad groups of plants that occupy distinct-vege
tation layers (i.e., shrub and herb layers), or that share
common successional patterns or responses to disturbance
(Halpern 1989; Spies 1991; Halpern and Spies 1995). in ad
dition to reducing the number of comparisons to a manage
able level, this approach facilitates comparison with other
forest types in which vegetation may differ floristically but
is similar structurally or functionally.

Acci, Vacc, Vame, Vapa, Gash, Xete, Coca

Acci, Vame, Vapa, Bene, Ptaq
Acci, Acgl, Coco, Actr, Smst, Bene

Acci, Vapa, Pomu, Gash

Major shrubs and herBs

Psme (Tshe, Thpl, Abam)

Psme (Tshe, Thpl, Alru)

Note: Ranges are based on mean values for each of the six treatment units within each location (adapted from Halpern et al. 1999).

“Trees>5.0 cm DBH.

Psme (Tshe, Thpl)
Psme (Abgr, Conu)

species

index Major (minor) overstory
27-32
26-33
37-41

Site
(m)

Basal
area
(no./hay  (m?ha)
759-1781 48-65
182-335 61-77
512-1005 59-87
221-562 54-73

Tree
Stand age density

(years)
110-140

70-80
140-170
65

varied
varied

Aspect

Methods

40-66 NW-NE

28-52

Study areas

The data used in this analysis comprise a subset of the baseline
measurements of forest vegetation collected as part of the Demon
stration of Ecosystem Management Options (DEMO) study.
DEMO is a large-scale experiment that examines the effects of
level and spatial pattern of green-tree retention on various cempo
nents of mature coniferous forests in the Pacific Northwest; these
include vegetation, wildlife, invertebrates, and fungi (Aubry et al.
1999; Halpern et al. 1999). Here we restrict our analyses te pre
treatment data from four study locations in southwestern Washing
ton: three in the Cascade Range in the Gifford Pinchot National
Forest and one in Capitol State Forest in the Black Hills, south and
west of Olympia. These represent a diversity of forest types, stand
ages, and environmental conditions (Table 1). Elevations range
from ca. 200 to 1700 m, slopes are gentle to steep, and aspects
vary considerably. Three forest zones are represeniatiga

Slope

850-1035 9-33

210-275

(%)
975-1280 40-53 E-SE
825-975

Elevation
(m)

YBased on cover. Species codes in addition to those above: Acei, circinatum Acgl, Acer glabrum Actr, Achlys triphylla Bene, Berberis nervosaCoca,Cornus canadensisCoco, Corylus

cornutg Gash,Gaultheria shallon Pomu, Polystichum munitumPtag, Pteridium aquilinum Smst, Smilacina stellataVacc, Vaccinium ovalifolium- V. alaskaenseVame, V. membranaceunVapa, V.

“Tree species codes: Abarbies amabilis Abgr, Abies grandis Alru, Alnus rubrg Conu, Cornus nuttallii Psme,Pseudotsuga menziesiihpl, Thuja plicata Tshe, Tsuga heterophylla.
parvifolium Xete, Xerophyllum tenax

®Douglas-fir 50-year site index.

Table 1. General environmental features and structural and compositional characteristics of the four study locations.

Location

Gifford Pinchot National Forest

Butte

Little White Salmon

Paradise Hills

Department of Natural Resources Lands
Capitol Forest
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Table 2. Three groups of species in the herb layer based on successional dynamics and responses to disturbance (Halpern 1989; Spies
1991; Halpern and Spies 1995).

Dominant herbs Release herbs Late-seral herbs

Berberis nervos&ursh Galium triflorum Michx. Achlys triphylla(Smith) DC.

Gaultheria shallonPursh Hieracium albiflorumHook. Adenocaulon bicoloHook.

Polystichum munitunfKaulf.) Presl Linnaea borealisL. Chimaphila menziesi{R.Br.) Spreng.

Xerophyllum tenaXPursh) Nutt. Pteridium aquilinum(L.) Kuhn. Chimaphila umbellatgL.) Bart.
Rubus ursinusCham. & Schlecht. Clintonia uniflora (Schult.) Kunth.
Trientalis latifolia Hook. Cornus canadensik.

Disporum hookeri(Torr.) Nicholson
Goodyera oblongifoliaRaf.

Pyrola asarifolia Michx.

Pyrola picta Smith

Pyrola secundd..

Smilacina racemoséL.) Desf.

Smilacina stellataL.) Desf.

Tiarella trifoliata L.

Trillium ovatumPursh

Vancouveria hexandréHook.) Morr. & Dec.

Note: Herbs included were present on >10% of plots, with >1% cover (see text). Nomenclature follows Hitchcock and Cronquist (1973).

heterophylla (Raf.) Sarg. (western hemlock)Abies grandis Readings were made at eight points within each tree plot (at both
(Dougl.) Forbes (grand fir); and\bies amabilis(Dougl.) Forbes ends of each intercept line).

(silver fir) (Franklin and Dyrness 1988Pseudotsuga menziesii

(Mirb.) Franco (Douglas-fir) dominates the canopy at all locations,p4tg analysis

but associated canopy and subcanopy species vary. Stand basalye calcilated plot-level means for tree basal area and density

area, density, and understory composition also vary within ang,ia| and by species). overstory canopy cover. sapling density. and
among locations, reflecting differences in disturbance history, rec%; ¥ 5P ) y by + Sapiing Y

; . A shrub- and herb-layer cover (summed totals and by species), in
generation patterns, and physical environments. Stands are considsch of the 818 plots. In addition, we grouped herbaceous species
erably older at Little White Salmon and Paradise Hills and

; . X " into three categories based on species classifications in Halpern
considerably denser at Paradise Hills and Butte (Table 1). Despit 989): {) “dominant” herbs, or “successional generalists,"species

this heterogeneity, many of the same taxa dominate the understoyat are ubiquitous and abundant during most stages of forest de-
(e.g.,Acer circinatumPursh (vine maple)Berberis nervosa@ursh velopment (equivalent to “R3” species of Halpern (1989)); ‘te-
(Oregongrape), anacciniumspp. (huckleberry)). lease” herbs, typically subordinate, forest species that respond
positively to canopy removal or other disturbance (“R1” and “R2”
: species); andii{) “late-seral” herbs, those that reach maximurm de
Data collection velopment in old-growth forests (Halpern and Spies 1995) and that
are sensitive to canopy removal and disturbance (“R5” species)
Table 2). Plot-level measurements were integrated into a model
ata base, and SPLUS for Windows version 4.5 (Mathsoft 1997)
as used for all analyses. Correlation analyses were performed and
redictive models were developed for the shrub and herb layers.

A complete description of the vegetation sampling design is pre
sented in Halpern et al. (1999). Here we describe only those co
ponents pertinent to the current analysis. At each of six, 13-h
treatment units within each study location, permanent vegetatio
plots were established across a systematic grid (40-m spacing),
though the number and spatial distribution of plots vary by treat
ment (Halpern et al. 1999). A total of 32—-37 plots were sampled . .
per treatment unit yielding a grand total of 818 plots. DistancesCorrelation analysis
among the treatment units within each location vary considerably To examine the pairwise relationships among all variables, and
because of constraints of local topography and past managemel® assess the strength and possible confounding effects of same-
activity (e.g., harvest units and roads). Treatment units are adjaceflyer interactions, we computed a matrix of Pearson product-moment
at some locations but are separated by as much as 9-10 km-at ot¢rrelations. The relative strength of relationships in the correlation
ers. matrix suggested initial choices of variables for the mean response

At each grid point sampled, overstory and understory attribute@"d Mmaximum abundance models (see below). Because of the large
were measured using a series of nested plots and transects. TregdNPle size (producing correlations as low as +0.08 that were
5-15 cm diameter at breast height (DBH) were identified to- spe Significant ata = 0.05) and possible confusion over significance
cies and measured for diameter in a circular, 0.01-ha plot; treef‘ev_EIS with multiple tests (Wright 1992), inferences from the corre
>15 cm DBH were measured in a circular, 0.04 ha plot. Sapling ation ar)aly5|s were based on the relatlve.str.engths of relationships
(trees >10 cm tall, <5 cm DBH) were tallied in fo@ x 6 mquad and their signs rather than on levels of significance.
rats, arranged along perpendicular radii within each circular tree
plot. Cover of species in the shrub layer was estimated with thé’redictive models of mean response
line-intercept method along the line defining one side of each sap To develop predictive models for components of the shrub and
ling quadrat. Cover of all species in the herb layer (includingherb layers as functions of components of taller strata, we used a
graminoids, ferns, herbs, subshrubs, and low shrubs) was visuallgombination of linear models and two nonparametric methods, lo
estimated in a series of twenty-four 0.1G-mmicroplots per plot cally weighted regression (LOESS; Cleveland and Devlin 1988;
(six along each intercept line). Overstory canopy cover (cover offrexler and Travis 1993) and classification and regression trees
trees >5 cm DBH) was estimated with a moosehorn densiomete(CART; Breiman et al. 1984). Overstory variables and sapling
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Table 3. Plot-level means and ranges (in parentheses) by location for predictor variables used in the models.

Quadratic mean Coefficient of

Stand density Canopy cover diameter (QMD) variation in tree Sapling density
Location index (SDI) (CANOPY) (%) (cm) diameters (CVD) (SAPL) (no./n%)
Gifford Pinchot National Forest
Butte 240.2 (82.7-487.4) 80.0 (32.4-97.6) 30.0 (17.6-59.5) 0.39 (0.21-1.03) 0.14 (0.00-0.92)
Little White Salmon 122.6 (3.5-316.7) 64.8 (0.0-93.3) 74.4 (16.0-123.0) 0.47 (0.00-1.84) 0.06 (0.00-0.67)
Paradise Hills 227.3 (79.9-370.9) 83.3 (34.9-98.1) 40.1 (26.5-56.2) 0.50 (0.30-1.11) 0.58 (0.00-8.46)
Department of Natural Resources Lands
Capitol Forest 148.1 (38.3-357.7) 77.3 (30.6-97.5) 53.0 (17.2-82.4) 0.38 (0.04-0.94) 0.02 (0.00-0.42)

Table 4. Proportion of plots present, and means and ranges in percent cover for the response variables.

Total shrubs Vine maple Total herbs Dominant herbs Release herbs Late-seral herbs
Proportion of plots 0.96 0.59 1.00 0.93 0.94 0.89
Mean 40.0 453 38.5 20.1 35 15.0
Range 0.1-160.4 0.1-100.0 <0.1-118.6 <0.1-105.8 <0.1-41.8 <0.1-90.1

density were predictors for shrub-layer responses and these plent if built using data from a single location. A large number of
shrub-layer variables were predictors for herb-layer responses. Résignificant” coefficients for the location variable would suggest
sponse variables in the shrub layer weesimmed shrub cover, that many model predictions would be sensitive to location.-Con
hereafter total shrub cover (the summed cover of the individualversely, a dearth of “significant” coefficients would suggest that
species, which can exceed 100%), aiid ¢over of any species the models were insensitive to location and, therefore, more robust
present on more than 10% of the plots. Response variables in the extrapolation across their geographic range (western Washing-
herb layer werei} summed herb cover (as calculated above), hereton).
after total herb cover, andi) for species with=1% cover in at For each optimal linear model, we checked for possible nonlin-
least 10% of the plots, the summed cover of individual speciesar relationships using)(scatterplots of each predictor versus the
within each of the three functional groups described above (see Taesponse andiij LOESS models (Cleveland and Devlin 1988).
ble 2). Where strong nonlinear relationships were apparent, we attempted
We then built a separate multiple linear regression model forto fit nonlinear models using partially linear least squares (Bates
each response variable, using only those plots in which the reand Lindstrom 1986). To validate the models and estimate their
sponse variable was not zero (because the abundance of a plaredictive power, we used a refined bootstrap estimate of predic-
group or species is conditional on its presence). Potential predidion error (Efron and Tibshirani 1993), based on 100 replicates for

tors for shrub models were as follows: each model. The resulting statistic, “error optimism,” reflects the
(1) tree basal area (BA) in fta; percent increase in residual squared error expected if the model
(2) stem density (TPH) in trees/ha; were extrapolated to other data from a similar population (Efron
(3) a simple stand density index (SDI), where SDI = (BA x and Tibshirani 1993). .
TPHYS: After selecting each final model, we fit a nonparametric, tree-
(4) overstory canopy cover (CANOPY) in percent; based model (CART; Breiman et al. 1984; Clark and Pregibon

1992) using the same variables. Tree-based modeling uses binary
recursive partitioning based on reduction in deviance to split the
data into increasingly homogeneous subsets. We used this method
for exploratory purposes to suggest whether incorporating complex
nonadditive interactions into models could increase the proportion
of variance explained (Clark and Pregibon 1992) and to assess the
e%ossibility of threshold responses. We used an adaptive estimation
method (Breiman et al. 1984) to minimize the complexity of each
model (number of branches and nodes) without sacrificing good
ness of fit. This method first fits an overly large tree, then uses a
cost-complexity criterion to “prune” branches that do not contrib

te significantly to the reduction in deviance (Breiman et al. 1984).

(5) two variables representing tree-size distributionsg@adratic
mean diameter of trees (QMD): QMD =YDBH2Z/n)°°
where DBH is the diameter of tree andn is the number of
trees/plot; andii) coefficient of variation of diameter (CVD)
for all trees on a plot; and

(6) sapling density (SAPL) in saplingsfm

These same predictors, plus total shrub cover (SHRUB) were us

for all herb models. Predictors are summarized in Table 3 and re

sponse variables in Table 4.

We used backward elimination (Neter et al. 1990) to select sub
sets from the full set of predictors that were most strongly corre u
lated with each response variable. The final model was that which
minimized the mean-squared error of residuals, while retaining
only those predictors whose coefficients were significantly differ Models of maximum response
ent from zero at = 0.05. Standard diagnostics were applied to  Because the constraints or limitations that arise from biotic in
check for normality and constant variance of residuals, and aeractions may be more evident from maximum than from mean re
Cook’s distance plot was used to identify and remove significantsponses (see above), we used a method outlined by Scharf et al.
outliers. Where appropriate, we transformed the response variablgg998) to model the maximum abundance of one variable as a
to meet the assumptions of regression. function of another. Using two-dimensional scatterplots of our six

Although the influence of location in our data base represents aesponse variables on potential predictors, we identified the predic
“random effect” and cannot be interpreted as a factor in a predictor that produced the scatterplot with the clearest “edge” at maxi
tive regression model, we added a “location variable” to each ofmum levels of the response. We identified and removed outliers
the optimal models to identify those that might be distinctly differ that were clearly isolated in the scatterplots, then divided the
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Table 5. Correlation matrix for selected overstory and understory variables (density of saplings, cover of shrubs and herbs).

Late-seral
herbs

Release
herbs

Vine Total Dominant
herbs

Total

Sapling

QMD SDI CVvD density shrubs maple herbs

CANOPY

TPH

BA

1.00
-0.01

BA
TPH

1.00
0.37
-0.71

1.00
-0.34
0.57
0.01

0.41
0.28
0.42
—-0.05

CANOPY
QMD
SDI

1.00
-0.63
-0.14

1.00
0.15

0.86
0.12

1.00

CvD

1.00
-0.17
-0.23
-0.23
-0.17

0.14
-0.02
—-0.06

0.11

-0.13

0.02
-0.57
—-0.45

0.10
—-0.53

-0.49
-0.47

—-0.01
—-0.08
0.00
-0.13
-0.13

Sapling density
Total shrubs
Vine maple
Total herbs

00

1.
0.89

-0.60
-0.50
-0.55

0.66
0.55

1.00
0.03
-0.18

1.00

0.35
-0.09

-0.06
-0.14
-0.09

0.48
0.02
-0.39

-0.30

1.00
-0.13
-0.39

0.56

-0.25

0.05
-0.05
-0.36

-0.24

Dominant herbs
Release herbs

00

1.
-0.11

0.03
0.48

-0.39
0.31

-0.28

-0.02
-0.08

0.18
-0.38

0.27
-0.35

-0.22

1.00

0.55

0.12

0.63

0.08
Note: Abbreviations for overstory variables are as follows: BA, tree basal area; TPH, trees per hectare; CANOPY, percent canopy cover; QMD, quadtiaticeteeaSDI, stand density index;

CVD, coefficient of variation of tree diameters.
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paired observations of the predictor and response variables into
“bins” containing equal numbers of observations. Within each bin,
we identified the maximum level of the response variable and
paired that observation with the corresponding observation of the
predictor. We then regressed these maxima on their predictors
(wheren is the number of bins) to obtain a “maximum density
line” made up of the fitted values, using both linear and LOESS
techniques. Choice of bin size involves a trade-off between sample
size for the regression (number of bins) and the number of ebser
vations within each bin. Thus we adjusted bin size iteratively dur
ing the modeling process to optimize the fit (Scharf et al. 1998),
with the constraint that it remained a constant proportion of total
observations for each of the six models.

We extended this method to three dimensions (maximum-abun
dance of one variable in response to two others), to estimate- maxi
mum abundance surfaces. From the scatterplots we identified the
two predictors showing the clearest “edges.” We tested several
pairs of variables for each model, however, to accommodate
interactions not evident from visual examination, and selected the
pair that minimized the residual squared error. Because pairs of
numbers cannot be ordered, we did not generate bins with equal
numbers of observations, as in the two-dimensional models, but in
stead created equal-sized rectangular bins in the space of the two
predictors, where the dimensions of the rectangles were equal pro
portions of the range of predictors 1 and 2, respectively (creating
equal numbers of bins iX andY directions). Within each bin, we
selected response and predictor observations in the same manner as
for the two-dimensional model, with the constraint that bins with
fewer than 10 observations were excluded. Once again, bin size
was adjusted iteratively during the modeling process.

Results

Correlation analysis

Total shrub cover displayed the strongest relationship to
individual overstory variables of any of the response vari-
ables considered (Table 5). Pearson correlations were strongly
negative with SDI R = —0.60), CANOPY R = —0.57), and
tree density R = —0.53) and strongly positive with QMD
(R = 0.66). Correlations foAcer circinatumcover (which
comprised 76% of shrub cover on plots in which it was pres
ent) were very similar to those for total shrub cover. Total
herb and late-seral herb cover had slightly weaker correla
tions with overstory variables than did shrub variables; dom
inant herbs and release herbs had significantly weaker
correlations (Table 5). In addition, correlations for release
herbs were mostly opposite in sign from those of dominant
and late-seral herbs.

Models of mean response

Six predictor variables appeared in one or more of the re
gression models of understory abundance, with each model
using a subset of three to five predictors (Table 6). The
model of total shrub cover had the best explanatory power,
while the late-seral herb model was the best among the herb
models. In contrast, models of dominant and release herbs
were considerably weaker (Table 6). QMD appeared as a
predictor in every model, CANOPY in five of six, and SAPL
and SDI in four (these latter two always had a negative-coef
ficient). Overstory variables with the strongest simple corre
lations to the response variables were not always the best
predictors, or even significant, in the multiple regression
models. For example, late-seral herb cover was more

© 2000 NRC Canada
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McKenzie et al.

Table 7. Maximum

abundance models for understory cover.

1661

Two dimensions

Three dimensions

Response Predictor R? (linear) R? (LOESS) Predictors R? (linear) R? (LOESS)
Total shrubs SDI 0.89 0.93 SDI, QMD 080 0.88

Vine maple SDI 0.81 0.94 SDI, QMD 0.84 0.82

Total herbs SDI 0.61 0.65 SDI, QMD 04n2 0.89
Dominant herbs SHRUB 0.41 0.66 SDI, QMD 0.53 0.92
Release herbs SHRUB 0.68 0.71 QMD, SHRUB 0.63 0.84
Late-seral herbs SDI 0.83 0.86 SDI, QMD 0.84 0.92

aSDI (stand density index) nonsignificant.
PQMD (quadratic mean diameter) nonsignificant.

binning algorithm with respect to the two-dimensional mod Overstory characteristics as surrogates for successional
els and the inability to reasonably remove outliers by visuakime

inspection. Release herbs were positively correlated with variables
that peak during early to middle succession (SDI, tree-den
Discussion sity) and negatively correlated with predictors that peak in

stands that have remained undisturbed for substantial periods

We expected that understory development (total cover off time (QMD, CANOPY, SHRUB, CVD). Forest species
herbs or shrubs) would be negatively correlated withthat respond positively to disturbance should be most abun
overstory variables. Moreover, assuming that the inhibitorydant inearly succession but decline in stands that are undisturbed
effects of overstory trees are manifested primarily throughexcept for occasional treefall. Thus, the counterintuitive-rela
reduction in light availability, we expected correlations with tionship between release herbs and SDI may simply reflect
canopy cover to be stronger than those with other aspects #feir concurrent decline with successional time rather than a
stand structure (e.g., stand density or tree size distributionspeneficial effect of increased stand density. However, the rel-
Herb and shrub cover were indeed negatively correlated witiatively weak regression relation reinforces our previous as-
overstory variables; however, correlations with SDI weresumption that any strong effect of the overstory on release
slightly stronger than with CANOPY. The contributions of herbs would have occurred earlier in stand development
sunflecks (Chazdon and Pearcy 1991), or light that penelcloser in time to stand-initiating disturbance).
trates at lower angles of incidence, are not captured by our Dominant herb response was correlated with five of the
densiometer readings but instead may be more accuratefjx predictors, but the overall regression relation was also
represented by measures of stand density. Alternatively, lighveak, supporting the general observation that these species
levels may be less limiting for understories in mature standsire able to thrive and dominate the herb layer in a variety of
than in earlier stages of stand development (Alaback 198Xorest conditions (Halpern and Spies 1995). Thus, neither
Lezberg 1998; Thomas et al. 1999). overstory structure nor “successional” time appears to be a

We also expected that understory responses to oversto ajor influence on the variability in dominant herb abun
conditions would be more apparent for taller growth formsdance among plots. In contrast, the responses of late-seral
that are able to take advantage of openings and ascend inf@rbs, total shrubs, and vine maple can be linked both to
canopy or subcanopy gaps (shrubs) than for growth form§hanges in available resources and to the passage o_f time.
restricted to the ground layer (herbs). Shrub-layer responsedll were strongly positively correlated with QMD (which
in the regression models and correlations were stronger ofypically increases monotonically through succession) and
average than herb-layer responses; however, late-seral herb@gatively correlated with SDI and CANOPY. As canopy
were an exception, particularly in the tree-based model. 9aps form, tree density declines through natural mortality,

Our expectations for herb-layer responses varied amongnd biomass is aggregated in space (increase in QMP), re
groups. Species that exhibit the potential for rapid vegetativéources become more available for shrub species. Late-seral
expansion (‘release” herbs) might be expected to showerbs, on the. othgar hand, may be increasing in response to
strong negative correlations with overstory canopy CoVer'gradual amelioration of unfavorable enywpnme_ntal condi
Conversely, if development of late-seral herbs is temporall)l'ons or belatedly as a consequence of limited dispersal _and
dependent (increasing with time since disturbance; Halperglow rates of growth (Matlack 1994; Halpern and Spies
and Spies 1995), rather than resource limited, they should995; Jules 1998). The resulting positive relationship of
show weak correlations with overstory variables. Likewise,late-seral herbs and shrubs may thus reflect their paraHel in
correlations for dominant herbs could be expected to b&reases over time rather than any strong biotic interactions.
weak, because they are abundant during most stages of stand
development. Our expectations proved false for both releasaximum abundance models
and late-seral herbs. Thus, it is likely that herb-layer re Maximum abundance models exhibited clearer relation
sponses reflect not only the direct effects of the overstoryhips than did mean response models for each of the six
but also indirect effects that change coincidentally withunderstory variables (Tables 6 and 7), suggesting that the
overstory development. We suspect that these are timaele of resource limitation in constraining understory abun
dependent responses for which overstory characteristics malance can be modeled empirically, even if the underlying
serve as surrogates. mechanisms are not apparent. For example, the success of

© 2000 NRC Canada
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Fig. 1. Tree-based models o&) late-seral herb cover andb)(dominant herb cover as a function of QMD, CVD, shrub cover, canopy
cover, and sapling density. Values at nodes are predicted cover, in percent. Predictions for a plot are obtained by moving down the
tree, branching left at a split if the plot meets the rule, or branching right if it does not. The insert shows the proportion of deviance

accounted for at each split.

(@)

QMD < 59.88
—
CvD < 0.81 Shrub < 26.6
QMD < 58.73 Canopy < 52.44 QMD < 71.20
0.40
Canopy < 74.81 CvD<0.90 CvD < 0.38 QMD < 85.50

23.60 55.70
CVD < 0.48 Shrub < 59.85 Canopy < 53.63 Canopy <61.19

1490 33.20 ’
QMD < 41.96 Canopy < 72.81 Shrub <77.70
29.10 41.90 41.40 53.90

7.59 17.50 66.30 41.20 16.10 36.90

SDI < 200.52

(b) | !

QMD < 73.12 Shrub < 3.35

Sapling < 0.06 Shrub < 33.40 MD < 43.55
Canopy < 74.06 QMD < 63.15 Sapling < 0.19
30.00 7.28 11.80
Shrub < 76.40 Shrub < 42.69 QMD < 51.22 Shrub < 28.45

o o ik

SDI < 89.07 SDi < 147 54 Shrub < 32.95 QMD < 58.35

17.80 17.00 34.40 14.60
QMD <29.84 Shrub < 48 45 SDI < 148 06
59.70 1550 60.60 50.40 17.60 .

7.77 30.90 51.70 20.80 51.10 23.50
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Fig. 2. Maximum abundance models ad)(shrub cover as a linear function of SDI anlg) ¢ine maple cover as functions of SDI. In

Fig. 2v, the straight line shows the fitted values of linear regression, and the curved line shows the fitted values of a LOESS model.
The latter is truncated at SBH 300, because the LOESS algorithm requires a minimum number of data points and fitted values cannot
be extrapolated.

150

(a)

£100

2

Q

o . ®
o

> L4 °
-E L] L] s. °

— o ® o .... L] Y

@ o ° 0 f 4 L) °
3 50 o ...‘.. .’ k. :. “‘. ® o
[ (] % ° e .\... .... o.qﬁ LY

......s .. ° .. °

0 100 200 300 400 500
SDI
100—| o oo o
3 ° s
.
N ety y (b)
° o* ME P LRSS
80 ¥ '-“ oo
. o
—_ % * °% oo * P
&\o, b .l'-'.' '.‘
.
S 60| e s
8 @ ° o ‘a * .‘
%. o o° ° .a : -‘.’.,.
© e ° ‘: .:. e
E 40 e o = L 24
£ ° . (X1
> ° .. [ 4
. ..' : L °
° o o S [ [ o0 ® ° ° d
_ ..-.. -": 00 ® o e © oo
20 . S wf o.. e . : :....-.
N ° . 4 o %o . '. (33 .. °
° o " ?..'.f'-. o 00’ hd ° ®
0 ‘. O.'. ‘a .:.‘:‘....ﬁ‘. ° L ] ° . °
T T T T T
0 100 200 300 400
SDI

the two-dimensional models of maximum abundance forthree-dimensional models suggests more complex interac
shrubs (total shrub and vine maple cover) indicates a cleaions and possible mediation by the shrub layer. For late-
limit in response to stand density. The distribution of shrubseral herbs, the primary constraint may be the passage of
cover with respect to SDI was “triangular” (Maller et al. sufficient time for populations to reestablish and expand fol
1983) producing a linear decline of maximum shrub coverowing disturbance; maximum cover increased monatoni
(Fig. 2a). Vine maple showed a similar pattern for SDI > 150 cally with decreasing SDI and increasing QMD.
(Fig. 20). SDI could be a surrogate for the relative availabil  |n contrast, maximum cover of total herbs and dominant
ity of light or of nutrients, water, or growing space (Ford herbs were clearly unimodal (Figsa%nd 3), suggesting
and Diggle 1981; Riegel et al. 1995; Morris 1998). an interplay of limiting factors (including SDI), time, and

In the herb layer, the superiority of nonlinear (LOESS) perhaps, competition within the understory. For example,

© 2000 NRC Canada
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Fig. 3. Maximum abundance models (three-dimensional LOESS) competitive advantages may shift over time between herb-
of three categories of herb cover as a function of SDI and QMD.layer dominants like salalGaultheria shallonPursh) and
Numbers on the contour lines represent the predicted maximum conifer regeneration (Huffman et al. 1994; Klinka et al.
of percent cover associated with that line. Fay {otal herb 1996). Dominant herb maxima may increase through
cover and If) dominant herb cover, contours suggest a unimodal midsuccession as SDI decreases (Fig), 3hen decrease in
distribution of cover maxima in the space of the two predictors. response to competition from shrubs or to nutrient limita
Maximum cover is highest at intermediate values of the predic tions caused by slower decomposition rates in older stands
tors and lower at their extremes. Fa) (ate-seral herb cover, (Pastor and Post 1986; Finer et al. 1997). The same scenario
contours suggest a monotonic increase of cover maxima as SDImay apply to total herb cover.
decreases and QMD increases. A wide range of ecological interactions can be inferred
from bivariate scatterplots, even if there are no clear func
120 : tional (e.g., linear or curvilinear) relationships (Thomson et
’ al. 1996; Scharf et al. 1998). When there are clear edges for
(a) the maxima of a response variable, the predictor may repre
sent a limiting factor or a surrogate thereof. The interpreta
tion of SDI as a limiting factor for shrub maxima is thus
supported by the tight fit of the two-dimensional models. In
the three-dimensional herb models, however, distributions of
cover maxima in the two-dimensional space of SDI and
QMD follow expected trajectories through successional
time, and there is no obvious interpretation of a directdimi
tation by one or more overstory variables.

100

QMD (cm)

40

207, . N T Model applications

x x x r r In addition to providing insights into understory dynamics

0 100 200 300 400 in these forests, our regression models could be incorporated
into either process-based (“gap”) or empirically based mod-
1204 . els of forest growth and succession in the Pacific Northwest
(e.g., Hann et al. 1992; Urban et al. 1993). The predictive
models for shrub and late-seral herb cover are comparable in
explanatory power to those for tree-layer responses in well-
validated simulation models (e.g., ORGANON; Ritchie and
Hann 1985; Hann and Larsen 1991). Widely used models
such as ORGANON, the Landscape Management System
(McCarter et al. 1998) or FVS/PROGNOSIS (Wykoff 1990)
either ignore the understory (the first two), or only include it
with inland forest types (the third). Our predictive models
for shrub- and herb-layer components should be applicable
to low- and mid-elevation forests (western hemlock and Pa
cific silver fir zones) in western Washington. Because they

‘ ‘ ‘ ‘ ‘ were developed from intensive sampling at four geographic
0 100 200 300 400 locations, the chance that model sites are not representative
. of the full range of mature forests in western Washington is
120 .o, greater than had more extensive sampling occurred. -How
. L. ever, the wide range of site conditions (Table 1) and dearth
100 R IR (c) of “location” effects suggest that the models are probably ro

) ) bust to this type of “sampling” error.

The models predict the abundance of a response variable
conditional on its presence on a plot. Presence or absence of
a species or functional group on a plot is likely to depend on
different factors (e.g., mode of dispersal, distance to seed
source, or site history) from those that affect abundance, but
K some estimate of the probability of occurrence is still neces

e sary for use in simulations. In the absence of predictive
T models, estimates of the probability of occurrence in similar
forests can be obtained from the simple proportions of oc
‘ ‘ ‘ ‘ ‘ currence in our raw data (Table 4), or from other published
0 100 200 300 400 sources (e.g., plant association and management guides of
sDI the USDA Forest Service Area Ecology Program).
Tree-based models are mainly used for exploratory pur
poses, because predictions are limited to discrete values de

100+

40+

20

QMD (cm)

40

204

© 2000 NRC Canada



McKenzie et al. 1665

termined when the model is initially built (Clark and Comments from three anonymous reviewers improved the

Pregibon 1992). Nevertheless the tree-based models in thimanuscript. This is a product of the Demonstration of Eco

study suggest potential refinements to the regression relaystem Management Options (DEMO) study, a joint effort

tions that might enhance the realism of predictions from gamf the USDA Forest Service Region 6 and Pacific Northwest

models and enable managers to anticipate when structur®esearch Station. Research partners include the University

changes will affect understory composition. For exampleof Washington, Oregon State University, University of Ore

our model for late-seral cover indicated a substantial differ gon, Gifford Pinchot and Umpqua National Forests, and the

ence between plots with QMD <60 cm versus QMD Washington State Department of Natural Resources. Funds

>60 cm; over half the reduction in deviance occurred at thisvere provided by the USDA Forest Service, Pacific Nerth

partition alone (Fig. &). This discontinuity suggests a west Research Station (PNW-93-0455 and PNW 97-9021-1-

threshold response for late-seral herbs not captured by a r€A).

gression equation with constant coefficients. A similar, but

opposite, effect was observed for late-seral herbs and SDI.

Thus, the abundance of late-seral herbs may remain lowReferences

with little change, until stand density is reduced, and tree

sizes increase sufficiently to permit the expansion of lateAlaback, P.A. 1982. Dynamics of understory biomass in Sitka
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