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Abstract: Understanding the relationships between forest overstory and understory communities is essential for predict-
ing changes in the abundance and distribution of understory plants through successional time and in response to forest
management. We used correlation analysis, multiple regression, and nonparametric models to explore the relationships
between overstory characteristics (canopy cover, stand density, and tree-size distributions) and the abundance of species
in the herb and shrub layers in mature forests of western Washington. Overstory variables explained >50% of the varia-
tion in the mean response of total shrub cover and ca. 50% of the variation in cover ofAcer circinatumPursh (the
most common shrub species) and late-seral herbs (species reaching their greatest abundance in late-successional for-
ests). Stronger relationships (80–90% variance explained) were found between overstory variables and the maximum
cover of total shrubs,A. circinatum,total herbs, and each of three functional groups of herbaceous species. These em-
pirical relationships represent both direct resource limitations and time-dependent responses for which overstory charac-
teristics may be surrogates. Models of maximum abundance yielded the most consistent results, suggesting the relative
importance of different overstory variables as limiting factors for understory response, although these limiting factors
have different effects on plants with different life-history strategies.

Résumé: Pour prédire les changements dans l’abondance et la distribution des plantes du sous-bois au cours de la suc-
cession et en réponse à l’aménagement forestier, il est essentiel de comprendre les relations entre l’étage forestier do-
minant et les communautés du sous-bois. Les auteurs ont utilisé l’analyse de corrélation, la régression multiple et les
modèles non paramétriques pour explorer les relations entre les caractéristiques de l’étage dominant (recouvrement de
la canopée, densité du peuplement, distributions de la dimension des arbres) et l’abondance des espèces dans les strates
herbacée et arbustive des forêts mûres de l’ouest de l’État de Washington. Les variables de l’étage dominant expli-
quaient plus de 50% de la variation de la réponse moyenne du recouvrement total du couvert arbustif et environ 50%
de la variation du couvert de l’arbuste le plus commun :Acer circinatumPursh et des espèces herbacées de la fin de la
succession, qui atteignent leur plus grande abondance dans les forêts de ce stade successionnel tardif. Une relation plus
forte, qui explique 80 à 90% de la variation, a été trouvée entre les variables de l’étage dominant et le recouvrement
maximum du total des arbustes, d’A. circinatum, du total des herbes et de chacun des trois groupes fonctionnels des es-
pèces herbacées. Ces relations empiriques reflètent à la fois la limitation directe des ressources et les réponses qui sont
fonction du temps, pour lesquelles les caractéristiques de l’étage dominant peuvent être des substituts. Les modèles de
l’abondance maximale fournissent les résultats les plus consistants, suggérant l’importance relative des différentes varia-
bles de l’étage dominant en tant que facteurs limitatifs de la réponse du sous-bois, bien que ces facteurs aient des ef-
fets différents sur les plantes possédant différentes stratégies de cycle vital.

[Traduit par la Rédaction] McKenzie et al. 1666

Introduction

To what extent biotic interactions shape the spatial and
temporal distributions of species remains among the most
fundamental questions in ecology (Tilman 1982; Grace and
Tilman 1990; Goldberg and Barton 1992). In terrestrial eco-
systems, and in forests in particular, it is often assumed that
the competitive effects of taller vegetation layers (e.g.,

overstory trees) determine, in large part, the distribution and
abundance of subordinate layers (e.g., subcanopy trees,
shrubs and herbs). However, the existence or strength of
such interactions can vary at different points during forest
development, particularly if there are large changes in the
vertical structure of vegetation through time.

In temperate coniferous forests of the Pacific Northwest,
strong and predictable relationships between herbaceous and
woody plant layers have been described during early succes-
sion (Halpern and Franklin 1990) and during stand closure
when severe light limitation can lead to dramatic loss of
understory plants (Alaback 1982; Klinka et al. 1996;
Lezberg 1998). Similar relationships have been inferred
from increases in understory cover and biomass following
silvicultural thinning of young stands (e.g., Bailey et al.
1998; Thomas et al. 1999). In contrast, there have been few

Can. J. For. Res.30: 1655–1666 (2000) © 2000 NRC Canada

1655

Received December 6, 1999. Accepted July 13, 2000.

D. McKenzie,1 C.B. Halpern, and C.R. Nelson.Division of
Ecosystem Sciences, College of Forest Resources, P.O. Box
352100, University of Washington, Seattle, WA 98195-2100,
U.S.A.

1Corresponding author. e-mail: dmck@u.washington.edu

I:\cjfr\cjfr30\cjfr-10\X00-091.vp
Wednesday, October 11, 2000 4:27:29 PM

Color profile: Disabled
Composite  Default screen



attempts to describe or model these empirical relationships
in mature or late-seral forests (but see McKenzie and
Halpern 1999), forests that are, by comparison, less dynamic
but more complex structurally. We suspect that in these
older forests, strong direct effects may be masked or con-
founded by myriad possible interactions among vegetation
layers, by legacies of past disturbance, or simply by the pas-
sage of time.

In this paper, we employ correlation analysis, multiple re-
gression, and nonparametric models to explore the relation-
ships between overstory characteristics and the abundance of
herbs and shrubs in mature forests of western Washington.
In conventional analyses of “mean” response, direct interac-
tions between overstory and understory may not be detect-
able through the variation induced by other factors. Thus, we
employ an additional approach, in which we estimate “maxi-
mum” responses (Thompson et al. 1996; Guo et al. 1998;
Scharf et al. 1998; Cade et al. 1999). This approach is analo-
gous to that used to describe biomass–density relationships
in pure, even-aged forests (Yoda et al. 1963) or tree density
maxima in uneven-aged, mixed-species stands (Sterba and
Monserud 1993). Models of maximum response are useful
for quantifying thresholds or limits, and the extent to which
a predictor (e.g., tree cover) constrains a response variable
(e.g., herb cover) within the context of other influences that
comprise the operational environment.

Our goal is to identify those dependent and independent
variables that have strong and predictable relationships and
to interpret these relationships in light of our understanding
of species’ life histories, environmental influences, and
successional development. We examine an array of analyti-
cal approaches, including correlation and regression analy-
sis, regression trees, and linear and nonlinear models of
maximum response. Given the large number of species-level
comparisons possible, we restrict our analyses to the re-
sponses of broad groups of plants that occupy distinct vege-
tation layers (i.e., shrub and herb layers), or that share
common successional patterns or responses to disturbance
(Halpern 1989; Spies 1991; Halpern and Spies 1995). In ad-
dition to reducing the number of comparisons to a manage-
able level, this approach facilitates comparison with other
forest types in which vegetation may differ floristically but
is similar structurally or functionally.

Methods

Study areas
The data used in this analysis comprise a subset of the baseline

measurements of forest vegetation collected as part of the Demon-
stration of Ecosystem Management Options (DEMO) study.
DEMO is a large-scale experiment that examines the effects of
level and spatial pattern of green-tree retention on various compo-
nents of mature coniferous forests in the Pacific Northwest; these
include vegetation, wildlife, invertebrates, and fungi (Aubry et al.
1999; Halpern et al. 1999). Here we restrict our analyses to pre-
treatment data from four study locations in southwestern Washing-
ton: three in the Cascade Range in the Gifford Pinchot National
Forest and one in Capitol State Forest in the Black Hills, south and
west of Olympia. These represent a diversity of forest types, stand
ages, and environmental conditions (Table 1). Elevations range
from ca. 200 to 1700 m, slopes are gentle to steep, and aspects
vary considerably. Three forest zones are represented:Tsuga
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heterophylla (Raf.) Sarg. (western hemlock);Abies grandis
(Dougl.) Forbes (grand fir); andAbies amabilis(Dougl.) Forbes
(silver fir) (Franklin and Dyrness 1988).Pseudotsuga menziesii
(Mirb.) Franco (Douglas-fir) dominates the canopy at all locations,
but associated canopy and subcanopy species vary. Stand basal
area, density, and understory composition also vary within and
among locations, reflecting differences in disturbance history, re-
generation patterns, and physical environments. Stands are consid-
erably older at Little White Salmon and Paradise Hills and
considerably denser at Paradise Hills and Butte (Table 1). Despite
this heterogeneity, many of the same taxa dominate the understory
(e.g.,Acer circinatumPursh (vine maple),Berberis nervosaPursh
(Oregongrape), andVacciniumspp. (huckleberry)).

Data collection
A complete description of the vegetation sampling design is pre-

sented in Halpern et al. (1999). Here we describe only those com-
ponents pertinent to the current analysis. At each of six, 13-ha
treatment units within each study location, permanent vegetation
plots were established across a systematic grid (40-m spacing), al-
though the number and spatial distribution of plots vary by treat-
ment (Halpern et al. 1999). A total of 32–37 plots were sampled
per treatment unit yielding a grand total of 818 plots. Distances
among the treatment units within each location vary considerably
because of constraints of local topography and past management
activity (e.g., harvest units and roads). Treatment units are adjacent
at some locations but are separated by as much as 9–10 km at oth-
ers.

At each grid point sampled, overstory and understory attributes
were measured using a series of nested plots and transects. Trees
5–15 cm diameter at breast height (DBH) were identified to spe-
cies and measured for diameter in a circular, 0.01-ha plot; trees
>15 cm DBH were measured in a circular, 0.04 ha plot. Saplings
(trees >10 cm tall, <5 cm DBH) were tallied in four 1 × 6 mquad-
rats, arranged along perpendicular radii within each circular tree
plot. Cover of species in the shrub layer was estimated with the
line-intercept method along the line defining one side of each sap-
ling quadrat. Cover of all species in the herb layer (including
graminoids, ferns, herbs, subshrubs, and low shrubs) was visually
estimated in a series of twenty-four 0.10-m2 microplots per plot
(six along each intercept line). Overstory canopy cover (cover of
trees >5 cm DBH) was estimated with a moosehorn densiometer.

Readings were made at eight points within each tree plot (at both
ends of each intercept line).

Data analysis
We calculated plot-level means for tree basal area and density

(total and by species), overstory canopy cover, sapling density, and
shrub- and herb-layer cover (summed totals and by species), in
each of the 818 plots. In addition, we grouped herbaceous species
into three categories based on species classifications in Halpern
(1989): (i) “dominant” herbs, or “successional generalists,”species
that are ubiquitous and abundant during most stages of forest de-
velopment (equivalent to “R3” species of Halpern (1989)); (ii ) “re-
lease” herbs, typically subordinate, forest species that respond
positively to canopy removal or other disturbance (“R1” and “R2”
species); and (iii ) “late-seral” herbs, those that reach maximum de-
velopment in old-growth forests (Halpern and Spies 1995) and that
are sensitive to canopy removal and disturbance (“R5” species)
(Table 2). Plot-level measurements were integrated into a model
data base, and SPLUS for Windows version 4.5 (Mathsoft 1997)
was used for all analyses. Correlation analyses were performed and
predictive models were developed for the shrub and herb layers.

Correlation analysis
To examine the pairwise relationships among all variables, and

to assess the strength and possible confounding effects of same-
layer interactions, we computed a matrix of Pearson product–moment
correlations. The relative strength of relationships in the correlation
matrix suggested initial choices of variables for the mean response
and maximum abundance models (see below). Because of the large
sample size (producing correlations as low as ±0.08 that were
significant atα = 0.05) and possible confusion over significance
levels with multiple tests (Wright 1992), inferences from the corre-
lation analysis were based on the relative strengths of relationships
and their signs rather than on levels of significance.

Predictive models of mean response
To develop predictive models for components of the shrub and

herb layers as functions of components of taller strata, we used a
combination of linear models and two nonparametric methods, lo-
cally weighted regression (LOESS; Cleveland and Devlin 1988;
Trexler and Travis 1993) and classification and regression trees
(CART; Breiman et al. 1984). Overstory variables and sapling

© 2000 NRC Canada
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Dominant herbs Release herbs Late-seral herbs

Berberis nervosaPursh Galium triflorum Michx. Achlys triphylla (Smith) DC.
Gaultheria shallonPursh Hieracium albiflorumHook. Adenocaulon bicolorHook.
Polystichum munitum(Kaulf.) Presl Linnaea borealisL. Chimaphila menziesii(R.Br.) Spreng.
Xerophyllum tenax(Pursh) Nutt. Pteridium aquilinum(L.) Kuhn. Chimaphila umbellata(L.) Bart.

Rubus ursinusCham. & Schlecht. Clintonia uniflora (Schult.) Kunth.
Trientalis latifolia Hook. Cornus canadensisL.

Disporum hookeri(Torr.) Nicholson
Goodyera oblongifoliaRaf.
Pyrola asarifolia Michx.
Pyrola picta Smith
Pyrola secundaL.
Smilacina racemosa(L.) Desf.
Smilacina stellata(L.) Desf.
Tiarella trifoliata L.
Trillium ovatumPursh
Vancouveria hexandra(Hook.) Morr. & Dec.

Note: Herbs included were present on >10% of plots, with >1% cover (see text). Nomenclature follows Hitchcock and Cronquist (1973).

Table 2. Three groups of species in the herb layer based on successional dynamics and responses to disturbance (Halpern 1989; Spies
1991; Halpern and Spies 1995).
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density were predictors for shrub-layer responses and these plus
shrub-layer variables were predictors for herb-layer responses. Re-
sponse variables in the shrub layer were (i) summed shrub cover,
hereafter total shrub cover (the summed cover of the individual
species, which can exceed 100%), and (ii ) cover of any species
present on more than 10% of the plots. Response variables in the
herb layer were (i) summed herb cover (as calculated above), here-
after total herb cover, and (ii ) for species with≥1% cover in at
least 10% of the plots, the summed cover of individual species
within each of the three functional groups described above (see Ta-
ble 2).

We then built a separate multiple linear regression model for
each response variable, using only those plots in which the re-
sponse variable was not zero (because the abundance of a plant
group or species is conditional on its presence). Potential predic-
tors for shrub models were as follows:
(1) tree basal area (BA) in m2/ha;
(2) stem density (TPH) in trees/ha;
(3) a simple stand density index (SDI), where SDI = (BA ×

TPH)0.5;
(4) overstory canopy cover (CANOPY) in percent;
(5) two variables representing tree-size distributions: (i) quadratic

mean diameter of trees (QMD): QMD = (∑DBHi
2 / n)0.5

where DBHi is the diameter of treei and n is the number of
trees/plot; and (ii ) coefficient of variation of diameter (CVD)
for all trees on a plot; and

(6) sapling density (SAPL) in saplings/m2.
These same predictors, plus total shrub cover (SHRUB) were used
for all herb models. Predictors are summarized in Table 3 and re-
sponse variables in Table 4.

We used backward elimination (Neter et al. 1990) to select sub-
sets from the full set of predictors that were most strongly corre-
lated with each response variable. The final model was that which
minimized the mean-squared error of residuals, while retaining
only those predictors whose coefficients were significantly differ-
ent from zero atα = 0.05. Standard diagnostics were applied to
check for normality and constant variance of residuals, and a
Cook’s distance plot was used to identify and remove significant
outliers. Where appropriate, we transformed the response variables
to meet the assumptions of regression.

Although the influence of location in our data base represents a
“random effect” and cannot be interpreted as a factor in a predic-
tive regression model, we added a “location variable” to each of
the optimal models to identify those that might be distinctly differ-

ent if built using data from a single location. A large number of
“significant” coefficients for the location variable would suggest
that many model predictions would be sensitive to location. Con-
versely, a dearth of “significant” coefficients would suggest that
the models were insensitive to location and, therefore, more robust
to extrapolation across their geographic range (western Washing-
ton).

For each optimal linear model, we checked for possible nonlin-
ear relationships using (i) scatterplots of each predictor versus the
response and (ii ) LOESS models (Cleveland and Devlin 1988).
Where strong nonlinear relationships were apparent, we attempted
to fit nonlinear models using partially linear least squares (Bates
and Lindstrom 1986). To validate the models and estimate their
predictive power, we used a refined bootstrap estimate of predic-
tion error (Efron and Tibshirani 1993), based on 100 replicates for
each model. The resulting statistic, “error optimism,” reflects the
percent increase in residual squared error expected if the model
were extrapolated to other data from a similar population (Efron
and Tibshirani 1993).

After selecting each final model, we fit a nonparametric, tree-
based model (CART; Breiman et al. 1984; Clark and Pregibon
1992) using the same variables. Tree-based modeling uses binary
recursive partitioning based on reduction in deviance to split the
data into increasingly homogeneous subsets. We used this method
for exploratory purposes to suggest whether incorporating complex
nonadditive interactions into models could increase the proportion
of variance explained (Clark and Pregibon 1992) and to assess the
possibility of threshold responses. We used an adaptive estimation
method (Breiman et al. 1984) to minimize the complexity of each
model (number of branches and nodes) without sacrificing good-
ness of fit. This method first fits an overly large tree, then uses a
cost-complexity criterion to “prune” branches that do not contrib-
ute significantly to the reduction in deviance (Breiman et al. 1984).

Models of maximum response
Because the constraints or limitations that arise from biotic in-

teractions may be more evident from maximum than from mean re-
sponses (see above), we used a method outlined by Scharf et al.
(1998) to model the maximum abundance of one variable as a
function of another. Using two-dimensional scatterplots of our six
response variables on potential predictors, we identified the predic-
tor that produced the scatterplot with the clearest “edge” at maxi-
mum levels of the response. We identified and removed outliers
that were clearly isolated in the scatterplots, then divided the

© 2000 NRC Canada
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Location
Stand density
index (SDI)

Canopy cover
(CANOPY) (%)

Quadratic mean
diameter (QMD)
(cm)

Coefficient of
variation in tree
diameters (CVD)

Sapling density
(SAPL) (no./m2)

Gifford Pinchot National Forest

Butte 240.2 (82.7–487.4) 80.0 (32.4–97.6) 30.0 (17.6–59.5) 0.39 (0.21–1.03) 0.14 (0.00–0.92)
Little White Salmon 122.6 (3.5–316.7) 64.8 (0.0–93.3) 74.4 (16.0–123.0) 0.47 (0.00–1.84) 0.06 (0.00–0.67)
Paradise Hills 227.3 (79.9–370.9) 83.3 (34.9–98.1) 40.1 (26.5–56.2) 0.50 (0.30–1.11) 0.58 (0.00–8.46)

Department of Natural Resources Lands

Capitol Forest 148.1 (38.3–357.7) 77.3 (30.6–97.5) 53.0 (17.2–82.4) 0.38 (0.04–0.94) 0.02 (0.00–0.42)

Table 3. Plot-level means and ranges (in parentheses) by location for predictor variables used in the models.

Total shrubs Vine maple Total herbs Dominant herbs Release herbs Late-seral herbs

Proportion of plots 0.96 0.59 1.00 0.93 0.94 0.89
Mean 40.0 45.3 38.5 20.1 3.5 15.0
Range 0.1–160.4 0.1–100.0 <0.1–118.6 <0.1–105.8 <0.1–41.8 <0.1–90.1

Table 4. Proportion of plots present, and means and ranges in percent cover for the response variables.
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paired observations of the predictor and response variables into
“bins” containing equal numbers of observations. Within each bin,
we identified the maximum level of the response variable and
paired that observation with the corresponding observation of the
predictor. We then regressed these maxima on their predictors
(where n is the number of bins) to obtain a “maximum density
line” made up of the fitted values, using both linear and LOESS
techniques. Choice of bin size involves a trade-off between sample
size for the regression (number of bins) and the number of obser-
vations within each bin. Thus we adjusted bin size iteratively dur-
ing the modeling process to optimize the fit (Scharf et al. 1998),
with the constraint that it remained a constant proportion of total
observations for each of the six models.

We extended this method to three dimensions (maximum abun-
dance of one variable in response to two others), to estimate maxi-
mum abundance surfaces. From the scatterplots we identified the
two predictors showing the clearest “edges.” We tested several
pairs of variables for each model, however, to accommodate
interactions not evident from visual examination, and selected the
pair that minimized the residual squared error. Because pairs of
numbers cannot be ordered, we did not generate bins with equal
numbers of observations, as in the two-dimensional models, but in-
stead created equal-sized rectangular bins in the space of the two
predictors, where the dimensions of the rectangles were equal pro-
portions of the range of predictors 1 and 2, respectively (creating
equal numbers of bins inX andY directions). Within each bin, we
selected response and predictor observations in the same manner as
for the two-dimensional model, with the constraint that bins with
fewer than 10 observations were excluded. Once again, bin size
was adjusted iteratively during the modeling process.

Results

Correlation analysis
Total shrub cover displayed the strongest relationship to

individual overstory variables of any of the response vari-
ables considered (Table 5). Pearson correlations were strongly
negative with SDI (R = –0.60), CANOPY (R = –0.57), and
tree density (R = –0.53) and strongly positive with QMD
(R = 0.66). Correlations forAcer circinatumcover (which
comprised 76% of shrub cover on plots in which it was pres-
ent) were very similar to those for total shrub cover. Total
herb and late-seral herb cover had slightly weaker correla-
tions with overstory variables than did shrub variables; dom-
inant herbs and release herbs had significantly weaker
correlations (Table 5). In addition, correlations for release
herbs were mostly opposite in sign from those of dominant
and late-seral herbs.

Models of mean response
Six predictor variables appeared in one or more of the re-

gression models of understory abundance, with each model
using a subset of three to five predictors (Table 6). The
model of total shrub cover had the best explanatory power,
while the late-seral herb model was the best among the herb
models. In contrast, models of dominant and release herbs
were considerably weaker (Table 6). QMD appeared as a
predictor in every model, CANOPY in five of six, and SAPL
and SDI in four (these latter two always had a negative coef-
ficient). Overstory variables with the strongest simple corre-
lations to the response variables were not always the best
predictors, or even significant, in the multiple regression
models. For example, late-seral herb cover was more
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strongly correlated with SDI (–0.38) than with CVD (0.12),
but only CVD proved to be significant within the context of
multiple regression (Tables 5 and 6). The “location variable”
had minimal effect on most models. Only in the late-seral
herb model was there a “significant” coefficient for location
(for two of four locations).

Three different transformations of the response variables
were used to achieve normality in the residuals (Table 6).
Although partially linear models (see above) and extra non-
linear parameters were examined, none of these proved su-
perior to ordinary linear models, although some simple
relationships (one response, one predictor) were clearly non-
linear. The bootstrap validations indicate that only the model
of total herb cover substantially underestimated the mean-
squared error expected from applying the model to another
sample from the same population (Table 6).

Tree-based models
Each tree-based model explained more variation than its

corresponding regression model. Comparisons of the percent
reduction in deviance (PRD) withR2 for regression models
show a wide range of increased explanatory power, from a
17% difference for total shrub cover to a threefold increase
for dominant herbs (Table 6). Primary partitions were either
on QMD (for total shrub cover,Acer circinatumcover, re-
lease herbs, and late-seral herbs) or SDI (for total herb cover
and dominant herbs). For late-seral herbs, the primary parti-
tion accounted for more than one half of the total deviance
explained (Fig. 1a), but for dominant herbs, it accounted for
only one sixth of the total (Fig. 1b). No variables were lost
in the pruning process for any of the models, thus variables
that were significant in regression models remained signifi-
cant in tree-based models.

Maximum abundance relationships
Both two-dimensional (one predictor) and three-

dimensional (two predictor) models of maximum response
suggested tighter relationships than did models of mean re-
sponse (Table 7). Predictors in two-dimensional models
were either SDI or SHRUB, and in three-dimensional mod-
els, either SDI and QMD or SDI and SHRUB. In two dimen-
sions, the maximum response was either clearly linear
(Fig. 2a) or clearly nonlinear (Fig. 2b). In three dimensions,
nonlinear relationships were more evident. For example, the
two fits for release herbs and total herb cover were similar in
two dimensions but very different in three dimensions (R2

values in Table 7), while dominant herb cover was different
in both two and three dimensions. For total and dominant
herb cover, differences between linear and LOESS models
reflected the presence of unimodal responses to overstory
conditions (responses reached a peak at intermediate values
of the two predictors; Figs. 3a and 3b). In contrast, the abun-
dance of late-seral herbs increased monotonically as SDI de-
creased and QMD increased (Fig. 3c).

Half of the linear models in three dimensions had only
one significant predictor, reducing them to two dimensions.
Even where there were two significant predictors, three-
dimensional models for responses in the shrub layer showed
poorer relationships than did their two-dimensional counter-
parts (Table 7). This reflects two limitations in the three-
dimensional modeling process: the poorer efficiency of the
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binning algorithm with respect to the two-dimensional mod-
els and the inability to reasonably remove outliers by visual
inspection.

Discussion

We expected that understory development (total cover of
herbs or shrubs) would be negatively correlated with
overstory variables. Moreover, assuming that the inhibitory
effects of overstory trees are manifested primarily through
reduction in light availability, we expected correlations with
canopy cover to be stronger than those with other aspects of
stand structure (e.g., stand density or tree size distributions).
Herb and shrub cover were indeed negatively correlated with
overstory variables; however, correlations with SDI were
slightly stronger than with CANOPY. The contributions of
sunflecks (Chazdon and Pearcy 1991), or light that pene-
trates at lower angles of incidence, are not captured by our
densiometer readings but instead may be more accurately
represented by measures of stand density. Alternatively, light
levels may be less limiting for understories in mature stands
than in earlier stages of stand development (Alaback 1982;
Lezberg 1998; Thomas et al. 1999).

We also expected that understory responses to overstory
conditions would be more apparent for taller growth forms
that are able to take advantage of openings and ascend into
canopy or subcanopy gaps (shrubs) than for growth forms
restricted to the ground layer (herbs). Shrub-layer responses
in the regression models and correlations were stronger on
average than herb-layer responses; however, late-seral herbs
were an exception, particularly in the tree-based model.

Our expectations for herb-layer responses varied among
groups. Species that exhibit the potential for rapid vegetative
expansion (“release” herbs) might be expected to show
strong negative correlations with overstory canopy cover.
Conversely, if development of late-seral herbs is temporally
dependent (increasing with time since disturbance; Halpern
and Spies 1995), rather than resource limited, they should
show weak correlations with overstory variables. Likewise,
correlations for dominant herbs could be expected to be
weak, because they are abundant during most stages of stand
development. Our expectations proved false for both release
and late-seral herbs. Thus, it is likely that herb-layer re-
sponses reflect not only the direct effects of the overstory
but also indirect effects that change coincidentally with
overstory development. We suspect that these are time-
dependent responses for which overstory characteristics may
serve as surrogates.

Overstory characteristics as surrogates for successional
time

Release herbs were positively correlated with variables
that peak during early to middle succession (SDI, tree den-
sity) and negatively correlated with predictors that peak in
stands that have remained undisturbed for substantial periods
of time (QMD, CANOPY, SHRUB, CVD). Forest species
that respond positively to disturbance should be most abun-
dant inearly succession but decline in stands that are undisturbed
except for occasional treefall. Thus, the counterintuitive rela-
tionship between release herbs and SDI may simply reflect
their concurrent decline with successional time rather than a
beneficial effect of increased stand density. However, the rel-
atively weak regression relation reinforces our previous as-
sumption that any strong effect of the overstory on release
herbs would have occurred earlier in stand development
(closer in time to stand-initiating disturbance).

Dominant herb response was correlated with five of the
six predictors, but the overall regression relation was also
weak, supporting the general observation that these species
are able to thrive and dominate the herb layer in a variety of
forest conditions (Halpern and Spies 1995). Thus, neither
overstory structure nor “successional” time appears to be a
major influence on the variability in dominant herb abun-
dance among plots. In contrast, the responses of late-seral
herbs, total shrubs, and vine maple can be linked both to
changes in available resources and to the passage of time.
All were strongly positively correlated with QMD (which
typically increases monotonically through succession) and
negatively correlated with SDI and CANOPY. As canopy
gaps form, tree density declines through natural mortality,
and biomass is aggregated in space (increase in QMD), re-
sources become more available for shrub species. Late-seral
herbs, on the other hand, may be increasing in response to
gradual amelioration of unfavorable environmental condi-
tions or belatedly as a consequence of limited dispersal and
slow rates of growth (Matlack 1994; Halpern and Spies
1995; Jules 1998). The resulting positive relationship of
late-seral herbs and shrubs may thus reflect their parallel in-
creases over time rather than any strong biotic interactions.

Maximum abundance models
Maximum abundance models exhibited clearer relation-

ships than did mean response models for each of the six
understory variables (Tables 6 and 7), suggesting that the
role of resource limitation in constraining understory abun-
dance can be modeled empirically, even if the underlying
mechanisms are not apparent. For example, the success of
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Two dimensions Three dimensions

Response Predictor R2 (linear) R2 (LOESS) Predictors R2 (linear) R2 (LOESS)

Total shrubs SDI 0.89 0.93 SDI, QMD 0.80a 0.88
Vine maple SDI 0.81 0.94 SDI, QMD 0.64b 0.82
Total herbs SDI 0.61 0.65 SDI, QMD 0.42b 0.89
Dominant herbs SHRUB 0.41 0.66 SDI, QMD 0.53 0.92
Release herbs SHRUB 0.68 0.71 QMD, SHRUB 0.63 0.84
Late-seral herbs SDI 0.83 0.86 SDI, QMD 0.84 0.92

aSDI (stand density index) nonsignificant.
bQMD (quadratic mean diameter) nonsignificant.

Table 7. Maximum abundance models for understory cover.
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Fig. 1. Tree-based models of (a) late-seral herb cover and (b) dominant herb cover as a function of QMD, CVD, shrub cover, canopy
cover, and sapling density. Values at nodes are predicted cover, in percent. Predictions for a plot are obtained by moving down the
tree, branching left at a split if the plot meets the rule, or branching right if it does not. The insert shows the proportion of deviance
accounted for at each split.
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the two-dimensional models of maximum abundance for
shrubs (total shrub and vine maple cover) indicates a clear
limit in response to stand density. The distribution of shrub
cover with respect to SDI was “triangular” (Maller et al.
1983) producing a linear decline of maximum shrub cover
(Fig. 2a). Vine maple showed a similar pattern for SDI > 150
(Fig. 2b). SDI could be a surrogate for the relative availabil-
ity of light or of nutrients, water, or growing space (Ford
and Diggle 1981; Riegel et al. 1995; Morris 1998).

In the herb layer, the superiority of nonlinear (LOESS)

three-dimensional models suggests more complex interac-
tions and possible mediation by the shrub layer. For late-
seral herbs, the primary constraint may be the passage of
sufficient time for populations to reestablish and expand fol-
lowing disturbance; maximum cover increased monotoni-
cally with decreasing SDI and increasing QMD.

In contrast, maximum cover of total herbs and dominant
herbs were clearly unimodal (Figs. 3a and 3b), suggesting
an interplay of limiting factors (including SDI), time, and
perhaps, competition within the understory. For example,

Fig. 2. Maximum abundance models of (a) shrub cover as a linear function of SDI and (b) vine maple cover as functions of SDI. In
Fig. 2b, the straight line shows the fitted values of linear regression, and the curved line shows the fitted values of a LOESS model.
The latter is truncated at SDI≈ 300, because the LOESS algorithm requires a minimum number of data points and fitted values cannot
be extrapolated.
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competitive advantages may shift over time between herb-
layer dominants like salal (Gaultheria shallonPursh) and
conifer regeneration (Huffman et al. 1994; Klinka et al.
1996). Dominant herb maxima may increase through
midsuccession as SDI decreases (Fig. 3b), then decrease in
response to competition from shrubs or to nutrient limita-
tions caused by slower decomposition rates in older stands
(Pastor and Post 1986; Finer et al. 1997). The same scenario
may apply to total herb cover.

A wide range of ecological interactions can be inferred
from bivariate scatterplots, even if there are no clear func-
tional (e.g., linear or curvilinear) relationships (Thomson et
al. 1996; Scharf et al. 1998). When there are clear edges for
the maxima of a response variable, the predictor may repre-
sent a limiting factor or a surrogate thereof. The interpreta-
tion of SDI as a limiting factor for shrub maxima is thus
supported by the tight fit of the two-dimensional models. In
the three-dimensional herb models, however, distributions of
cover maxima in the two-dimensional space of SDI and
QMD follow expected trajectories through successional
time, and there is no obvious interpretation of a direct limi-
tation by one or more overstory variables.

Model applications
In addition to providing insights into understory dynamics

in these forests, our regression models could be incorporated
into either process-based (“gap”) or empirically based mod-
els of forest growth and succession in the Pacific Northwest
(e.g., Hann et al. 1992; Urban et al. 1993). The predictive
models for shrub and late-seral herb cover are comparable in
explanatory power to those for tree-layer responses in well-
validated simulation models (e.g., ORGANON; Ritchie and
Hann 1985; Hann and Larsen 1991). Widely used models
such as ORGANON, the Landscape Management System
(McCarter et al. 1998) or FVS/PROGNOSIS (Wykoff 1990)
either ignore the understory (the first two), or only include it
with inland forest types (the third). Our predictive models
for shrub- and herb-layer components should be applicable
to low- and mid-elevation forests (western hemlock and Pa-
cific silver fir zones) in western Washington. Because they
were developed from intensive sampling at four geographic
locations, the chance that model sites are not representative
of the full range of mature forests in western Washington is
greater than had more extensive sampling occurred. How-
ever, the wide range of site conditions (Table 1) and dearth
of “location” effects suggest that the models are probably ro-
bust to this type of “sampling” error.

The models predict the abundance of a response variable
conditional on its presence on a plot. Presence or absence of
a species or functional group on a plot is likely to depend on
different factors (e.g., mode of dispersal, distance to seed
source, or site history) from those that affect abundance, but
some estimate of the probability of occurrence is still neces-
sary for use in simulations. In the absence of predictive
models, estimates of the probability of occurrence in similar
forests can be obtained from the simple proportions of oc-
currence in our raw data (Table 4), or from other published
sources (e.g., plant association and management guides of
the USDA Forest Service Area Ecology Program).

Tree-based models are mainly used for exploratory pur-
poses, because predictions are limited to discrete values de-
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Fig. 3. Maximum abundance models (three-dimensional LOESS)
of three categories of herb cover as a function of SDI and QMD.
Numbers on the contour lines represent the predicted maximum
of percent cover associated with that line. For (a) total herb
cover and (b) dominant herb cover, contours suggest a unimodal
distribution of cover maxima in the space of the two predictors.
Maximum cover is highest at intermediate values of the predic-
tors and lower at their extremes. For (c) late-seral herb cover,
contours suggest a monotonic increase of cover maxima as SDI
decreases and QMD increases.
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termined when the model is initially built (Clark and
Pregibon 1992). Nevertheless the tree-based models in this
study suggest potential refinements to the regression rela-
tions that might enhance the realism of predictions from gap
models and enable managers to anticipate when structural
changes will affect understory composition. For example,
our model for late-seral cover indicated a substantial differ-
ence between plots with QMD <60 cm versus QMD
>60 cm; over half the reduction in deviance occurred at this
partition alone (Fig. 1a). This discontinuity suggests a
threshold response for late-seral herbs not captured by a re-
gression equation with constant coefficients. A similar, but
opposite, effect was observed for late-seral herbs and SDI.
Thus, the abundance of late-seral herbs may remain low,
with little change, until stand density is reduced, and tree
sizes increase sufficiently to permit the expansion of late-
seral herbs. At this point, relatively rapid changes could be
anticipated in the absence of confounding effects from dis-
turbance.

For relatively undisturbed forests, our models should pre-
dict future conditions, but disturbances that produce abrupt
changes in the predictor variables would change relation-
ships significantly. Thus, extrapolation outside the condi-
tions represented by our data base would be unwise. For
example, silvicultural manipulations (e.g., thinning of
subcanopy trees or partial retention) could instantly produce
higher values of QMD, but changes in the understory would
take more time and might not produce the same patterns of
abundance as when overstory and understory develop to-
gether more gradually.

In summary, our analyses suggest a conceptual model for
how understory communities in mature forests change
through time in response to, and coincidentally with,
changes in overstory structure. Secondary layers (shrubs) re-
spond directly to, and are limited by, overstory variables.
When tertiary layers (herbs) are partitioned into functional
groups, they appear to respond to a combination of overstory
variables and, indirectly, to the passage of time. Of the vari-
ety of methods used to elucidate these relationships, maxi-
mum abundance models produced the least ambiguous and
most easily interpreted result. In contrast, mean-response
models, while statistically significant, offer fewer insights
into the factors that shape forest understory development, al-
though tree-based models demonstrate the potential value of
nonparametric approaches that can reveal complex interac-
tions among variables. We suggest that forest researchers
can fruitfully explore a variety of empirical methods for esti-
mating both mean and maximum responses; no single
method is superior for all objectives. However, improved
methods for modeling maximum responses will likely lead
to the greatest advances in ecological understanding.
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