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Abstract. Habitat distribution models are increasingly used to predict the potential
distributions of invasive species and to inform monitoring. However, these models assume that
species are in equilibrium with the environment, which is clearly not true for most invasive
species. Although this assumption is frequently acknowledged, solutions have not been
adequately addressed. There are several potential methods for improving habitat distribution
models. Models that require only presence data may be more effective for invasive species, but
this assumption has rarely been tested. In addition, combining modeling types to form
‘‘ensemble’’ models may improve the accuracy of predictions. However, even with these
improvements, models developed for recently invaded areas are greatly influenced by the
current distributions of species and thus reflect near- rather than long-term potential for
invasion. Larger scale models from species’ native and invaded ranges may better reflect long-
term invasion potential, but they lack finer scale resolution. We compared logistic regression
(which uses presence/absence data) and two presence-only methods for modeling the potential
distributions of three invasive plant species on the Olympic Peninsula in Washington, USA.
We then combined the three methods to create ensemble models. We also developed climate
envelope models for the same species based on larger scale distributions and combined models
from multiple scales to create an index of near- and long-term invasion risk to inform
monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models
were more accurate than logistic regression for any of the species. Larger scale models
predicted much greater areas at risk of invasion. Our index of near- and long-term invasion
risk indicates that ,4% of ONP is at high near-term risk of invasion while 67–99% of the Park
is at moderate or high long-term risk of invasion. We demonstrate how modeling results can
be used to guide the design of monitoring protocols and monitoring results can in turn be used
to refine models. We propose that, by using models from multiple scales to predict invasion
risk and by explicitly linking model development to monitoring, it may be possible to
overcome some of the limitations of habitat distribution models.

Key words: ecological niche factor analysis (ENFA); genetic algorithm for rule-set prediction
(GARP); Geranium robertianum; Hedera helix; Ilex aquifolium; logistic regression; Olympic National
Park, Washington, USA.

INTRODUCTION

Invasions of natural communities by exotic species

are increasingly recognized as having major ecological

and economic impacts (Vitousek et al. 1997, Levine et

al. 2003) and as a primary factor in the loss of biological

diversity (Wilcove et al. 1998). Nonnative invaders di-

rectly compete with native species for resources and can

alter disturbance regimes and nutrient cycles (Mack et

al. 2000). Control of invasive species is easier during the

early stages of invasion (National Invasive Species

Council 2001), but early detection requires extensive

monitoring, which can be time consuming and costly

(Rew et al. 2006). It is thus necessary to prioritize and

focus monitoring on areas of greatest concern (Benja-

min and Hiebert 2004). To this end, habitat distribution

models (HDMs) can be used to predict potentially

suitable habitat for invasive species and to focus mon-

itoring on those areas. If HDMs can accurately predict

potential distributions, they can greatly benefit both

monitoring and control of invasive species.

Advances in computing power and widely available

environmental data have led to a proliferation of

methods for creating HDMs based on known occur-

rences (Guisan and Zimmermann 2000, Scott et al. 2002,

Elith et al. 2006). To date, however, the application of

these methods to invasive species has been limited

relative to other uses (Rodrı́guez et al. 2007, Crossman

and Bass 2008). A major limitation of HDMs is the

assumption that species are in equilibrium with their

environments (Guisan and Zimmermann 2000). This is

clearly not the case for most invasive species, which are
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still spreading. Thus, models based on the current

distribution of a species are likely to underestimate its

potential habitat (Welk 2004, Loo et al. 2007): absence

may reflect either unsuitable habitat or insufficient time

for dispersal (Rouget et al. 2001). Dispersal or distance

from current locations can be explicitly modeled (e.g.,

Meentemeyer et al. 2008, Nielsen et al. 2008), but these

models will still predict probability of invasion in the

near term rather than suitable habitat in the longer term

(Welk 2004). Most studies that apply HDMs to invasive

species acknowledge this limitation, but solutions to the

problem have not been adequately addressed. Several

approaches are possible, however.

One possible solution is to use techniques that do not

require absence data (Hirzel et al. 2002a, Tsoar et al.

2007). This approach has been used widely to model

species’ distributions from museum or herbarium

records (Peterson 2001, Hirzel et al. 2002a), but more

recently has been applied to invasive species (Anderson

et al. 2006, Zhu et al. 2007). Because these methods do

not include the ambiguous absence points, they may

perform better than other methods for modeling the

potential habitats of spreading species (Hirzel et al.

2001, Peterson 2003). The performance of presence-

only methods has been compared with more traditional

presence/absence models in other ecological contexts,

but only recently with invasive species (Schussman et

al. 2006, Crossman and Bass 2008, Evangelista et al.

2008).

A second approach is to average the results of

different models to create an ‘‘ensemble model.’’ Because

there is considerable variation in the performance of

different model types and no consensus on the best

technique, averaging the results of individual models

may increase the overall accuracy of predictions (Araujo

and New 2007, Crossman and Bass 2008). On the other

hand, since all models are likely to suffer from the same

assumption of equilibrium, combining model types may

not overcome this problem.

A third potential solution to the assumption of

equilibrium is to include models that are based on data

from larger spatial scales or different locations. For

example, habitat models can be constructed using data

from a species’ native range, then applied to the invaded

range (e.g., Peterson 2003, Thuiller et al. 2005). Altern-

atively, models for invasive species developed at a

continental scale may be used to predict suitable habitat

in a region that has more recently been invaded. How-

ever, there are limitations with both of these approaches.

Factors that constrain species’ distributions may differ in

the native and invaded ranges, leading to over- or under-

predicting the potential distribution in the invaded range

(Beerling et al. 1995, MacIsaac et al. 2000, Fitzpatrick et

al. 2007, Loo et al. 2007). Moreover, even models

developed at a continental scale may not reflect the full

range of potential habitats for more than a century after

the initial invasion (Welk 2004). Nevertheless, these

models may provide a coarse-scale approximation of

potential habitat in the region of interest and, combined

with smaller-scale models, can be used to develop more

efficient approaches to monitoring.

In this study we modeled the potential distributions of

three invasive plant species on the Olympic Peninsula,

Washington, USA, Geranium robertianum (herb Rob-

ert), Hedera helix (English ivy), and Ilex aquifolium

(English holly), to aid in design of a monitoring plan for

invasive plant species in Olympic National Park (ONP).

These species were chosen because they represent a

broad range of life histories and growth forms (short-

lived herb, vine, and tree), they have the ability to invade

undisturbed forests, and they are species of concern for

land managers in ONP and elsewhere in the Pacific

Northwest (Boersma et al. 2005).

We developed local models using three methods based

on species’ current distributions on the Peninsula. These

were logistic regression (LR), the most common

modeling technique, requiring presence-absence data

(Manel et al. 2001), and two presence-only techniques,

genetic algorithm for rule-set prediction (GARP; Stock-

well and Peters 1999) and ecological niche factor

analysis (ENFA; Hirzel et al. 2002a). We then averaged

the results of these methods to create ensemble models.

Finally, we developed larger, continental-scale, climate

envelope models for each species based on distributions

in the contiguous United States (invaded range) and in

Europe (native range). We addressed the following

questions: (1) Do presence-only models perform better

than LR when applied to invasive species? (2) Do

ensemble models have higher accuracy than the individ-

ual models? (3) How can the results of models repre-

senting different spatial scales be used to guide

monitoring efforts for invasive species?

METHODS

Study area

The Olympic Peninsula is located in northwestern

Washington and covers an area of ;12 500 km2 (Fig. 1).

Olympic National Park covers ;3700 km2 at the center

of the Peninsula and along the western coast and

contains large roadless areas with rugged terrain and

undisturbed, old-growth forests. Federal, state, and

private lands surround ONP; these include wilderness

and areas with more extensive road networks and young

to mature stands originating from decades of clearcut

logging (Jenkins et al. 2003).

Elevations range from sea level to 2429 m, with higher

elevations concentrated in the Olympic Mountains at the

center of the Peninsula. These mountains create a strong

gradient in precipitation, ranging from 709 cm/yr along

the western slopes to 63 cm/yr in the rain shadow to the

northeast. Rainfall during the growing season is rela-

tively low, with 6–12% of total precipitation falling

between July and September. Mean January tempera-

tures range from 58C (at sea level) to �9.58C (on

mountain peaks), and mean July temperatures range
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from 188C to 118C (climate data from DAYMET,

available online)4 (Thornton et al. 1997).

Study species

Geranium robertianum is a biennial or short-lived

perennial herb that reproduces only by seeds (Tofts

2004). It grows in a wide variety of habitats, from open,

rocky areas to closed forest, and can tolerate a wide

range of climatic and soil conditions (Tofts 2004). It is

native to Europe and has been introduced to many other

areas of the world, including eastern Asia, Chile, New

Zealand, Australia, and the United States (Tofts 2004).

It is an aggressive invader in the Pacific Northwest, where

it was first observed in 1906. Geranium was first recorded

at a single location on the Olympic Peninsula in the mid-

1970s and has since spread (Tisch 1992). Impacts of

Geranium on native vegetation have not been well

studied, but it can spread rapidly and cover 50–100%
of the ground surface over large areas (Tisch 1992).

Hedera helix is an evergreen vine that can grow in the

open and in deep shade (Metcalfe 2005). Hedera

reproduces both sexually and asexually (Grime et al.

1988); seeds can be dispersed over long distances by

birds (Van Ruremonde and Kalkhoven 1991). Hedera is

somewhat tolerant of both freezing and drought

(Iverson 1944, Laskurain et al. 2004). Its native range

extends from northern Europe to northern Africa and

east to the Ukraine, but it has invaded Australia, Brazil,

New Zealand, and North America (Metcalfe 2005).

Hedera has been present in the Pacific Northwest since

at least 1892 (Murai 1999). It was not recorded in a

botanical survey of the Olympic Peninsula in 1936

(Jones 1936), but was present in 1979 (Buckingham and
Tisch 1979). Hedera can form dense mats in the forest

understory, reducing growth rates and density of
understory herbs and tree seedlings (see Plate 1); it also

has the potential to form lianas and damage or kill
mature trees (Thomas 1980, Dlugosch 2005).

Ilex aquifolium is an evergreen tree or large shrub that
reproduces mainly by seeds (Peterken and Lloyd 1967).

Berries can be dispersed long distances by birds
(Peterken and Lloyd 1967). Ilex tolerates deep shade

but also grows in the open (Peterken 1966). However, it
has limited tolerance of freezing and drought (Iverson

1944, Prentice and Helmisaari 1991). Ilex is native to
western Europe and mountainous areas of northern

Africa and southwestern Asia (Peterken and Lloyd
1967). It is widely distributed as an ornamental tree and

has become invasive in New Zealand, Australia, and
northwestern United States (Weber 2003). It has been

grown in the Pacific Northwest as a landscape plant and
for Christmas decorations since the late 1800s (Wieman

1961). It was not found in a botanical survey of the
Olympic Peninsula in 1936 (Jones 1936), but was present

in 1979 (Buckingham and Tisch 1979). Little is known
about the ecological impacts of Ilex on native commu-

nities. Because it is evergreen, it casts persistent shade,
which may reduce plant regeneration beneath its canopy

(Peterken 1966).

Local-scale models

Species distributional and habitat data.—Data on the

current distributions of Geranium, Hedera, and Ilex on
the Olympic Peninsula were obtained from existing

sources (Fig. 1, Appendix A). However, data selection

FIG. 1. The Olympic Peninsula, Washington, USA. Shading indicates the location of Olympic National Park. Circles indicate
the locations of sample points. Projection coordinate system for all maps is North American Datum (NAD) 1983 Universal
Transverse Mercator (UTM) Zone 10N.

4 hhttp://www.daymet.orgi
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was constrained by several criteria to ensure data

quality: plot size between 100 and 2500 m2, plots

sampled since 1990, and plots for which all species were

recorded (i.e., presence/absence data). This resulted in a

total of 3399 presence/absence data points from eight

data sets including exotic species surveys, vegetation

inventories, and other ecological studies. Sample sizes

for individual data sets ranged from 12 to 2832 plots.

We also included 375 presence data points from five

additional data sources obtained via plotless methods or

small plots (e.g., exotic surveys, herbarium specimens,

and personal observations). For these presence data we

included records as early as 1975 because even these

earlier records indicate suitable habitat. The majority of

data came from ONP and Olympic National Forest.

Models incorporated 12 habitat variables, including

climatic factors (number of days with frost, annual pre-

cipitation, frequency of precipitation, humidity, and in-

cident solar radiation); topographic measures (slope,

potential radiation, heat load, topographic moisture

index, and distance from nearest water); and vegetation

cover (conifer cover and total vegetation cover) (Ap-

pendix B). Seven additional climate and topographic

variables were considered (e.g., elevation and tempera-

ture of the coldest month), but were not retained be-

cause of high multicollinearity (jrj . 0.8) with one or

more of the 12 variables included (Appendix B). Cli-

matic data were obtained from DAYMET (see footnote

4; Thornton et al. 1997) and vegetation variables were

obtained from the Interagency Vegetation Mapping

Project (IVMP, available online).5 Topographic variables

were based on a USGS digital elevation model. All

habitat layers had a spatial resolution of 25 m except for

climatic variables, which had 1-km resolution; values

were applied to a 25-m grid by assigning each grid cell

the value of the corresponding 1-km cell.

We tested for spatial autocorrelation by calculating

Moran’s I at intervals of 100 m. Because autocorrelation

was strong for all species and habitat variables at

distances ,100 m, we randomly removed points ,100 m

from another point in the data set. The process was

implemented separately for presence and absence points

for each species. This yielded 219 occurrences of

Geranium (vs. 2784 absences, 7.3% frequency), 25 of

Hedera (vs. 2823 absences, 0.9%), and 45 of Ilex (vs.

2809 absences, 1.6%). Although numbers of occurrences

are relatively low for Ilex and Hedera, other studies have

found accurate model predictions using GARP with

similar or smaller sample sizes (Stockwell and Peterson

2002, Pearson et al. 2007). However, LR does produce

an ;10% decline in accuracy at sample sizes ,100 (Wisz

et al. 2008).

Comparing model types.—We compared three ap-

proaches to modeling local distributions: LR, GARP,

and ENFA. Logistic regression is a form of generalized

linear modeling that can be used with presence/absence

data because it produces a binomial rather than a nor-

mal distribution (Nicholls 1989). Because of the large

number of predictors, we did not include quadratic or

interaction terms in the models. Models were developed

using S-PLUS 6.2 (Insightful Corporation 2003).

Because LR is highly sensitive to species’ frequencies

and model performance is poor at low frequency

(Nielsen et al. 2008), we down-weighted the importance

of absence points so that the total weight of presence

and absence points was the same. This procedure can

reduce bias in LR when the percentage of occurrences is

low (Maggini et al. 2006). We started with all 12 habitat

variables and removed them in stepwise fashion using

the step function in S-PLUS. Removals were based on

reductions in Akaike’s Information Criterion (AIC), a

measure that combines model simplicity and goodness

of fit (Crawley 2002). The resulting regression equations

(reduced models) were then used to predict the habitat

suitability of each grid cell in the study area. Suitability

scores ranged from 0 to 1, but were rescaled to 0 to 100

for comparability with GARP and ENFA.

Genetic algorithm for rule-set prediction is an

artificial-intelligence-based modeling system (Stockwell

and Peters 1999). It requires only presence data and uses

a combination of rules to predict presence or absence for

each grid cell. It has recently been used to model the

potential distributions of invasive species (e.g., Under-

wood et al. 2004, Anderson et al. 2006). Because it

requires only presence data and includes interactions

among variables (Stockwell and Peters 1999), it may

perform better than LR for invasive species. For this

study, we used DesktopGARP 1.1.6 (available online).6

We used all rule types and all 12 habitat variables.

Because there is a random element to the model, each

model run produces a somewhat different result. For

each species we created 100 GARP models, then com-

puted for each grid cell a habitat suitability score (0–100,

equal to the number of model runs predicting presence).

Ecological niche factor analysis is akin to principal

components analysis in that it reduces a larger number

of environmental predictors (that may be correlated) to

fewer factors that are uncorrelated (Hirzel et al. 2002a).

Similar to GARP, this technique does not require

absence data. Using simulated data, ENFA performed

better than LR for a species with an expanding range

(Hirzel et al. 2001); thus, ENFA may work well for

invasive species. Each cell in the landscape is given a

score for each factor based on its similarity in that factor

to locations in which the species is present. Scores are

combined for all significant factors, then standardized to

create a habitat suitability score (0–100). We created

ENFA models for each species with Biomapper 3.0

(Hirzel et al. 2002b), using the median distance measure

5 hhttp://www.blm.gov/or/gis/index.phpi 6 hhttp://nhm.ku.edu/desktopgarp/index.htmli
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and a broken-stick model to determine the number of

factors to include (Hirzel et al. 2002a).

Comparing model performance.—Model performance

may be judged by accuracy (ability to predict species

presence or absence) and by agreement (consistency

given different sets of input data). To assess accuracy

and agreement, presence and absence data for each

species were partitioned into five equal subsets. For each

modeling technique five replicate models were run for

each species; each run used 80% of the data with a

different set of 20% reserved to test performance.

Most measures of model accuracy require predictions

of presence/absence at each point in the landscape

(Fielding and Bell 1997); predicted values are then

compared to empirical data not used in model construc-

tion (in our case, 20% of points). However, models in

the current study produce habitat suitability scores (0–

100), not binary responses. This requires selection of a

threshold score or value above which the model is

considered to predict presence (Fielding and Bell 1997).

Typically a value of 50 has been selected (Fielding and

Bell 1997), although any value can be used. Rather than

arbitrarily set a threshold, we used an approach that

maximized model accuracy. Two measures of accuracy

were considered.

The first, the true skill statistic (TSS), is similar to the

Kappa statistic, a commonly used threshold-dependent

measure of model accuracy (Fielding and Bell 1997).

Kappa reflects the rate of false positive and false

negative predictions, but is sensitive to frequency of

presence points (Welk 2004). The true skill statistic is

equivalent to Kappa when frequencies of presence and

absence points are equal, but it is not sensitive to

frequency (Allouche et al. 2006). It is calculated as

sensitivity þ specificity � 1, where

Sensitivity ¼ a=ðaþ cÞ ð1Þ

Specificity ¼ d=ðbþ dÞ ð2Þ

and a is the number of true positives, b is the number of

false positives, c is the number of false negatives, and d is

the number of true negatives. Values .0.6 are considered

good, 0.2–0.6 fair to moderate, and ,0.2 poor (Landis

and Koch 1977). To identify the suitability score used as

the threshold for predicting presence, we calculated TSS

for each model replicate across the full range of possible

threshold values (0–100) and selected the threshold that

maximized TSS. This method provides an optimal

threshold for evaluating the accuracy of each model

replicate (Robertson et al. 2004); thus each replicate may

have a different threshold.

We also assessed accuracy with receiver operating

characteristic (ROC) plots, which do not require se-

lection of a habitat suitability threshold (Fielding and

Bell 1997). Receiver operating characteristic plots

display the relationship between sensitivity (the propor-

tion of true positives accurately predicted by a model)

and 1 – specificity (the proportion of true negatives

accurately predicted by a model) over a range of

threshold values (0–100). An ROC plot produces an

asymptotically ascending curve with the area under the

curve (AUC) used as a measure of model accuracy

(Fielding and Bell 1997). Values of AUC generally range

from 0.5 (equivalent to that due to chance) to 1.0

(perfect performance). Values .0.9 are considered good,

0.7–0.9 moderate, and ,0.7 poor (Pearce and Ferrier

2000).

PLATE 1. Invasive Hedera helix growing over native Polystichum munitum in Olympic National Park. Photo credit: C. C. Jones.
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To assess agreement among model replicates, we used

the Kappa statistic. In this context, Kappa measured

consistency among the five replicates of each model type

(Monserud and Leemans 1992) rather than model

accuracy. For each species, we calculated Kappa for all

possible pairs of model replicates (n¼ 10 comparisons).

Finally, for each species and model replicate, we

calculated two measures of habitat suitability: mean

suitability among grid cells and percentage of habitat

predicted as suitable (percentage of suitable habitat) for

the threshold value that maximized TSS (accuracy).

To test whether presence-only models (GARP and

ENFA) performed better than LR (question 1), we used

a series of one-way ANOVA tests to compare accuracy

(TSS and AUC), agreement (Kappa), mean suitability,

and percentage of suitable habitat among model types

for each species. ANOVA tests that proved significant

(P � 0.05) were followed by Bonferroni post hoc tests of

means (SPSS 2006).

To evaluate model results and the predicted distribu-

tions of suitable habitat, we assessed the relative

(qualitative) importance of habitat variables in each

model type. Different metrics were needed for eachmodel

type. For LR we used the number of replicates in which a

variable was retained after stepwise removal. There is no

intrinsic method in GARP to assess the relative impor-

tance of habitat variables, thus we adapted the post hoc

method used by Loo et al. (2007). For each replicate

model, we created 50 GARP models with each of the 12

habitat variables removed (600 models/replicate). We

used t tests to compare the accuracy (sensitivity) of

models that included the variable of interest (550

models/replicate) with those in which the variable was

removed (50 models/replicate); we then averaged the t

statistic for the five replicate models of each species. The

magnitude of a positive mean t statistic reflected the

degree to which a variable improved model accuracy. For

ENFA, variable loadings on the first factor (i.e.,

marginality) served as measures of how different a

species’ occurrence was from the median values of the

variables in the study area.

Ensemble models

For each species we created ensemble models by

averaging among model types the habitat suitability

scores (0–100) of each grid cell. We calculated a mean for

each of the five replicates (i.e., the same 80% of the data

for each model type). To test whether ensemble models

performed better than individual model types (question

2), we used two-sample t tests (n ¼ 5; SPSS 2006) to

compare model accuracy (TSS and AUC) and agreement

(Kappa) between the ensemble model and the individual

model type with greatest accuracy or agreement.

Continental-scale, climate envelope models

We developed two types of continental-scale, climate

envelope models based on species’ distributions in the

contiguous United States (hereafter ‘‘invaded-range’’

models) and in the native range (hereafter ‘‘native-

range’’ models). Data on species presence for invaded-
range models were derived from the literature, herbar-
ium specimens, and personal communications (Jones

and Reichard 2009). Data on species presence for native-
range models were taken from the Global Biodiversity
Information Facility (available online),7 using only

points with an accuracy of ,1 km. Three climatic vari-
ables were used: mean temperature of the coldest month,
mean temperature of the warmest month, and annual

precipitation. These variables were chosen because they
typically show strong correlations with plant distribu-
tions at large spatial scales (Cramer and Prentice 1988,

Shafer et al. 2001). Sources of climatic data were
DAYMET (Thornton et al. 1997) for invaded-range
models and WORLDCLIM (available online)8 for

native-range models.
Climate envelope models were constructed using a

procedure similar to that in BIOCLIM (Busby 1991).

Predicted distributional limits were set at the extreme
values of each climatic variable based on species
presence. However, to reduce the influence of outliers,

we first removed the 5% most extreme values for each
variable (2.5% on each end of the distribution; Appendix
C). Native- and invaded-range models were applied to

the Olympic Peninsula by overlaying predictions of suit-
able habitat on the study area. Any 25-m grid cell on the
Peninsula with climatic conditions deemed suitable in

the invaded or native range was identified as suitable.
For both types of models we calculated the percentage
of cells predicted to be suitable habitat (percentage of

suitable habitat), sensitivity (proportion of true positives
accurately predicted by a model), and TSS.

Combining models from multiple scales

to inform monitoring

Local-scale models are sensitive to the current

distributions of species and are more likely to reflect
risk of invasion in the near term. In contrast, continental-
scale (native- and invaded-range) models predict the

climatic suitability of habitats at considerably larger
scales and thus reflect the climatic potential of species
independent of dispersal. We combined the predictions

of both types of models to characterize both near- and
long-term risk of invasion with the ultimate goal of

improving efficacy of monitoring in Olympic National
Park (question 3).
First, for each grid cell we tallied the number of

replicate runs of the three local-scale models that
predicted suitability given the threshold value that
maximized accuracy; values could range from 0 to 15.

For simplicity, we classified cells with values of 0 as
‘‘minimal risk’’ of near-term invasion, 1–5 as ‘‘low risk,’’
6–10 as ‘‘moderate risk,’’ and .10 as ‘‘high risk.’’ Next,

using continental-scale models we classified each grid

7 hhttp://www.gbif.orgi
8 hhttp://www.worldclim.orgi
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cell as having (1) high long-term risk of invasion if it was

suitable in both native- and invaded-range models, (2)

moderate risk if suitable in one of the two models, and

(3) minimal risk if suitable in neither model. We then

merged the results of these two classification schemes to

assign each grid cell to one of 12 possible combinations

of near- and long-term risk of invasion.

RESULTS

Comparison of logistic regression

and presence-only models

In general, suitable habitat was predicted to occur at

low elevations around the edges of the Olympic

Peninsula and in river valleys extending to its center.

For Geranium, suitable habitat was concentrated along

the northern coast where the species first invaded (Fig.

2). For Hedera and Ilex, suitable habitat was distributed

on all sides of the Peninsula (Figs. 3 and 4).

Among local-scale models, ENFA consistently had

the lowest mean suitability scores, whereas GARP

tended to have the highest (Fig. 5A). The relative per-

formance of models was very different, however, for

predictions of percentage of suitable habitat (Fig. 5B).

This disparity was due, in part, to the selection of very

different threshold values (Fig. 5C) to maximize model

accuracy. Among species and model types, percentage of

suitable habitat ranged from 9.2% (Geranium, GARP) to

31.8% (Hedera, GARP) (Fig. 5B).

For none of the species or measures of model ac-

curacy (AUC or TSS) were presence-only models more

accurate than LR (Fig. 6A, B). More often, model ac-

curacy was greater for LR than for GARP and/or

ENFA. Similarly, presence-only models did not show

greater agreement (consistency among replicates) than

LR (Fig. 6C); values for LR were comparable to those

of GARP and better than those of ENFA for Geranium

and Hedera.

The importance of particular habitat variables

differed among modeling methods and species (Appen-

dix D). Nevertheless, some patterns were apparent.

Number of frost days was important in LR and ENFA

models for all species and for Hedera in GARP models:

it was negatively associated with species presence in all

cases (except LR for Geranium). Annual precipitation

and precipitation frequency were important for most

FIG. 2. Habitat suitability maps for Geranium robertianum using (A) logistic regression (LR), (B) genetic algorithm for rule-set
prediction (GARP), (C) ecological niche factor analysis (ENFA), and (D) continental-scale, climate envelope models. For panels
A–C, darker shading indicates greater suitability over a range of 0–100. In panel (D), dark gray indicates suitable habitat based on
native-range and invaded-range models, medium gray indicates suitable habitat based on the native-range model only, and light
gray indicates unsuitable habitat. Open circles indicate where Geranium is present.
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species in all three model types. In ENFA, species

occurred in areas of low annual precipitation and low

precipitation frequency. In LR, however, coefficients

were positive for one of these variables for both

Geranium and Ilex due to multicollinearity. Conifer

cover and distance from water were important in LR

and ENFA models for Geranium; both were negatively

associated with Geranium occurrence.

Ensemble models

The accuracy of ensemble models was no greater than

the accuracy of the best-performing individual model

(LR in all cases; Fig. 6A, B). For only one of six tests did

accuracy differ significantly (LR . ensemble model for

Ilex based on AUC; t ¼ 3.19, P ¼ 0.012). Agreement

(consistency among replicates) for ensemble models was

comparable to LR for Geranium and Hedera, but

significantly lower than LR for Ilex (t¼ 3.47, P¼ 0.003).

Continental-scale models

Invaded-range models predicted that 52–59% of the

Peninsula is suitable for invasion (Table 1), much

greater than that predicted by the local-scale models

(;9–32%). Native-range models predicted even greater

suitability (86–99%). For all three species, models

consistently predicted suitable habitat in low-elevation

areas around the perimeter of the Peninsula, but models

differed in how far (high) into the mountains suitable

habitat extended (Figs. 2D, 3D, and 4D).

Almost all locations where species currently occur

were predicted as suitable habitat by both types of

continental-scale models (sensitivity values of 0.90–1.00;

Table 1). However, both types of models predicted

suitability in many areas where the species do not occur;

thus, model accuracy was poor to fair (TSS values of

0.00–0.47; Table 1).

Combining models from multiple scales

Most (.92%) of the cells classified as moderate or high

risk in the near term (local-scale models) were classified

as high risk in the longer term (continental-scale models).

Likewise, areas with low risk in the long term all had

minimal risk in the near term. Thus, from 12 possible

categories of combined risk, we were able to place all cells

into one of five categories (Table 2): minimal risk

(habitat unsuitable based on all models); low near-term,

but moderate long-term risk; low near-term, but high

long-term risk; moderate near-term, but high long-term

risk; high near-term and high long-term risk.

For all three species, ,15% of the Peninsula was

classified as minimal risk for invasion; in contrast, ;19–

FIG. 3. Habitat suitability maps for Hedera helix. Details are as in Fig. 2.
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36% was classified as moderate or high near-term risk

(Table 2; Fig. 7). The majority of the area with high

near-term risk, however, was outside ONP. Within

ONP, moderate and high near-term risk constituted

,8.3% of the total area (Table 2) and was concentrated

in large river valleys (Fig. 7).

DISCUSSION

Despite theoretical reasons why presence-only models

should perform better than logistic regression for species

that are spreading (Hirzel et al. 2001, Peterson 2003),

both presence-only techniques (GARP and ENFA)

consistently underperformed in this study. Presence-

only models were no more (or sometimes less) accurate

and were equally or more variable than LR.

Although both GARP (Peterson et al. 2003, Anderson

et al. 2006, Zhu et al. 2007) and LR (Buchan and Padilla

2000, Nielsen et al. 2008) have been used to model the

distributions of invasive species, few studies have

compared presence-only and LR models in this context,

and with mixed results. Schussman et al. (2006) found

that LR was much more accurate in predicting the

current distribution of an invasive grass in Arizona, but

Crossman and Bass (2008) found that GARP was more

accurate for an invasive tree in southern Australia.

It is becoming increasingly clear that model types can

vary markedly in performance (Pearson et al. 2006),

depending on characteristics of the species and habitat

data (Segurado and Araujo 2004). Given the variation

among model types, and the dependence of models on

species traits and spatial distributions (Evangelista et al.

2008), it is not possible to identify a modeling technique

that is optimal in all situations (Pearson et al. 2006).

One potential solution to this problem is to combine

different types of models to create an ensemble, or

average model (Araujo and New 2007).

We found that ensemble models were nomore accurate

than LR. This result contrasts with that of Crossman and

Bass (2008), who found that averaging the predictions of

all models led to increased accuracy. We conclude that

ensemble models may be useful in some but not all

situations. Their performance may also improve by

including a larger number of component models. Studies

of a diversity of species and systems are needed to identify

the conditions under which ensemble modeling is

advantageous. Combining models in this way does have

the advantage of providing a single prediction of habitat

suitability, but it also results in the loss of information

associated with individual model types.

Despite their potential advantages, ensemble models

are susceptible to the same problems that limit the

FIG. 4. Habitat suitability maps for Ilex aquifolium. Details are as in Fig. 2.
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individual models from which they are built. First,

methods used to assess model performance test the

ability to predict current, rather than potential, distri-

butions of invasive species. A model that accurately

predicts the current distribution may not accurately

predict the potential distribution (Pearson et al. 2006).

Conversely, models that are less accurate in predicting

current distributions may be more accurate in predicting

future distributions. In our study, GARP was less

accurate than LR. However, visual examination of

model results suggests that GARP may more accurately

predict potential distributions. For example, Geranium

robertianum has been observed increasingly along the

western edge of the Peninsula (C. Lucero, personal

communication), although there were few such geo-

referenced locations in our study. Compared to LR,

GARP predicted that more of the western edge of the

Peninsula is suitable habitat for Geranium.

One factor that may contribute to the disparity

between predictions of current and potential distribu-

tions is that indices of accuracy such as AUC and TSS

give equal weight to false positives and false negatives.

For invasive species, however, false negatives are more

problematic; false positives may simply reflect insuffi-

cient time to disperse rather than unsuitable habitat

(Pearson et al. 2006). Because of this equal weighting

and the use of thresholds that maximize accuracy,

GARP, and to a lesser extent, other models, greatly

FIG. 5. Habitat suitability and threshold scores for the three local-scale modeling techniques and for comparison, ensemble
models. (A) Mean suitability of all grid cells on the Peninsula. (B) Percentage of total habitat area predicted to be suitable using (C)
the threshold that maximized the true skill statistic, TSS. Error bars areþ1 SE (n¼ 5). F and P values for habitat suitability are
from one-way ANOVA of the three local-scale models only; different lowercase letters indicate significant differences between
model types based on Bonferroni tests of means.
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reduced the amount of habitat predicted to be suitable.

Techniques for differential weighting of false positives

and false negatives are available, but the methods for

weighting are subjective (Liu et al. 2005).

A second major limitation of individual and ensemble

models is that their predictions are influenced by

invasion patterns. All share the basic assumption that

species are at equilibrium with the environment, which is

not true for spreading species such as these. The dis-

tributions of these species during early stages of invasion

are shaped by both dispersal patterns and habitat re-

quirements, as are model predictions. This limitation is

often exacerbated by bias in the sampling distribution.

Most sample locations in our data sources (as in other

studies) were along roads, trails, or rivers, where in-

vasions are first expected to occur. As a consequence,

predicted habitat is more likely to occur near these

features simply as a result of the distribution of data

points. Habitats predicted to be suitable will be similar

to those first invaded and, because of autocorrelation of

habitat variables, these will be concentrated close to

currently invaded areas. Thus model predictions reflect

areas likely to be invaded in the near term. Several

studies have acknowledged this issue by explicitly

incorporating dispersal or spatial autocorrelation into

predictive models (Meentemeyer et al. 2008, Nielsen et

FIG. 6. Model accuracy (the area under the curve [AUC] and true skill statistic [TSS]) and agreement (Kappa) for the three
local-scale modeling techniques (logistic regression [LR], genetic algorithm for rule-set prediction [GARP], ecological niche factor
analysis [ENFA]) and, for comparison, ensemble models. (A) The AUC is threshold independent: values .0.9 are considered good,
0.7–0.9 moderate, and ,0.7 poor (Pearce and Ferrier 2000). (B) The TSS is threshold dependent: values .0.6 are considered good,
0.2–0.6 moderate, and ,0.2 poor (Landis and Koch 1977). (C) Agreement (Kappa) is the mean similarity among all possible pairs
of replicates of the same model type (n ¼ 10). See Fig. 5 for other details.
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al. 2008). Even if dispersal is not explicitly considered, it

can affect predictions because of spurious correlations

with environmental variables (Anderson et al. 2006).

We found evidence of such correlations in our study.

Geranium robertianum first invaded the Olympic Penin-

sula on the north coast, near Port Angeles (Tisch 1992),

where it is most common (Fig. 2). Although it continues

to spread, occurrences decrease to the southwest,

resulting in a negative association with annual precip-

itation, which is lowest near Port Angeles (Appendix D).

There is no evidence that Geranium is restricted to drier

climates in its global distribution (e.g., climate envelope

models suggest that it can occur in the wettest areas of

the Peninsula). Thus, the concentration of predicted

suitable habitat in the northern part of the Peninsula

likely reflects invasion patterns rather than habitat

requirements. This confirms the prediction that local-

scale models reflect near-term invasion risk regardless of

whether they explicitly include dispersal variables.

By employing predictive models that operate at a

range of spatial scales it is possible to overcome some of

these limitations. Models at each scale have different

limitations; thus, combining information from multiple

scales can improve predictive power (Ibanez et al. 2009).

This approach has been used to understand the factors

that affect species’ distributions (Pearson et al. 2004,

Nielsen et al. 2008), but only recently as a method to

improve model predictions (Ibanez et al. 2009).

Continental-scale models from the native and invaded

ranges can be used to define the bounds of climatically

suitable habitats within a region. At large scales, climate

is a primary determinant of species’ invasions (Milbau et

al. 2009). In this study, continental-scale (climate

envelope) models correctly predicted nearly all occur-

rences of the three species on the Peninsula (sensitivity

values �0.9) and predicted that none are likely to

establish at high elevations where winter temperatures

are too low. Only the native-range model for Geranium

predicted suitability at high elevations. This climatic

limitation is confirmed by the importance of number of

frost days in the local-scale models. Continental-scale

models also suggest that the restriction of Geranium to

drier parts of the Peninsula, as predicted by local-scale

models, does not reflect a climatic limitation, but an

artifact of invasion history.

Although continental-scale models can define the

climatic limits of invasive species, local-scale models

provide additional insights into their potential distribu-

tions at finer resolution. Climate is less important in

shaping invasion patterns at smaller spatial scales, the

scales at which topography, land cover, and disturbance

are more important (Milbau et al. 2009). Invasion

history can also play an important role at these scales.

Local-scale models, which can more easily incorporate

these factors, better elucidate small-scale distributional

patterns. This was evident in our study, both in the

influence of invasion history on local-scale models and

by the association of Geranium with low conifer cover

and proximity to water.

Combining models from different scales can also be

useful in monitoring. Continental-scale models can be

combined with finer scale models of current distribu-

tions to create a hierarchical framework of invasion risk

that reflects the hierarchical nature of the factors

controlling invasions (Milbau et al. 2009). A simple

scheme for classifying near- and long-term risk of in-

vasion can then be used to guide monitoring efforts.

Developing a monitoring protocol

for Olympic National Park

Monitoring for invasive species is time consuming and

costly, particularly over large areas (Rew et al. 2006).

Because risk of invasion varies spatially, models can be

used to focus monitoring on areas of greatest risk.

TABLE 1. Percentage of suitable habitat, sensitivity (propor-
tion of true positives accurately predicted by a model), and
accuracy (true skill statistic, TSS) of invaded- and native-
range models for Geranium robertianum, Hedera helix, and
Ilex aquifolium.

Species and
range type

Suitable
habitat (%) Sensitivity

Accuracy
(TSS)

Geranium

Invaded range 58.3 0.90 0.28
Native range 100.0 1.00 0.00

Hedera

Invaded range 58.8 1.00 0.37
Native range 85.6 1.00 0.04

Ilex

Invaded range 52.0 1.00 0.47
Native range 88.8 1.00 0.01

TABLE 2. Percentages of the Olympic Peninsula and Olympic National Park (ONP) in different
categories of near- and long-term invasion risk for Geranium robertianum, Hedera helix, and
Ilex aquifolium.

Invasion risk

Geranium Hedera Ilex

Peninsula ONP Peninsula ONP Peninsula ONP

Minimal 0.04 0.1 14.4 37.6 11.2 33.5
Low near term, moderate long term 40.8 77.6 26.2 40.6 36.0 50.5
Low near term, high long term 40.0 17.5 23.4 13.5 19.8 8.4
Moderate near term, high long term 10.7 3.7 22.5 4.5 15.9 3.6
High near term, high long term 8.5 1.1 13.4 3.8 17.2 4.0
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Monitoring is typically focused on areas where dispersal

is likely (e.g., along roads, trails, and rivers), with little
regard for habitat conditions. Predictive models can be

used to improve these methods by incorporating habitat

suitability into modeling design. Although most new

occurrences are likely to be in close proximity to roads
or existing populations, more distant establishment

events are more important to detect. Habitat distribu-

tion models can be used to determine which of these

more distant areas are climatically suitable and should
be monitored.

The species in this study, and others, are in the early

stages of invasion in Olympic National Park; thus

predictive models have the potential to inform programs
of early detection and control at a time when such

efforts may still be effective. Although the intent to

inform monitoring has been a general goal of habitat

distribution models (e.g., Anderson et al. 2006, Cross-
man and Bass 2008), most models have not been ex-

plicitly linked to the design of a monitoring protocol.

Our classification of near- and long-term invasion risk in

ONP provides a simple framework for designing a
spatially explicit monitoring plan that draws directly

from the predictions of local- and continental-scale

models. Degree (low to high) and time frame of risk

(near- and long-term) serve as logical criteria for

establishing the spatial intensity and frequency of

monitoring efforts. Areas classified as high near-term
risk would receive the greatest intensity (density of

effort) and frequency of monitoring. These areas were

considered suitable habitat in most or all of the models.

Areas of high risk are most similar, and typically closest,
to areas of the Peninsula that have already been invaded.

Fortunately, ,4% of ONP is classified as high risk for

all of the species considered, and these areas are in

lowland river valleys, close to roads and trails. In areas
with lower risk of invasion, intensity and/or frequency

of monitoring can be reduced.

In areas with minimal risk (which, for Ilex and

Hedera, constitute more than a third of ONP), mon-
itoring can occur at low intensity and frequency.

Nevertheless, some monitoring should still occur in

these areas for two reasons. First, it can be used to test

model predictions; if species establish in areas of min-
imal risk, it may suggest a problem with current models.

Second, model predictions are based on the current

climate. As climate warms, species may spread to higher

elevations than predicted, and thus models will need to
be modified (Guisan and Thuiller 2005). One way to

adapt models to a changing climate is to adjust climate

layers to account for predicted changes in temperature

and related variables. Monitoring in areas of minimal

FIG. 7. Classification of near- and long-term invasion risk for (A) Geranium robertianum, (B) Hedera helix, and (C) Ilex
aquifolium on the Olympic Peninsula. Near-term risk is based on local-scale models, and long-term risk is based on native- and
invaded-range models (see Methods: Combining models from multiple scales. . .).
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risk will allow detection of shifts in species’ distributions

in response to climate change.

A major goal of invasive species modeling is to aid in

early detection and long-term monitoring; however, for

models to be useful for management, we suggest that

modeling and monitoring need to be more closely in-

tegrated. Models can assist land managers in targeting

scarce resources to areas of high risk. In turn, when

monitoring strategies are guided by predictions of

invasion risk, results of monitoring can be used to refine

model assumptions and techniques. This iterative ap-

proach will increase our understanding of how well

models can predict the future distributions of invasive

species. Given the limitations of existing models and our

inability to assess the accuracy of predictions of future

distributions, explicit and dynamic links between mod-

eling and monitoring are critical.

CONCLUSIONS

Models that use only presence data and ensemble

models that average the results of multiple model types

have been proposed as methods to improve predictions of

the potential distributions of invasive species. We found

that neither approach improved accuracy in predicting

the current distributions of Geranium robertianum,

Hedera helix, or Ilex aquifolium on the Olympic Peninsu-

la. Presence-only models (ENFA and GARP) were less

accurate and ensemble models were no more accurate

than logistic regression. However, current accuracy

indices assess accuracy relative to current distributions;

presence-only models may better predict potential distri-

butions, but it is not possible to verify this (at least in the

short term). In addition, models based on data from an

invaded region are sensitive to the current spatial

distributions of species. Given these challenges, it is im-

portant to consider model results critically. Combining

models that represent different spatial scales may

overcome some of these challenges; they can provide

insights into current and future risks of invasion and help

to set priorities formonitoring.Modeling andmonitoring

can also be used iteratively to test and refine predictions

about, and monitor changes in, species’ distributions.
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