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Abstract. Popular algorithms for feature matching and model extrac-
tion fall into two broad categories, generate-and-test and Hough trans-
form variations. However, both methods su�er from problems in prac-
tical implementations. Generate-and-test methods are sensitive to noise
in the data. They often fail when the generated model �t is poor due to
error in the selected features. Hough transform variations are somewhat
less sensitive the noise, but implementations for complex problems su�er
from large time and space requirements and the detection of false posi-
tives. This paper describes a general method for solving problems where
a model is extracted from or �t to data that draws bene�ts from both
generate-and-test methods and those based on the Hough transform,
yielding a method superior to both. An important component of the
method is the subdivision of the problem into many subproblems. This
allows e�cient generate-and-test techniques to be used, including the use
of randomization to limit the number of subproblems that must be ex-
amined. However, the subproblems are solved using pose space analysis
techniques similar to the Hough transform, which lowers the sensitivity
of the method to noise. This strategy is easy to implement and results in
practical algorithms that are e�cient and robust. We apply this method
to object recognition, geometric primitive extraction, robust regression,
and motion segmentation.

1 Introduction

The generate-and-test paradigm is a popular strategy for solving model match-
ing problems such as recognition, detection, and �tting. The basic idea of this
method is to generate (or predict) many hypothetical model positions using the
minimal amount of information necessary to identify unique solutions. A se-
quence of such positions is tested, and the positions that meet some criterion
are retained. Examples of this technique include RANSAC [6] and the alignment
method [10].

The primary drawback to generate-and-test paradigm is sensitivity to noise.
Let us call the features that are used in predicting the model position for some
test the distinguished features, since they play a more important role in whether
the test is successful. The other features are undistinguished features. Error in



the distinguished features causes the predicted position to be in error. As the
error grows, the testing step becomes more likely to fail.

To deal with this problem, methods have been developed to propagate errors
in the locations of the distinguished features [1, 8]. Under the assumption of a
bounded error region for each of the distinguished image features, these methods
can place bounds on the locations to which the undistinguished model features
can be located in an image. When we count the number of undistinguished
model features that can be aligned with image features (with the constraint
that the distinguished features must always be in alignment up to the error
bounds) these techniques can guarantee that we never undercount the number
of alignable features. The techniques will thus never report that the model is
not present according to some counting criterion when, in fact, the model does
meet the criterion.

On the other hand, this method is likely to overcount the number of alignable
features, even if the bounds on the location of each individual feature are tight.
The reason for this is that, while this method checks whether there is a model
position that brings each of the undistinguished model features into alignment
with image features (along with all of the distinguished features) up to the error
bounds, it does not check whether there is a position that brings all of the
counted undistinguished features into alignment up to the error bounds.

A competing technique for feature matching and model extraction is based
on the Hough transform. This method also generates hypothetical model posi-
tions solutions using minimal information, but rather than testing each solution
separately, the testing is performed by analyzing the locations of the solutions in
the space of possible model positions (or poses). This is often, but not always, ac-
complished through a histogramming or clustering procedure. The large clusters
in the pose space indicate good model �ts. We call techniques that examine the
pose space for sets of consistent matches among all hypothetical matches Hough-

based methods, since they derive from the Hough transform [11, 15]. While these
techniques are less sensitive to noise in the features, they are prone to large com-
putational and memory requirements, as well as the detection of false positive
instances [7], if the pose space analysis is not careful.

In this paper, we describe a technique that combines the generate-and-test
and Hough-based methods in a way that draws ideas and advantages from each,
yielding a method that improves upon both. Like the generate-and-test method,
(partial) solutions based on distinguished features are generated for further ex-
amination. However, each such solution is under-constrained and Hough-based
methods are used to determine and evaluate the remainder of the solution. This
allows both randomization to be used to reduce the computational complexity
of the method and error propagation techniques to be used in order to better ex-
tract the relevant models. We call this technique RUDR (pronounced \rudder"),
for Recognition Using Decomposition and Randomization.

First, it is shown that the problem can be treated as many subproblems, each
of which is much simpler than the original problem. We next discuss various
methods by which the subproblems can be solved. The application of random-



ization to reduce the number of subproblems that must be examined is then
described. These techniques yield e�ciency gains over conventional generate-
and-test and Hough-based methods. In addition, the subdivision of the problem
allows us to examine a much smaller parameter space in each of the subproblems
than in the original problem and this allows the error inherent in localization
procedures to be propagated accurately and e�ciently in the matching process.

This method has a large number of applications. It can be applied to essen-
tially any problem where a model is �t to cluttered data (i.e. with outliers or
multiple models present). We discuss the application of this method to object
recognition, curve detection, robust regression, and motion segmentation.

The work described here is a generalization of previous work on feature
matching and model extraction [19, 20, 22]. Similar ideas have been used by other
researchers. A simple variation of this method has been applied to curve detec-
tion by Murakami et al. [18] and Leavers [14]. In both of these cases, the problem
decomposition was achieved through the use of a single distinguished feature in
the image for each of the subproblems. We argue that the optimal performance
is achieved when the number of distinguished features is one less than the num-
ber necessary to fully de�ne the model position in the errorless case. This has
two bene�cial e�ects. First, it reduces the amount of the pose space that must
be considered in each problem (and the combinatorial explosion in the sets of
undistinguished features that are examined). Second, it allows a more e�ective
use of randomization in reducing the computational complexity of the method.
A closely related decomposition and randomization method has been described
by Cass [4] in the context of pose equivalence analysis. He uses a base match to
develop an approximation algorithm for feature matching under uncertainty.

2 General Problem Formalization

The class of problems that we attack using RUDR are those that require a model
to be �t to a set of observed data features, where a signi�cant portion of the
observed data may be outliers or there may be multiple models present in the
data. These problems can, in general, be formalized as follows.

Given:

� M : The model to be �t. This model may be a set of distinct features as is
typical in object recognition, or it may be a parameterized manifold such as a
curve or surface, as in geometric primitive extraction and robust regression.

� D : The data to match. This data consists of a set of features or measurements,
f�1; :::; �dg, that have been extracted, for example, from an image.

� T : The possible positions or transformations of the model. We use � to denote
individual transformations in this space.

� A(M;D; T ; �;D) : A binary-valued acceptance criterion that speci�es whether
a transformation, � , satisfactorily brings the model into agreement with a set of
data features, D 2 D. We allow this criterion to be a function of the full set of
data features and the set of transformations to allow the criterion to select the



single best subset of data features according to some criterion or to take into
account global matching information.

Determine and report:

� All maximal sets of data features, D 2 D, for which there is a transformation,
� 2 T , such that the acceptance criterion, A(M;D; T ; �;D), is satis�ed.

This formalization is very general. Many problems can be formalized in this
manner, including object recognition, geometric primitive extraction, motion
segmentation, and robust regression.

A useful acceptance criterion is based on bounding the �tting error between
the model and the data. Let C(M; �; �) be a function that determines whether
the speci�ed position of the model �ts the data feature � (e.g. up to a bounded
error). We let C(M; �; �) = 1, if the criterion is satis�ed, and C(M; �; �) = 0,
otherwise. The model is said to be brought into alignment with a set of data
features, D = f�1; :::; �xg up to the error criterion, if all of the individual features
are brought into alignment:

xY
i=1

C(M; �i; �) = 1 (1)

The bounded-error acceptance criterion speci�es that a set of data features,
D = f�1; :::; �xg, should be reported, if the cardinality of the set meets some
threshold (x � c), there is a position of the model that satis�es (1), and the set
is not a subset of some larger set that is reported.

While this criterion cannot incorporate global information, such as mean-
square-error or least-median-of-squares, RUDR is not restricted to using this
bounded-error criterion. This method has been applied to least-median-of-squares
regression with excellent results [19].

Example As a running example, we will consider the detection of circles in
two-dimensional image data. For this case, our model, M, is simply the param-
eterization of a circle, (x � xc)

2 + (y � yc)
2 = r2, and our data, D, is a set

of image points. The space of possible transformations is the space of circles,
T = [xc; yc; r]

T
. We use a bounded-error acceptance criterion such that a point

is considered to be on the circle if
���p(x� xc)2 + (y � yc)2 � r

��� < �. We will

report the circles that have
Pd

i=1 C�(M; �i; �) > �r. In other words, we search
for the circles that have half of their perimeter present in the image.

3 Approach

Let us call the hypothetical correspondence between a set of data features and
the model a matching. The generate-and-test paradigm and many Hough-based
strategies solve for hypothetical model positions using matchings of the minimum
cardinality to constrain the model position up to a �nite ambiguity (assuming



errorless features). We call the matchings that contain this minimal amount
of information the minimal matchings and we denote their cardinality k. We
consider two types of models. One type of model consists of a set of discrete
features similar to the data features. The other is a parameterized model such
as a curve or surface. When the model is a set of discrete features, the minimal
matchings specify the model features that match each of the data features in
the minimal matching and we call these explicit matchings. Otherwise, the data
features are matched implicitly to the parameterized model and we thus call
these implicit matchings.

In the generate-and-test paradigm, the model positions generated using the
minimal matchings are tested by determining how well the undistinguished fea-
tures are �t according to the predicted model position. In Hough-based methods,
it is typical to determine the positions of the model that align each of the min-
imal matchings and detect clusters of these positions in the parameter space
that describes the set of possible model positions, but other pose space analysis
techniques can be used (e.g. [3, 4]).

The approach that we take draws upon both generate-and-test techniques
and Hough-based techniques. The underlying matching method may be any one
of several pose space analysis techniques in the Hough-based method (see Section
4), but unlike previous Hough-based methods, the problem is subdivided into
many smaller problems, in which only a subset of the minimal matchings is
examined. When randomization is applied to selecting which subproblems to
solve, a low computational complexity can be achieved with a low probability of
failure.

The key to this method is to subdivide the problem into many small sub-
problems, in which a distinguished matching of some cardinality g < k between
data features and the model is considered. Only those minimal matchings that
contain the distinguished matching are examined in each subproblem and this
constrains the portion of the pose space that the subproblem considers. We could
consider each possible distinguished matching of the appropriate cardinality as
a subproblem, but we shall see that this is not necessary in practice.

Let's consider the e�ect of this decomposition of the problem on the match-
ings that are detected by a system using a bounded-error criterion, C(M; d; t),
as described above. For now, we assume that we have some method of deter-
mining precisely those sets of data features that should be reported according to
the bounded-error acceptance criterion. The implications of performing match-
ing only approximately and the use of an acceptance criterion other than the
bounded-error criterion are discussed subsequently.

Proposition 1. For any transformation, � 2 T , the following statements are

equivalent:

1. Transformation � brings at least x data features into alignment with the model

up to the error criterion.

2. Transformation � brings at least (xk) sets of data features with cardinality k

into alignment with the model up to the error criterion.



3. For any distinguished matching of cardinality g that is brought into alignment

with the model up to the error criterion by � , there are (x�gk�g) minimal matchings

that contain the distinguished matching that are brought into alignment up to the

error criterion by � .

The proof of this proposition, which follows directly from combinatorics,
is sketched in [20]. This result indicates that as long as we examine one distin-
guished matching that belongs to each of the matchings that should be reported,
the strategy of subdividing the problem into subproblems yields equivalent re-
sults to examining the original problem as long as the threshold on the number
of matches is set appropriately.

This decomposition of the problem allows our method to be viewed as a
class of generate-and-test methods, where distinguished matchings (rather than
minimal matchings) are generated and the testing step is performed using a pose
space analysis method (such as clustering or pose space equivalence analysis)
rather than comparing a particular model position against the data.

While distinguished matchings of any cardinality could be considered, we
must balance the complexity of the subproblems with the number of subproblems
that are examined. Increasing the cardinality of the distinguished matching is
bene�cial up to a point. As the size of the distinguished matching is increased, the
number of minimal matchings that is examined in each subproblem is decreased
and we have more constraint on the position of the model. The subproblems are
thus simpler to solve. By itself, this does not improve matters, since there are
more subproblems to examine. However, since we use randomization to limit the
number of subproblems that are examined, we can achieve a lower computational
complexity by having more simple subproblems than fewer di�cult ones. On the
other hand, when we reach g = k, the method becomes equivalent to a generate-
and-test technique and we lose both the bene�ts gained through the Hough-based
analysis of the pose space and the property that the subproblems become simpler
with larger distinguished matchings. We thus use distinguished matchings with
cardinality g = k � 1.

Now, for practical reasons, we may not wish to use an algorithm that reports
exactly those matchings that satisfy the error criterion, since such algorithms
are often time consuming. In this case, we cannot guarantee that examining a
distinguished matching that belongs to a solution that should be reported will
result in detecting that solution. However, empirical evidence suggests that the
examination of these subproblems yields superior results when an approximation
algorithm is used [20], owing to failures that occur in the examination of full
problem.

We can also use these techniques with acceptance criteria other than the
bounded-error criterion. With other criteria, the proposition is no longer always
true, but if an approximation algorithm is used to detect good matchings, exam-
ination of the subproblems often yields good results. For example, an application
of these ideas to least-median-of-squares regression has yielded an approxima-
tion algorithm that is provably accurate with high probability, while previous
approximation algorithms do not have this property [19].



Example For our circle detection example, k = 3, since three points are su�-
cient to de�ne a circle in the noiseless case. The above analysis implies that,
rather than examining individual image features, or all triples of features, we
should examine trials (or subproblems) where only the triples that share some
distinguished pair of features in common. Multiple trials are examined to guard
against missing a circle.

4 Solving the Subproblems

Now, we must use some method to solve each of the subproblems that are ex-
amined. We can use any method that determines the number of matchings of a
given cardinality can be brought approximately into alignment with the model at
a particular position. The simplest method is one that uses a multi-dimensional
histogramming step in order to locate large clusters in the pose space. This
method can be implemented e�ciently in both time and space [20]. However,
errors in the data cause the clusters to spread in a manner that can be di�cult to
handle using this technique. For complex problems, it can become problematic
to detect the clusters without also detecting a signi�cant number of false posi-
tives [7]. Alternatively, recently developed pose equivalence analysis techniques
developed by Breuel [3] and Cass [4] can be applied that allow localization error
to be propagated accurately. Breuel's experiments indicate that his techniques
can operate in linear expected time in the number of matchings, so we can, in
general, perform this step e�ciently.

In our method, only a small portion of the parameter space is examined in
each subproblem. If it is assumed that there is no error in the data features in
the distinguished matching, then each subproblem considers only a sub-manifold
of the parameter space. In general, if there are p transformation parameters and
each feature match yields b constraints on the transformation, then a subproblem
where the distinguished matchings have cardinality g considers only a (p� gb)-
dimensional manifold of the transformation space in the errorless case. This
allows us to parameterize the sub-manifold (using p�gb parameters) and perform
analysis in this lower dimensional space. A particularly useful case is when the
resulting manifold has only one dimension (i.e. it is a curve). In this case, the
subproblem can be solved very simply by parameterizing the curve and �nding
positions on the curve that are consistent with many minimal matchings.

When localization error in the data features is considered, the subproblems
must (at least implicitly) consider a larger space than the manifold described
above. The subproblems are still much easier to solve. A technique that is useful
in this case is to project the set of transformations that are consistent with a
minimal matching up to the error criterion onto the manifold that results in the
errorless case and then perform clustering only in the parameterization of this
manifold as discussed above [22].

Example For circle detection, the circle positions that share a pair of points lie on
a curve in the pose space. (The center of the circle is always on the perpendicular



bisector of the two distinguished points.) We parameterize the positions using
the signed distance d from the center of the circle to the midpoint between the
distinguished points (positive if above, negative if below). This yields a unique
descriptor for every circle containing the distinguished points. For each triple
that is considered, we can project the pose space consistent with the triple onto
the parameterization by considering which centers are possible given some error
bounds on the point locations [22]. We determine if a circle is present in each
trial by �nely discretizing d and performing a simple Hough transform variation,
where the counter for each bin is incremented for each triple that is consistent
with the span represented by the counter. Peaks in the accumulator are accepted
if they surpass some predetermined threshold.

5 Randomization and Complexity

A deterministic implementation of these ideas examines each possible distin-
guished matching with the appropriate cardinality. This requires O(nk) time,
where n is the number of possible matches between a data feature and the
model. When explicit matchings are considered, n = md, where m is the number
of model features and d is the number of data features. When implicit match-
ings are considered, n = d. Such a deterministic implementation performs much
redundant work. There are many distinguished matchings that are part of each
of the large consistent matchings that we are seeking. We thus �nd each match-
ing that meets the acceptance criterion many times (once for each distinguished
matching that is contained in the maximal matching). We can take advantage
of this redundancy through the use of a common randomization technique to
limit the number of subproblems that we must consider while maintaining a low
probability of failure.

Assume that some minimum number of the image features belong to the
model. Denote this number by b. Since our usual acceptance criterion is based
on counting the number of image features that belong to the model, we can
allow the procedure to fail when too few image features belong to the model.
Otherwise, the probability that some set of image features with cardinality g =

k � 1 completely belongs to the model is approximately bounded by
�
b
d

�k�1
.

If we take t trials that select sets of k � 1 image features randomly, then the
probability that none of them will completely belong to the model is:

pt �

 
1�

�
b

d

�k�1
!t

: (2)

Setting this probability below some arbitrarily small threshold (pt < 
) yields:

t �
ln 


ln(1�
�
b
d
)k�1

� � �d
b

�k�1

ln
1



: (3)

Now, for explicit matches, we assume that some minimum fraction fe of the
model features appear in the image. In this case, the number of trials necessary



is approximately
�

d
fem

�k�1
ln 1



. For each trial, we must consider matching the

set of image features against each possibly matching set of model features, so the
total number of distinguished matchings that are considered is approximately�

d
fe

�k�1
(k�1)! ln 1



. Each explicit distinguished matching requires O(md) time

to process, so the overall time required is O(mdk).
For implicit matches, we may assume that each signi�cant model in the image

comprises some minimum fraction fi of the image features. The number of trials
necessary to achieve a probability of failure below 
 is approximately fi

1�kln 1



,

which is a constant independent of the number of model or image features. Since
each trial can be solved in O(d) time, the overall time required is O(d).

Note that the complexity can be reduced further by performing subsampling
among the matchings considered in each trial. Indeed,O(1) complexity is possible
with some assumptions about the number of features present and the rate of
errors allowable [2]. We have not found this further complexity reduction to be
necessary in our experiments. However, it may be useful when the number of
image features is very large.

Example Our circle detection case uses implicit matchings. If we assume that
each circle that we wish to detect comprises at least fi = 5% of the image data
and require that the probability of failure is below 
 = 0:1%, then the number of
trials necessary is 2764. Each trial considers the remaining d� 2 image features.
Note that techniques considering all triples will surpass the number of triples
considered here when d > 53.

6 Comparison With Other Techniques

This section gives a comparison of the RUDR approach with previous generate-
and-test and Hough-based techniques.

Deterministic generate-and-test techniques require O(nk+1) time to perform
model extraction in general, since there are O(nk) minimal matchings and the
testing stage can be implemented O(n) time. This can often be reduced slightly
through the use of e�cient geometric searching techniques during the testing
stage (e. g. [16]). RUDR yields a superior computational complexity requirement
for this case. When randomization is applied to generate-and-test techniques, the
computation complexity becomes O(mdk+1) (or slightly better using e�cient ge-
ometric search) for explicit matches and O(d) for implicit matches. RUDR yields
a superior computational complexity for the case of explicit matches and, while
the generate-and-test approach matches the complexity for the case of implicit
matches, RUDR examines less subproblems by a constant factor (approximately
1

fi
) and is thus faster in practice.
In addition, previous generate-and-test techniques are inherently less precise

in the propagation of localization error. The basic generate-and-test algorithm
introduces false positives unless care is taken to propagate the errors correctly
[1, 8], since error in the data features leads to error in the hypothetical model



pose and this error causes some of the models to be missed as a result of a poor
�t. A more serious problem is that, while the generate-and-test techniques that
propagate errors correctly ensure that each of the undistinguished features can
be separately brought into alignment (along with the distinguished set) up to
some error bounds by a single model position, this position may be di�erent for
each such feature match. It does not guarantee that all of the features can be
brought into alignment up to the error bounds by a single position and thus
causes false positives to be found.

Hough-based methods are capable of propagating localization error such that
neither false positives nor false negatives occur (in the sense that only match-
ings meeting the acceptance criterion are reported) [3, 4]. However, previous
Hough-based methods have had large time and space requirements. Determinis-
tic Hough-based techniques that examine minimal matchings require O(nk) time
and considerable memory [20].

Randomization has been previously applied to Hough transform techniques
[2, 13, 14, 24]. However, in previous methods, randomization has been used in a
di�erent manner than it is used here. While RUDR examines all of the data in
each of the subproblems, previous uses of randomization in Hough-based meth-
ods subsample the overall data examined, causing both false positives and false
negatives to occur as a result. While false negatives can occur due to the use
of randomization in the RUDR approach, the probability of such an occurrence
can be set arbitrarily low.

Our method draws the ability to propagate localization error accurately from
Hough-based methods and combines it with the ability to subdivide the problem
into many smaller subproblems and thus reap the full bene�t of randomization
techniques. The result is a model extraction algorithm with superior computa-
tional complexity to previous methods that is also robust with respect to false
positives and false negatives.

All of the techniques considered so far have been model-based methods. The
primary drawback to such techniques is a combinatorial complexity that is poly-
nomial in the number of features, but exponential in the complexity of the pose
space (as measured by k). This can be subverted in some cases by assuming that
some fraction of the data features arises from the model (this shifts the base
of the exponent to the required fraction). An alternative that can be useful in
reducing this problem is the use of grouping or perceptual organization methods
that use data-driven techniques to determine features that are likely to belong
to the same model (for example, [12, 17]). In cases where models can be identi-
�ed by purely data-driven methods, such techniques are likely to be faster than
the techniques described here. However, work has shown the even imperfect fea-
ture grouping methods can improve both the complexity and the rate of false
positives in the RUDR method [21].

There are some situations where RUDR can not be applied e�ectively. If a
single data feature is su�cient to constrain the position of the model, the RUDR
problem decomposition will not be useful. In addition, the techniques we describe
will be of less value is when there is a small number of features in the image. In



this case, the randomization may not yield an improvement in the speed of the
algorithm. However, the error propagation bene�ts will still apply.

7 Applications of RUDR

RUDR has been applied to several problems. We review the important aspects of
these applications here and discuss additional areas where RUDR can be applied.

7.1 Extraction of Geometric Primitives

The Hough transform is a well known technique for geometric primitive extrac-
tion [11, 15]. The application of RUDR to this method improves the e�ciency
of the technique, allows the localization error to be propagated accurately, and
reduces the amount of memory that is required [22].

Consider the case of detecting curves from feature points in two-dimensional
image data. If we wish to detect curves with p parameters, then we use distin-
guished matchings consisting of p�1 feature points, since, in general, p points are
required to solve for the curve parameters. Each distinguished matching maps
to a one-dimensional manifold (a curve) in the parameter space, if the points are
errorless and in general position. Methods have been developed to map minimal
matchings with bounded errors into segments of this curve for the case of lines
and circles [22]. O(d) time and space is required for curve detection with these
techniques, where d is the number of data points extracted from the image.

Figure 1 shows the results of using RUDR to detect circles in a binary image
of an engineering drawing. The results are very good, with the exception of
circles found with a low threshold that are not perceptually salient. However,
these circles meet the acceptance criterion speci�ed, so this is not a failure of
the algorithm.

The image in Figure 1 contains 9299 edge pixels. In order to detect circles
comprising 4% of the image, RUDR examines 4318 trials and considers 4:01�
107 triples. Contrast this to the 8:04 � 1011 possible triples. A generate-and-
test technique using the same type of randomization examines 1:08� 105 trials
(1:00�109 triples) to achieve the same the same probability of examining a trial
where the distinguished features belong to some circle, but will still miss circles
due to the error in the features.

7.2 Robust Regression

RUDR can be applied to the problem of �nding the least-median-of-squares
(LMS) regression line. The most commonly considered problem is to �t a line
to points in the plane. We apply RUDR to this problem by considering a series
of distinguished points in the data. A single distinguished point is examined
in each trial (since only two are required to de�ne a line). For each trial, we
determine the line that is optimal with respect to the median residual, but with
the constraint that the line must pass through the distinguished point.



(a) (b)

(c) (d)

Fig. 1. Circle detection. (a) Engineering drawing. (b) Circles found comprising 4% of
the image. (c) Perceptually salient circles found comprising 0.8% of the image. (d)
Insalient circles found comprising 0.8% of the image.

It can be shown that the solution to this constrained problem has a median
residual that is no more than the sum of the optimal median residual and the
distance of the distinguished point from the optimal LMS regression line [19].
Now, at least half of the data points must lie no farther from the optimal re-
gression line than the optimal median residual (by de�nition). Each trial thus
has a probability of at least 0.5 of obtaining a solution with a residual no worse
than twice the optimal median residual. The use of randomization implies that
we need to perform only a constant number of trials to achieve a good solution
with high probability (approximately � log2 � trials are necessary to achieve an
error rate of �).

Each subproblem (corresponding to a distinguished point) can be solved using
a specialized method based on parametric search techniques [19]. This allows
each subproblem to be solved exactly in O(n log2 n) time or in O(n logn) time
for a �xed precision solution using numerical techniques. These techniques have
also been extended to problems in higher dimensional spaces.



Fig. 2. Robust regression examples. The solid lines are the RUDR LMS estimate. The
dashed lines are the PROGRESS LMS estimate. The dotted lines are the least-squares
�t.

The complexity of our method is superior to the best known exact algorithms
for this problem [5]. The PROGRESS algorithm [23] is a commonly used approx-
imation algorithm for LMS regression that is based on the generate-and-test
paradigm. It requires O(n) time. However, unlike our algorithm, this algorithm
yields no lower bounds (with high probability) on the quality of the solution
detected.

Figure 2 shows two examples where RUDR, PROGRESS, and least-squares
estimation were used to perform regression. In these examples, there were 400
inliers and 100 outliers, both from two-dimensional normal distributions. For
these experiments, 10 trials of the RUDR algorithm were considered, and 50
trials of the PROGRESS algorithm. For both cases, RUDR produces the best
�t to the inliers. The least-squares �t is known to be non-robust, so it is not
surprising that it fairs poorly. The PROGRESS algorithm has di�culty, since,
even in 50 trials, it does not generate a solution very close to the optimal solution.

7.3 Object Recognition

The application of RUDR to object recognition yields an algorithm with O(mdk)
computational complexity, where m is the number of model features, d is the
number of data features, and k is the minimal number of feature matches neces-
sary to constrain the position of the model up to a �nite ambiguity in the case
of errorless features in general position.

For recognizing three-dimensional objects using two-dimensional image data,
k = 3. In each subproblem, we compute the pose for each minimal matching
containing the distinguished matching using the method of Huttenlocher and
Ullman [10]. We then use a multi-dimensional histogramming technique that



(a) (b)
Fig. 3. Three-dimensional object recognition. (a) Corners detected in the image. (b)
Best hypothesis found.

examines each axis of the pose space separately. After �nding the clusters along
some axis in the pose space, the clusters of su�cient size are then analyzed
recursively in the remainder of the pose space [20]. The poses for all sets of points
sharing a distinguished matching of cardinality k � 1 lie in a two-dimensional
subspace for this case. Despite this, we perform the histogramming in the full
six-dimensional space, since this requires little extra time and space with this
histogramming method. Feature error has been treated in an ad hoc manner in
this implementation through the examination of overlapping bins in the pose
space. Complex images may require a more thorough analysis of the errors.

We can also apply these techniques to images in which imperfect grouping
techniques have determined sets of points that are likely to derive from the same
object [21]. This allows a reduction in both the computational complexity and
the rate of false positives. Figure 3 shows an example where this approach has
been applied to the recognition of a three-dimensional object.

7.4 Motion Segmentation

RUDR can be used to perform motion segmentation with any technique for
determining structure and motion from corresponding data features in multiple
images. In this problem, we are given sets of data features in multiple images. We
assume that we know the feature correspondences between images (e.g. from a
tracking mechanism), but not which sets of features belong to coherent objects.

Say that we have an algorithm to determine structure and motion using
k feature correspondences in i images and that there are d features for which
we know the correspondences between the images (see [9] for a review of such
techniques). We examine distinguished matchings of k � 1 sets of feature corre-
spondences between the images. Each subproblem is solved by determining the
hypothetical structure and motion of each minimal matching (k sets of feature
correspondences) containing the distinguished matching and then determining
how many of the minimal matchings yield consistent structures for the distin-
guished matching and motions that are consistent with them belonging to a



single object. This is repeated for enough distinguished matchings to �nd all
of the rigidly moving objects consisting of some minimum fraction of all image
features.

Our analysis for implicit matchings implies that we must examine approxi-
mately �1�k ln 1



trials to �nd objects whose fraction of the total number of data

features is at least � with a probability of failure for a particular object no larger
than 
.

8 Summary

This paper has described a technique that we have named RUDR for solving
model extraction and �tting problems such as recognition and regression. This
approach is very general and can be applied to a wide variety problems where
a model is �t to a set of data features and it is tolerant to noisy data features,
occlusion, and outliers.

The RUDR method draws advantages from both the generate-and-test para-
digm and from parameter space methods based on the Hough transform. The
key ideas are: (1) Break down the problem into many small subproblems in
which only the model positions consistent with some distinguished matching of
features are examined. (2) Use randomization techniques to limit the number
of subproblems that need to be examined to guarantee a low probability of
failure. (3) Use clustering or parameter space analysis techniques to determine
the matchings that satisfy the criteria.

The use of this technique yields two primary advantages over previous meth-
ods. First, RUDR is computationally e�cient and has a low memory require-
ment. Second, we can use methods by which the localization error in the data
features is propagated precisely, so that false positives and false negatives do not
occur.
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