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Probabilistic Self-Localization for Mobile Robots
Clark F. Olson, Member, IEEE

Abstract—Localization is a critical issue in mobile robotics. If
a robot does not know where it is, it cannot effectively plan move-
ments, locate objects, or reach goals. In this paper, we describe
probabilistic self-localization techniques for mobile robots that
are based on the principle of maximum-likelihood estimation. The
basic method is to compare a map generated at the current robot
position with a previously generated map of the environment in
order to probabilistically maximize the agreement between the
maps. This method is able to operate in both indoor and outdoor
environments using either discrete features or an occupancy grid
to represent the world map. The map may be generated using any
method to detect features in the robot’s surroundings, including
vision, sonar, and laser range-finder. We perform an efficient
global search of the pose space that guarantees that the best
position is found according to the probabilistic map agreement
measure in a discretized pose space. In addition, subpixel local-
ization and uncertainty estimation are performed by fitting the
likelihood function with a parameterized surface. We describe the
application of these techniques in several experiments, including
experimental localization results for the Sojourner Mars rover.

Index Terms—Maximum-likelihood estimation, mobile robotics,
self-localization, uncertainty estimation.

I. INTRODUCTION

Mobile robots must have some method by which to deter-
mine their position with respect to known locations in the en-
vironment in order to navigate effectively and achieve goals.
This is called thelocalization problem. The most common and
basic method for performing localization is through dead-reck-
oning. This technique integrates the velocity history of the robot
over time to determine the change in position from the starting
location (see, for example, [1] and [2]). Unfortunately, pure
dead-reckoning methods are prone to errors that grow without
bound over time, so some additional method is necessary to pe-
riodically correct the robot position. It is common to combine
the additional localization technique, such as triangulation from
landmarks or map matching, with dead-reckoning using an ex-
tended Kalman filter to probabilistically update the robot posi-
tion.

In this paper, we describe a technique that performs lo-
calization infrequently to update the position of the robot. In
order to perform localization, we compare a map generated
using the robot’s sensors at the current position (thelocal
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map) to a previously generated map of the environment (the
global map), which may be constructed as the robot explores.
The maps are compared according to a maximum-likelihood
similarity measure. The best relative position between the maps
according to the similarity measure (although not always the
correct position) is found using a branch-and-bound search of
the robot pose space. This method does not require an initial
estimate of the robot position to yield good results, only bounds
on the search space, which may be of any size. In addition,
this technique is general; it can be used with either a discrete
landmark-based map representation or an occupancy grid model
of the environment. We have primarily explored the application
of these techniques to three-dimensional occupancy grids in
order to model unstructured outdoor terrain.

The measure that we use to compare the maps is derived
from previous work on image matching using the Hausdorff dis-
tance [3]. We have reformulated this measure in terms of max-
imum-likelihood estimation. In this measure, the likelihood of
each position is computed as the product of the likelihoods of
the distances from the features in the local map to the closest
features in the global map, with an additional term representing
the prior probability of the position. This probabilistic mea-
sure avoids the drawbacks of the original matching measure,
which include a sharp boundary between good and poor feature
matches and the inability to incorporate probabilistic informa-
tion, while retaining the advantages, which include robustness
to outliers and a global search technique [4]. Our approach al-
lows subpixel localization in discretized pose spaces and accu-
rate estimation of the uncertainty in the localization by fitting
the likelihood function with a parameterized surface. This com-
bination of techniques yields a localization method that achieves
accurate and robust global localization in unstructured terrain
through the use of dense three-dimensional data (although we
are not restricted to this data), since the map matching measure
is very robust to outliers and distracting data.

These techniques can be viewed as a variant of the Markov
localization method [5]–[10], since we formulate the problem
with a likelihood function over the space of possible robot posi-
tions. A key contribution of our approach is the development of a
probabilistic map matching measure that is robust to map errors,
sufficiently general to apply to virtually any metric map repre-
sentation and powerful enough to yield accurate localization in
complex and unstructured environments. Additional contribu-
tions include a method to search the space of robot positions
efficiently to locate the most likely position(s) and techniques
to accurately estimate the error in the localization.

The strategy that we use to locate the best position is a hierar-
chical divide-and-conquer algorithm over the space of possible
robot positions (thepose space) that has been recently used for
matching image edge maps [11]–[13]. We first test the position
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Fig. 1. Rocky 7 Mars rover prototype in the JPL Mars Yard with mast
deployed.

given by dead-reckoning so that we have an initial position to
compare against. The pose space is then divided into rectilinear
cells. For each cell in the space, we attempt to prove that the
cell cannot contain a position that is superior to the best one
that has been found so far using an efficient bounding mech-
anism. For any cell that cannot be pruned, the cell is divided
into smaller cells and the process is repeated recursively. The
process stops dividing the cells when they have become small
enough to represent valid hypotheses or by some other robust
stopping criterion.

Our motivation for this research is the long-range science
rover project at JPL, which has developed the Rocky 7 Mars
rover prototype [14]. Mars rovers require increased self-local-
ization ability in order to perform with greater autonomy from
both operators on Earth and from the lander bringing the rover
to Mars. For example, the Sojourner Mars rover was limited to
moving short distances during each downlink cycle due to po-
sitional uncertainty and it could not venture far from the lander.
The method by which dead-reckoning errors were corrected for
Sojourner was through a human operator overlaying a model of
the rover on stereo range data that was computed from down-
linked imagery of the rover taken by the lander [15].

The techniques described here are effective whenever a map
can be generated in the robot’s local coordinate frame and we
have a map of the same terrain in the frame of reference in which
we wish to localize the robot. We can thus use rover imagery,
either from the close-to-the-ground body-mounted cameras or
from a rover mast such as the one on Rocky 7 (see Fig. 1) to gen-
erate the local map. The global map might also be created from
the rover imagery, but it could also be generated using imagery
from the lander (including imagery taken during the lander’s de-
scent to the surface), and it is possible that orbital imagery could
be used, although we will not have orbital imagery of Mars with
sufficient resolution to use for rover localization with submeter
precision in the near future [16].

The localization techniques described here are very useful in
the context of a Mars mission. While operating in a small area
containing several science targets (such as the area around the
lander that Sojourner operated in), we may perform localization
using the panoramic imagery generated at the center of the area
as our global map. While this is not crucial when the lander can
see the rover, the next-generation Mars rover will venture away
from the lander and it will be equipped with a mast with stereo
cameras that will allow it to generate panoramic imagery of the
terrain. This allows localization to be performed by matching
the panoramic terrain maps generated using the mast imagery to
maps generated from either the body-mounted cameras, if pos-
sible, or by using the mast to image interesting terrain, if neces-
sary. Our approach can also be used on traverses between sites
by performing localization at some interval in order to update
the position of the rover [17].

We have tested our method using real and synthetic data. The
synthetic experiments model a case where the robot performs
localization using a discrete set of known landmarks in the envi-
ronment. These experiments indicate that accurate localization
can be achieved by searching a discretized pose space through
the use of subpixel estimation, and that the uncertainty in the
localization can be accurately estimated by fitting the surface
of the likelihood function. Our application of this method to
real data creates an occupancy grid representation of the terrain
using stereo vision [18], since we are concerned primarily with
performing localization in natural terrain. Experiments using
the terrain maps generated from stereo vision have been per-
formed with both terrestrial data, acquired in the JPL Mars Yard
using the Rocky 7 research rover [14], and imagery of Mars ac-
quired by the Mars Pathfinder lander and Sojourner rover [15].
The experiments using Mars imagery validate the use of these
techniques to perform autonomous localization for Mars rovers
without the need to downlink information to Earth.

In Section II, we review previous work on robot localization,
focusing on techniques that perform map matching in order to lo-
calize the robot. Section III describes the probabilistic map sim-
ilarity measure that we use to determine which positions of the
robot are the most likely to be correct. Section IV gives an al-
gorithm for searching the space of possible robot positions to lo-
catethepositionthatmaximizesthismapsimilaritymeasure.Sec-
tion IV also discusses the application of this method to robot lo-
calization fromdiscrete landmarksandbycomparingoccupancy.
The techniques by which we perform subpixel estimation in dis-
cretized pose spaces and estimate the uncertainty in the localiza-
tion process are given in Section V. The experimental results that
we have achieved with real and synthetic data are described in
Section VI. Section VII discusses the strengths and weaknesses
of the algorithm and compares the method to other localization
methods. Finally, Section VIII summarizes the paper and gives
some concluding remarks. We note that portions of this research
have been presented at recent conferences [19]–[21].

II. PREVIOUS WORK

Mobile robot localization is typically performed by com-
bining the results of dead-reckoning with some periodic
sensor-based localization technique using, for example, an
extended Kalman filter. Many techniques have been used to
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provide the periodic sensor-based localization. Often these
techniques operate by determining correspondences between
a set of sensed features (such as landmarks) and a known map
of the environment. The known positions of the features in the
map, together with the sensed positions relative to the robot,
allow the robot’s current position to be determined. We give a
brief review of several such techniques here.

Some sensor-based techniques operate frequently, so that
the robot moves a small amount between localization steps.
This simplifies the problem, since the determination of the
feature correspondences can be treated as a tracking problem,
rather than searching the map for the features. The drawback to
this formulation is that the techniques must operate frequently
enough to prevent the tracker from losing track of the features.
If the tracker makes a mistake by specifying an incorrect
correspondence, it may have a drastic effect on the localization
result. Examples of sensor-based techniques that operate
frequently and combine results using the Kalman filter include
[22]–[26].

Many other methods have been proposed that do not require
frequent sensor measurements. One such method is to locate
nearby landmarks and to perform a triangulation procedure to
determine the position of the robot. Sugihara [27] addressed the
problem where the relative directions of the landmarks can be
sensed, but not the distance to the landmarks. He developed an
algorithm for performing localization from this data in
time, where is the number of landmarks. Sugihara’s exten-
sions of this method yielded an algorithm for a
robot with a compass and an algorithm for the case where
the landmarks are distinguishable. Betke and Gurvits [28] fur-
ther consider the case where the landmarks are distinguishable.
By representing the landmark positions as complex numbers,
they obtained a linear time algorithm with a least-squares error
criterion.

Another localization technique uses a search tree [29], [30] to
perform matching between the features or landmarks detected
by a sensor and the known map. Drumheller [31] used this tech-
nique to perform localization using walls detected by sonar. He
incorporated asonar barrier testto check for inconsistencies
based on the constraints of sonar data. Simsarianet al. [32] de-
scribed a variation of this technique where the map is decom-
posed intoview-invariant regions, which are used to guide the
tree search and reduce the cost of feature matching. Talluri and
Aggarwal [33] similarly match line segments in the plane. They
have used a world model in which the regions of the pose space
from which the same set of obstacle boundaries are visible are
computed. To compute the robot pose, they used a Hough trans-
form variation to limit the number of regions that must be ex-
amined. A feature correspondence search was then performed
for each of the possible regions to determine the best match.

Cox [34] also performed matching between line segments in
the plane using a laser range-finder to detect the line segments
corresponding to building walls. However, Cox assumed that the
robot would have rough knowledge of its location and thus used
an iterative least-squares fitting procedure to improve the posi-
tion estimation. Lu and Milios [35] apply a similar technique for
map matching to the case where the local and global maps are
represented by the set of sensed points, rather than extracted line

segments. An alternative method for localization with such data
was explored by Crowleyet al.[36]. They extract an eigenspace
from a large set of range scans of the environment from various
robot positions. Localization is performed by matching the maps
in the extracted subspace.

Elfes [37] used an occupancy grid representation of the envi-
ronment. Each cell in the grid was given a score betweenand
1, where represents unoccupied, 1 represents occupied, and
values in between represent varying levels of certainty. Local-
ization was performed by locating the position between a local
and a global occupancy grid that maximized the product of the
values at the corresponding cells in the grids.

Atiya and Hager [38] addressed the problem where the land-
marks are two-dimensional points in a plane. Correspondences
were determined by matching triples of sensed landmarks to
triples of map landmarks, since such triples yield lengths and
angles that are invariant to the robot position. Uncertainties in
the localization estimate were computed by intersecting the un-
certainty regions of the landmarks, which were approximated
by rectilinear cells.

A technique that has been used for coarse localization in
a large environment is to examine the features present on the
horizon and to use some strategy to match them to a known
elevation map of the terrain. Talluri and Aggarwal [39] use
the shape of the horizon line to search for the position of a
robot in a digital elevation map. They first perform pruning
using geometrical constraints to eliminate many positions in
a discretized space of possible robot positions. For positions
that pass the first stage, a refinement step is used that performs
curve matching between the visible horizon and the estimated
horizon line computed from the elevation map. The best match
is taken to be the most likely robot position. Stein and Medioni
[40] approximate the horizon line by a polygonal chain and
index a table storing subsections of the horizon as it would be
seen from each position in a discretized pose space on the map.
A verification step for the indexed matches uses geometric
constraints to select the best match. Thompsonet al. [41]
extract and match features on the horizon and other visible
hills and ridges. Matches between configurations of features
are then searched for in a map that has been preprocessed.
The hypothesized locations are then refined and evaluated.
Cozman and Krotkov [42] also detect mountain peaks on the
horizon. They perform the search in a discretized space of
positions using table look-up in order to maximize the posterior
probability of finding the correct position.

Several probabilistic localization methods have recently been
explored that maintain a probability distribution over the pos-
sible robot positions. The Markov localization paradigm, which
is used by several researchers [5]–[10], computes a probability
distribution over the space of possible robot positions. When the
robot moves, the probability distribution is updated to take into
account the additional uncertainty in the robot position that is
induced by dead-reckoning errors. When the robot senses the
environment, the distribution to updated to take into account
the new data, thus reducing the uncertainty in the robot posi-
tion. Methods based on the extended Kalman filter [22]–[26]
can be considered a special case of this method, where the prob-
ability distribution is constrained to be a normal distribution.



58 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 1, FEBRUARY 2000

Nourbakhshet al. [5] use a partially observable Markov model
to perform localization without metric information. Simmons
and Koenig [6] combine a partially observable Markov model
with an evidence grid in order to perform localization with both
topological and metric information. Thrunet al. [10] use an ex-
pectation-maximization algorithm to perform simultaneous lo-
calization and map building according to a maximum-likelihood
measure. Foxet al. [9] give an active localization method using
the Markov localization technique.

The final technique that we mention is to perform localiza-
tion by matching a three-dimensional map of the terrain near the
robot to a previously generated map. This is the approach that
Kweon and Kanade [43] take in order to generate a terrain map
by fusing multiple local maps. They first generate a terrain map
from stereo vision using thelocus method. They then perform
matching between the maps in a two-stage procedure. First, an
estimate for the relative position is generated by extracting and
matching map features (high curvature points). The estimate is
then refined using a iterative optimization procedure. Szeliski
[44] and Zhang [45] also describe techniques that can be used
for matching 3-D terrain maps. Szeliski interpolates a surface
from sparse range data and determines the transformation that
makes it the most likely that a new set of points arise from the
same surface. The optimal transformation is determined using
gradient descent search. Zhang’s technique uses an initial esti-
mate of the relative position between two sets of points to it-
eratively improve the estimated position. At each iteration, the
technique determines the closest match for each point and up-
dates the estimated position based on a least-squares metric,
with some modifications to increase robustness.

III. M AP SIMILARITY MEASURE

We perform localization by matching a map generated at the
current robot position (thelocal map) to a previously generated
map of the environment (theglobal map), which may be gen-
erated by combining previous local maps. The optimal position
of the robot with respect to the global map is located using a
maximum-likelihood similarity measure for comparing images
and maps [4]. This similarity measure (which is described below
in more detail) yields a score for each possible position of the
local map with respect to the global map by computing a func-
tion of the distance from each of the features in the local map to
the closest feature in the global map. When an appropriate func-
tion is used, such that sensor uncertainty and the possibility of
missing a feature is modeled, the measure is robust to outliers,
noise, and occluded locations. In addition, it can be applied to
either maps consisting of sparse landmarks or to a dense occu-
pancy map representation.

In order to formulate the map matching problem in terms of
maximum likelihood estimation, we must have some set of mea-
surements that are a function of the robot position. We use the
distances from the visible features at the current robot location
to the closest features in the global representation of the envi-
ronment. The method by which these distances are computed
is problem dependent. We have used the Euclidean distance for
both landmarks and occupancy maps, but more complex dis-
tance functions, such as the Mahalanobis distance can be used

given the requisite covariance information. Since we search for
the best relative position between these maps, these distances
are variables.

Let us say that our local map consists of features
and that our global map consists of features
. These features may represent discrete land-

marks or they may represent cells in an occupancy grid. The
distance between a featurein the local map and a feature
in the global map, when the local map is at positionwith
respect to the global map, is denoted dist ,
where the position, , can be thought of as a function that
transforms features in the local map into their corresponding
position in the global map. The distance from a feature in the
local map to the closest feature in the global map (at some
relative position between the maps) is called

(1)

While these distances are not pairwise independent, we have
found that modeling them as such yields good results. Recent
work on determining the probability of a false positive for
matching sparse features (such as landmarks) [46], [47] and for
matching dense features (such as edge maps and occupancy
grids) [12], [48] has also achieved accurate results when
treating the features independently. We thus formulate the like-
lihood function for the robot position as the product of prior
probability of the position with the probability distributions of
these distances

(2)

Note that normalizing the likelihood function such that it in-
tegrates to unity over the space of possible positions is not nec-
essary for maximum-likelihood estimation, but a scale factor is
necessary if we wish for to be a probability distribution.
For convenience, we work in the domain, since this
does not change the relative ordering of the positions

(3)

In our implementation, we take the position yielding the max-
imum likelihood to be the position of the robot. However, in en-
vironments where multiple positions appear to be similar, it is
advisable to retain more than one position or even some repre-
sentation of the entire likelihood surface. The prior probability
distribution of robot positions and the probability density func-
tion (PDF) that is used for each feature together deter-
mine the matching measure that is used between the maps. If
nothing is known about the prior distribution of model positions,
then it can be modeled by a constant and removed from the mea-
sure. On the other hand, if we are tracking the robot position over
time (e.g., with an extended Kalman filter), we will have some
known prior (a normal distribution in the case of the extended
Kalman filter) and this will affect the computed position of the
robot.
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We must also estimate the PDF of the feature distances. Ac-
curate localization results can be achieved through the use of a
PDF that models the sensor uncertainty [4]. The feature local-
ization errors can often be accurately modeled by a normal dis-
tribution. However, this does not allow for outliers in the local
feature map, which have no corresponding features in the global
map. The use of a normal distribution with a constant additive
term yields an accurate model for cases with outliers [21]

(4)

In this PDF, is the standard deviation of the feature uncer-
tainty and and are constants that vary with the frequency of
outliers, the density of the maps, and the probability of missing
a feature. The robot localization is insensitive to the settings of
these constants, but a discussion of the values these constants
should take can be found in [21]. It should be noted that (4) is
not a probability distribution, since it does not integrate to unity.
This is unavoidable if we wish to use a robust measure that does
not become arbitrarily close to zero for large values of. The
use of a function that does not integrate to unity does not affect
the accuracy of our results in any significant way.

IV. FINDING THE MOST LIKELY POSITION

Now that a similarity measure between the maps has been
defined, we must discuss how the position that optimizes the
similarity measure is determined. A simple hill-climbing tech-
nique could be used, but such a method would require a good
initial estimate of the position of the robot, which is not always
available, particularly if we exercise the localization techniques
infrequently. We describe a method to search a bounded pose
space using a variation of branch-and-bound search that guar-
antees that we locate the optimal position (according to the sim-
ilarity measure) in a discretized version of the search space. A
subsequent subpixel localization step is performed to gain pre-
cision. Following the general discussion of the search strategy,
we discuss the application of this search strategy to maps con-
sisting of landmarks and occupancy grids in more detail.

A. Search Strategy

We locate the most likely robot position by adapting a
multiresolution search strategy that has been applied to image
matching using the Hausdorff distance [11]–[13]. We first test
the nominal position of the robot given by dead-reckoning (or
any other position, if no initial estimate is available) so that
we have an initial position and likelihood to compare against.
Next, the pose space is divided into rectilinear cells. Each
cell is tested using a conservative test to determine whether
it could contain a position that is better than the best position
found so far (or any threshold, in general). Cells that cannot
be pruned are divided into smaller cells, which are examined
recursively (see Fig. 2). When cells of a certain (small) size are
reached, the cells are tested explicitly. For example, when we
compare occupancy grids under translation, there is a natural
discretization of the pose space such that neighboring positions
move the maps by one grid cell with respect to each other.

Fig. 2. A search strategy is used that recursively divides and prunes cells of
the search space.

For this case, we stop dividing the cells when they contain
a single position in the discretization and we then test this
position explicitly. For more complex examples, we may set
some threshold on the minimum cell size and test the center
of the cell when the cell size is below the threshold. Subpixel
localization estimates are useful in increasing the precision of
the localization in both cases (see Section V).

The key to this strategy is a quick method to test the cells.
A cell is allowed to pass the test if it does not contain a good
pose, but it should never prune a cell that could contain a good
pose, since this could result in the best position being missed. To
determine whether a particular cellcould contain a pose that is
superior to the best one found so far, we examine the poseat the
center of the cell. In order to place a bound on the best position
within the cell, we compute the maximum distance between the
locations to which a feature in the local map is transformed into
the global map by and by any other pose in the cell. Denote this
distance . This allows us to determine the quality of the robot
position represented by the center of the cell and then compute
a larger value using to place an upper bound on the quality
of any position in the entire cell.

If we treat robot poses as functions that transform positions
in the local map into positions in the global map, then can
be written

(5)

For the space of translations, is simply the distance from
the center of the cell to any corner of the cell, since the differ-
ence in the translated location of any feature in the local map for
any two translations is simply the difference between the trans-
lations. When rotations are considered, is also a function of
the local map. In this case, can be computed as a function of
maximum orientation change between the center of the cell and
the corners of the cell. While we concentrate on translations of
the robot, since the robot orientation can be determined through
other sensors, further discussion of techniques to handle rota-
tions in such a branch-and-bound search strategy can be found
elsewhere [12], [13].

To place a bound on the quality of any position within the cell,
we bound each of the distances that can be achieved by features
in the local map over the cell. This is done by subtracting the
maximum change in distance over the cell () from the dis-
tance achieved at the center of the cell

(6)
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The values obtained are then propagated through the likeli-
hood function to bound the score that can be achieved by any
position in the cell

(7)

is the now maximum score that theth feature of the local
map can contribute to the likelihood for any position in the cell.1

A bound on the best overall likelihood that can be found at a
position in the cell is given by

(8)

If this likelihood does not surpass the best that we have found
so far, then we can prune the entire cell from the search. Other-
wise, the cell is divided into two cells of the same size by slicing
it along the longest axis and the process is repeated recursively
until all of the cells have been exhausted. Since we place conser-
vative bounds on the maximum likelihood that can be achieved
by any cell that is pruned, this method is guaranteed to locate the
position with the largest likelihood in a discretized pose space.
It is likely that the discretization of the pose space will cause
the computed robot position to be slightly suboptimal with re-
spect to the full continuous space. However, we can examine a
fine discretization without adding much computation due to the
pruning techniques, and we use subpixel localization methods
to further improve the localization estimate.

Our method for pruning cells does not provide tight bounds
on the likelihood that can be achieved by each cell and thus it is
possible that more pruning could be performed with additional
computation at each cell. Our strategy has been to make the
processing of each cell as fast as possible, rather than to opti-
mize the number of cells that are examined. Researchers on sim-
ilar problems in computer vision have taken an approach where
tighter bounds are sought at the expense of additional overhead
[3], [13].

We note that for cases where more than one qualitative
position in the robot’s pose space has a significant likelihood,
the search strategy can easily modified to detect all positions
meeting some minimum likelihood. In environments where
many locations look similar (for example, in an office building),
we could store a representation of the entire distribution until
the position has been disambiguated. For example, a quadtree
(or higher dimensional extension) could be used such that the
cells are represented at the resolution at which they can be
pruned by the search.

B. Occupancy Grids

The search strategy described above is well suited to
matching maps that are represented by occupancy grids, since
these are inherently discretized. The space of translations of the
robot can be discretized at the same resolution as the maps and
this yields a natural resolution of the search space at which to
end the recursive division of the cells. We consider the case of
binary occupancy grids. This allows for a fast implementation

1This assumes that the PDF is monotonically nonincreasing, which is true for
any reasonable PDF, since we desire closer matches to yield higher scores.

of the search, since each can be computed efficiently over
the entire global map by computing the distance transform of
the map. Extensions of our method can be applied to nonbinary
occupancy grids.

In order to implement this procedure efficiently, we first com-
pute the distance transform of the global occupancy map. The
distance transform measures the distance from each cell in a dis-
cretized map to the closest occupied cell [49], and can be com-
puted efficiently using an algorithm that is linear in the size of
the map2 [51], [52]. We next compute a relative index into the
distance transform for each occupied cell in the local map. The
pose-space cell hierarchy is searched using a depth-first search
strategy. For each cell that is examined, we loop through the pre-
computed indexes into the distance transform (which must be
offset by the position of the center of the cell). For each index,
we get a distance in the global map. We then use (6)–(8) to de-
termine whether the cell can be pruned.

C. Landmarks

This approach can also be applied to matching maps con-
sisting of geometric landmarks. For example, in indoor envi-
ronments, we may be able to detect and locate vertical edges,
or we may use the peaks of rocks or other landmarks in out-
door terrain. In this case, we can use efficient nearest-neighbor
searching techniques to compute eachexactly. For example,
we may use the method of Lipton and Tarjan [53] or Bentley [54]
to locate the nearest landmark, if the landmarks are represented
by points, and the distances can then be computed directly.

These techniques can be made even more efficient, at the cost
of a small amount of precision, by discretizing the landmark po-
sitions. In this case, the distances can be computed using the
distance transform of the map, as described above. We can then
use subpixel localization techniques to improve the precision
over the position yielded by the discretized search space (see
Section V). Our experiments have indicated that the loss of pre-
cision is quite small when using this technique.

Once the method of computing each is determined, the
remainder of the search strategy is the same as described above.

V. SUBPIXEL LOCALIZATION AND UNCERTAINTY ESTIMATION

Using this probabilistic formulation of the localization
problem, we can estimate the uncertainty in the localization in
terms of both the variance of the estimated positions and the
probability that a qualitative failure occurred. In addition, we
can perform subpixel localization in the discretized pose space
by fitting a surface to the peak that occurs at the most likely
robot position. This need not be limited to the single highest
peak found in the pose space. Multiple possible robot positions
can be considered if their likelihood is sufficiently large.

A. Subpixel Localization

Let us take as an assumption that the likelihood function ap-
proximates a normal distribution in the neighborhood around a

2This assumes that the map is defined on a convex domain [50]. Since we
must deal with map errors (and search over the pose space), we always consider
a convex map. This ensures that a distance value is obtained for any feature at
any map position in the pose space.
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peak. Fitting such a normal distribution to the computed likeli-
hoods yields both an estimated variance in the localization es-
timate and a subpixel estimate of the peak location. Since the
likelihood function measures the probability that each position
is the actual robot position, the uncertainty in the localization is
measured by the rate at which the likelihood function falls off
from the peak. Our experimental results confirm that very accu-
rate results can be achieved with this normal approximation.

Now, since we actually perform our computations in the do-
main of the natural logarithm of the likelihood function, we must
fit these values with a polynomial of order 2. We compute the
uncertainties in and independently. While this is not neces-
sary, it simplifies the presentation

(9)

In order to estimate the parameters that we are interested in
( , , , and ), we project this polynomial onto the lines

and yielding

(10)

and

(11)

We now fit these equations to theand cross sections of
the likelihood function at the location of the peak. If the peak
in the discretized search space occurs at position , we
fit to the values at the surrounding five positions along

(12)

(13)

(14)

(15)

(16)

While three is the minimum number of points necessary to
fit the parabola given by (10), we use five points in order to
achieve a better fit. We do not use more than five points, since
more distant points may be influenced by other peaks or they
may fail to model the correct peak due to random noise.

The least-squares fit to a parabola ( ) with
yields

(17)

We can now solve for and using

(18)

and

(19)

The derivation for and is the same, except that we
project onto the line . The values of and yield
a subpixel localization result, since this is the estimated loca-
tion of the peak in the likelihood function, and and yield
direct estimates for the uncertainty in the localization result.

B. Probability of Failure

In addition to estimating the uncertainty in the localization
estimate, we can use the likelihood scores to estimate the prob-
ability of a failure to detect the correct position of the robot. This
is particularly useful when the environment yields few land-
marks or other references for localization and thus many po-
sitions appear similar to the robot. We estimate this probability
of failure by comparing the likelihood scores for the peak se-
lected as the most likely robot position to the scores in the rest
of the space. Alternatively, when there are multiple peaks, we
can select enough peaks to ensure that one of them is the robot
position with some desired probability using this approach.

We estimate the total likelihood of a peak by summing a small
number of values around the peak, since they generally become
small very quickly. The remainder of the values are also esti-
mated efficiently. Whenever a cell in the search space is con-
sidered, we compute not only a bound on the maximum score
that can be achieved, but also an estimate on the average score
that is achieved by determining the score for the center of the
cell. If the cell is pruned, we estimate the score for the entire
cell by multiplying the score for the center by the size of the
cell. The estimated score for the entire cell is then added to a
running total. This yields a very good estimate, since cells with
large scores cannot be pruned until they become small. We thus
get good estimates when the score is large. Lower quality es-
timates are obtained when the score is small, but this does not
significantly affect the overall sum.

Let be the sum obtained for the largest peak in the pose
space and be the overall sum for the pose space (including the
largest peak) as described above. We estimate the probability of
correctness for the largest peak as

(20)

VI. EXPERIMENTS

We have tested our approach in a number of experiments
using both synthetic data, where precise ground-truth was avail-
able for comparison, and real range data from stereo vision, in-
cluding experimental localization results for the Sojourner rover
on Mars.
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(a) (b)

Fig. 3. Distribution of errors and estimated standard deviations in synthetic
landmark localization experiment. (a) Comparison of estimated distribution of
localization errors (solid line) to observed distribution of localization errors
(bar graph). (b) Distribution of estimated standard deviations in the localization
estimate.

A. Synthetic Data

We first applied these techniques to localization using
landmarks in randomized experiments. In these experiments,
we randomly generated a synthetic environment containing 160
landmarks in a square. Let us say that each unit is
10 cm (though the entire problem scales to an arbitrary size). In
each trial, seven of the ten landmarks closest to some random
robot location were considered to be observed by the robot
(with Gaussian error in both and with standard deviation

unit) along with three spurious landmarks not included
in the map. Localization was then performed using these ten
observed landmarks with no knowledge of the position of the
robot in this environment. Over 100 000 trials, the robot was
correctly localized in 99.8% of the cases, with an average
error in the correct trials of 0.356 units in each dimension. The
average estimated standard deviation in the localization using
the techniques from Section V was 0.427 units.

Fig. 3(a) shows the distribution of actual errors observed
versus the distribution that we expect from the average standard
deviation estimated in the trials. The close similarity of the
plots indicates that the estimated standard deviation is a very
good estimate of the actual value. It appears that this estimate
is slightly smaller than the true value, since the frequency of
the observed errors is slightly above the curve at the tails and
lower at the peak. However, the overall similarity is very high.
The similarity between these plots validates the approximation
of the likelihood function as a normal distribution in the
neighborhood of the peak. Fig. 3(b) shows the distribution of
the estimated standard deviations in this experiment. It can be
observed that the estimate is very consistent between trials,
since the plot is very strongly peaked near the location of the
average estimate. Taken together, these plots indicate that the
standard deviation estimates are very likely to be accurate for
each individual trial.

We also tested the probability of correctness measure in these
trials. The average probability of correctness computed for the
trials that resulted in the correct localization was 0.993, while
the average probability of correctness for the failures was 0.643.
The probability of correctness measure thus yields information
that can be used to evaluate whether the localization result is

Fig. 4. Fraction of trials in which the correct qualitative robot position was
found in experiments using synthetic data with varying amounts of error in robot
orientation.

reliable and whether additional sensing is necessary to disam-
biguate between multiple positions.

In order to study the sensitivity of our approach to rotation
errors, we tested a problem where 90% of the data were in-
liers. In these experiments, a random error bounded by some
maximum value was added to the robot orientation in each trial.
The search still examined only the space of translations of the
robot. Fig. 4 shows the fraction of trials in which the correct
position was found as a function of the allowable error. The
fraction of successful trials started dropping noticeably when
angle errors above 5were allowed, but the performance was
very good when lower levels of error were allowed. This indi-
cates that search over the space of robot orientations is necessary
when the orientation is not known to better than 5.

B. Localization Using Stereo Range Data

In practice, we perform matching between three-dimensional
occupancy maps in order to achieve localization for planetary
rovers. For these occupancy maps, we consider each cell to
be either occupied or unoccupied (with no in-between states).
While several methods can be used for generating such a rep-
resentation, we use stereo vision on the Rocky 7 rover [14] to
compute range images using the techniques that have been pre-
viously described by Matthies [18], [55].

Once a range image has been computed from the stereo im-
agery, we convert it into a voxel-based map representation. We
first rotate the data such that it has the same relative orientation
as the map we are comparing it to. Here we operate under the as-
sumption that the orientation of the robot is known through sen-
sors other than vision (for example, both Sojourner and Rocky 7
have rate gyros and accelerometers and Rocky 7 also uses a
sun sensor for orientation determination [56]). The localization
techniques can also be generalized to determine the robot’s ori-
entation.

The next step is to bin the range points in a three-dimensional
occupancy map of the surroundings at some specified scale. We
eliminate the need to search over the possible translations of
the robot in the -direction by subtracting a local average of the
terrain height from each cell (i.e., a high-pass filter). This step
is not strictly necessary, and it reduces our ability to determine
height changes in the position of the robot, but it also reduces
the computation time that is required to perform localization. A
subsequent step can be performed to determine the robot eleva-
tion, if desired. Each cell in the occupancy map that contains a
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(a)

(b)

Fig. 5. Terrain map generated from Pathfinder imagery: (a) annotated image
mosaic of Sojourner and rocks on Mars and (b) terrain map generated from
stereo imagery.

range pixel is said to beoccupied, and the others are said to be
unoccupied. Fig. 5 gives an example of a terrain map that was
generated using imagery from the Mars Pathfinder mission.

We have tested this method using both terrestrial data and
data from the Mars Pathfinder mission. These experiments indi-
cate that self-localization can performed using our method with
approximately the same results as a human operator, without
requiring a downlink cycle. In addition, only a few seconds are
needed to perform localization. Experiments indicate that lo-
calization can be performed on a SPARCstation 20 in under 5 s
with maps discretized at 2-cm resolution. Similar experiments
performed on-board Rocky 7 (Motorola 68060 CPU) require ap-
proximately 20 s to perform localization.

C. Mars Yard

We initially tested our method with images taken in the JPL
Mars Yard3 using cameras mounted on a tripod at approximately
the Rocky 7 mast height. Fig. 6 shows a set of images that was
used in testing the localization techniques. The set consists of
12 stereo pairs acquired at one meter intervals along a straight
line with approximately the same heading.

In these tests, we determined the estimated position changes
by finding the relative position between each pair of consecu-
tive images. The localization techniques yielded a qualitatively
correct position between each pair of consecutive images. The

3See http://robotics.jpl.nasa.gov/tasks/scirover/marsyard

average absolute error in the position estimates was 0.0342 m in
the downrange direction and 0.0367 m in the sideways direction
from the position measured by hand. Much of this error can be
attributed to human error in determining the ground truth for the
data.

Additional tests were performed on imagery where the
camera system was panned 25left and right. In these tests,
occupancy maps from the panned images were matched to
occupancy maps for the unpanned images. All 24 trials yielded
the correct qualitative result. The average absolute error was
0.0138 m in the downrange direction and 0.0225 m in the
sideways direction.

In these tests, the average number of positions examined was
18.45% of the total number of positions in the discretized search
space. A speedup of greater than 5 was thus achieved through
the use of the efficient search techniques.

D. Mars Pathfinder

To validate our approach for use on a Mars rover, we have
tested it using data from the Mars Pathfinder mission. A map
of the terrain surrounding the Pathfinder lander was first gen-
erated using stereo imagery. For each position of Sojourner at
which we tested the localization techniques, we generated an
occupancy map of the terrain using range data from Sojourner’s
stereo cameras. This local map was then compared to the global
map from the lander.

Unfortunately, this test has only been possible at a few loca-
tions due to the limited amount of data returned to Earth, the lack
of interesting terrain in some of the imagery we do have, and
the lack of a comparison value for most positions (except those
where Sojourner was imaged by the lander cameras). In prac-
tice, these techniques could be exercised much more frequently
since they would not require downlinking image data to Earth
and the comparison value is only necessary for testing. We en-
vision a scenario where the data from the rover’s body-mounted
cameras, which would be operating frequently in order to per-
form obstacle detection, would be used to perform localization
whenever sufficient terrain was evident in the imagery. In addi-
tion, the imagery from mast cameras could be used for localiza-
tion when the positional uncertainty grows beyond the desired
level and the imagery from the body-mounted cameras is un-
suitable.

As an example of the data, Fig. 7 shows the position of So-
journer as seen from the lander and the view from Sojourner at
the end of sol 214 of the Mars Pathfinder mission. Note that the
stereo data obtained from Sojourner is not as good as we hope
to achieve in future missions. Accurate stereo data is achieved
only for the central portion of the Sojourner imagery due to inac-
curate calibration of the fish-eye lenses. The field-of-view that
we have to work with is thus relatively small. However, we have
achieved good localization results with this data.

Table I shows the results of localization using the techniques
described in this paper versus the localization that was obtained
by a human operator through overlaying a rover model on the
stereo data obtained from imaging the rover from the lander.

4A sol is a Martian day.
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Fig. 6. A sequence of images used for testing the localization techniques.

(a)

(b)

Fig. 7. Sojourner on sol 21 (near “Souffle”): (a) image from the lander and (b)
image from Sojourner.

For sol 42, we have two localization results, one prior to and
one after a turn by the rover. The operator localization was per-
formed after the turn.

The results show very close agreement between our tech-
niques and the operator localization for four of the cases. For
sols 4, 27, and 72, there is some disagreement. Possible sources
of error include inaccurate calibration of either the rover or
lander cameras and operator error in performing localization.
Manual examination of the maps has shown that the localization
techniques determine the qualitatively correct position in these
cases. While no ground truth exists, the similarity of the posi-
tions estimated by our method and by the human operator indi-
cate that our method can perform localization approximately as
well as a human operator.

TABLE I
COMPARISON OFROVER POSITIONSDETERMINED BY A HUMAN

OPERATOR OVERLAYING A ROVER MODEL ON STEREO

DATA OF THE ROVER AND BY OUR

LOCALIZATION TECHNIQUES

VII. D ISCUSSION

The primary contribution of our approach is the devel-
opment of a robust, global localization method that uses all
available three-dimensional information. Accurate localization
is performed in the presence of outliers and significant noise
in the map data through the use of the maximum-likelihood
map matching measure. An efficient search of the global pose
space is performed through the use of the branch-and-bound
pruning techniques. The maximum-likelihood measure yields
a likelihood surface over the possible positions of the robot
and thus our method can be used to generate probability
distributions for use in the Markov localization method (see,
for example, [5]–[10]). This method provides a means for
combining probability distributions generated at multiple robot
positions and incorporating uncertainties from dead-reckoning
errors.

Most work on mobile robot localization has dealt with indoor
environments, where the environment is usually modeled in two
dimensions. In contrast to previous research, we have concen-
trated on achieving localization in completely unstructured out-
door terrain, such as a rover might encounter on Mars. In such
terrain, a three-dimensional representation of the environment
is crucial. We note, however, that our approach is general, and
can be applied to virtually any environment that can be mapped.
The application of this approach to other environments, such as
a building interior is straightforward using either discrete fea-
tures or an occupancy grid representation. It should be noted
that in such cases, more locations in the environment will look
quite similar and thus selecting a single robot position may not
be sufficient for robust navigation. In this case, we should main-
tain a list of the robot positions that achieve a likelihood above
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some threshold. An even better strategy would be to maintain the
entire likelihood surface using a multi-resolution data structure
[57] or sampling [58]. This likelihood can then be propagated
after the robot moves in order to disambiguate the positions.

A possible drawback to this technique is the assumption that
the environment sensed by the robot contains sufficient shape
to reliably estimate the robot position. However, since our ap-
proach can be extended to allow disambiguation using multiple
robot positions, this is not a strong limitation. Any localization
method requires some distinctive feature in the environment that
allows that robot to determine its position in a map.

At present, this method has been implemented only for robot
translations. Our experiments indicate that an error in the robot
orientation of up to 5 is acceptable for an implementation that
does not search over the robot orientation. For cases where the
orientation is completely unknown, the extension of these tech-
niques to additional degrees of freedom is not complex. If we
know the orientation of the robot to some degree through other
sensors, and thus can bound the search space, the additional
search time will not grow drastically. However, a fully uncon-
strained pose space will require significant computational re-
sources using this search strategy.

Gutmannet al.[59] have compared Markov localization tech-
niques to scan matching using a Kalman filter. They find that
scan matching techniques are more efficient and accurate, but
that Markov localization techniques are more robust to noise
and sensor error. Our technique shares the robustness of Markov
localization techniques (if we do not limit our analysis to the
single highest peak in the likelihood function). In addition, since
we use all of the available metric information and detect the
robot position to subpixel accuracy in a discretized pose space,
we are able to achieve high accuracies. Furthermore, the tech-
niques that we describe can be used as part of a Kalman filter
position estimator. However, since we perform global localiza-
tion, we are not able to match the efficiency of scan matching,
where an initial estimate is refined in order to determine the po-
sition of the robot.

VIII. SUMMARY

We have described a method for performing self-localization
for mobile robots using maximum-likelihood matching of maps.
The map of visible features at the robot’s current position is com-
paredtoaglobalmapthathasbeenpreviouslygenerated(possibly
by combining the maps from the robot’s previous positions). The
best relative position between the maps is detected using a global
branch-and-bound search technique that does not require an ini-
tial estimate of the robot position. The search is performed rela-
tive to a novel maximum-likelihood map similarity measure that
selects the robot position at which the maps best agree. This map
measure is very general and robust to map errors.

This probabilistic formulation of the map matching problem
allows the uncertainty in the localization of individual map fea-
tures to be treated accurately in the matching process. In addi-
tion, performing a polynomial fit to the log-likelihood function
allows both subpixel localization to be performed and uncer-
tainty estimates to be computed, which can be propagated in a
position tracking mechanism such as the extended Kalman filter.

Our goal in the design of this approach is to provide greater
autonomy for Mars rovers. Through the use of our method,
we can perform self-localization on Mars within the confines
of a science site where panoramic stereo imagery has been
taken from the lander or from the rover mast cameras. These
techniques can also be used to improve position estimation on
long traverses by periodically stopping to perform localization
versus the previous position and to image the terrain ahead
of the rover. The application of these techniques to data from
the Mars Pathfinder mission indicates that we can perform
autonomous localization with approximately the same accuracy
as a human operator without requiring communication with
Earth.

An area that bears further study is the development of a lo-
calizability measure for terrain maps in order to plan effective
localization steps. In the future, we also plan to integrate our
approach into an integrated navigation methodology, in which
a Kalman filter is used to synthesize a robot position estimate
from a variety of sensors and the robot’s path planner interacts
with the Kalman filter and the localization techniques to plan
when and where localization should be performed.
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