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Probabilistic Self-Localization for Mobile Robots

Clark F. Olson Member, IEEE

Abstract—tocalization is a critical issue in mobile robotics. If map to a previously generated map of the environment (the
a robot does not know where it is, it cannot effectively plan move- global map, which may be constructed as the robot explores.
ments, locate objects, or reach goals. In this paper, we describe The maps are compared according to a maximum-likelihood

probabilistic self-localization techniques for mobile robots that . . . . o
are based on the principle of maximum-likelihood estimation. The similarity measure. The best relative position between the maps

basic method is to compare a map generated at the current robot according to the similarity measure (although not always the
position with a previously generated map of the environment in  correct position) is found using a branch-and-bound search of
order to probabilistically maximize the agreement between the the robot pose space. This method does not require an initial
maps. This method is able to operate in both indoor and outdoor estimate of the robot position to yield good results, only bounds

environments using either discrete features or an occupancy grid th h hich be of . In additi
to represent the world map. The map may be generated using any on the search space, which may be of any size. In aadition,

method to detect features in the robot’s surroundings, including this technique is general; it can be used with either a discrete
vision, sonar, and laser range-finder. We perform an efficient landmark-based map representation or an occupancy grid model

global search of the pose space that guarantees that the bestof the environment. We have primarily explored the application

position is found according to the probabilistic map agreement ¢ tnase techniques to three-dimensional occupancy grids in
measure in a discretized pose space. In addition, subpixel local- dert del tructured outd ¢ .
ization and uncertainty estimation are performed by fitting the oraerto model unstructured outdoor terrain.

likelihood function with a parameterized surface. We describe the ~ The measure that we use to compare the maps is derived
application of these techniques in several experiments, including from previous work on image matching using the Hausdorff dis-

experimental localization results for the Sojourner Mars rover. tance [3]. We have reformulated this measure in terms of max-
Index Terms—Maximume-likelihood estimation’ mobile roboticsv imum-|ike|ih00d eStimation. In th|S measure, the I|kel|h00d Of
self-localization, uncertainty estimation. each position is computed as the product of the likelihoods of

the distances from the features in the local map to the closest
features in the global map, with an additional term representing
the prior probability of the position. This probabilistic mea-
Mobile robots must have some method by which to detesure avoids the drawbacks of the original matching measure,
mine their position with respect to known locations in the enwhich include a sharp boundary between good and poor feature
vironment in order to navigate effectively and achieve goalsatches and the inability to incorporate probabilistic informa-
This is called thdocalization problemThe most common and tion, while retaining the advantages, which include robustness
basic method for performing localization is through dead-recte outliers and a global search technique [4]. Our approach al-
oning. This technique integrates the velocity history of the robgws subpixel localization in discretized pose spaces and accu-
over time to determine the change in position from the startingte estimation of the uncertainty in the localization by fitting
location (see, for example, [1] and [2]). Unfortunately, pureéhe likelihood function with a parameterized surface. This com-
dead-reckoning methods are prone to errors that grow withdihation of techniques yields a localization method that achieves
bound over time, so some additional method is necessary to peeurate and robust global localization in unstructured terrain
riodically correct the robot position. It is common to combinghrough the use of dense three-dimensional data (although we
the additional localization technique, such as triangulation frogme not restricted to this data), since the map matching measure
landmarks or map matching, with dead-reckoning using an &%-very robust to outliers and distracting data.
tended Kalman filter to probabilistically update the robot posi- These techniques can be viewed as a variant of the Markov
tion. localization method [5]-[10], since we formulate the problem
In this paper, we describe a technique that performs laith a likelihood function over the space of possible robot posi-
calization infrequently to update the position of the robot. Itions. A key contribution of our approach is the development of a
order to perform localization, we compare a map generatpgbbabilistic map matching measure that is robust to map errors,
using the robot's sensors at the current position (el sufficiently general to apply to virtually any metric map repre-
sentation and powerful enough to yield accurate localization in
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The localization techniques described here are very useful in
the context of a Mars mission. While operating in a small area
containing several science targets (such as the area around the
lander that Sojourner operated in), we may perform localization
using the panoramic imagery generated at the center of the area
as our global map. While this is not crucial when the lander can
see the rover, the next-generation Mars rover will venture away
from the lander and it will be equipped with a mast with stereo
cameras that will allow it to generate panoramic imagery of the
terrain. This allows localization to be performed by matching
the panoramic terrain maps generated using the mastimagery to
maps generated from either the body-mounted cameras, if pos-
sible, or by using the mast to image interesting terrain, if neces-
sary. Our approach can also be used on traverses between sites
by performing localization at some interval in order to update
the position of the rover [17].

We have tested our method using real and synthetic data. The
synthetic experiments model a case where the robot performs
localization using a discrete set of known landmarks in the envi-
ronment. These experiments indicate that accurate localization
Fig. 1. Rocky 7 Mars rover prototype in the JPL Mars Yard with mastan be achieved by searching a discretized pose space through
deployed. the use of subpixel estimation, and that the uncertainty in the
localization can be accurately estimated by fitting the surface

given by dead-reckoning so that we have an initial position & the likelihood function. Our application of this method to
compare against. The pose space is then divided into rectilinégal data creates an occupancy grid representation of the terrain
cells. For each cell in the space, we attempt to prove that theing stereo vision [18], since we are concerned primarily with
cell cannot contain a position that is superior to the best operforming localization in natural terrain. Experiments using
that has been found so far using an efficient bounding medhe terrain maps generated from stereo vision have been per-
anism. For any cell that cannot be pruned, the cell is dividéarmed with both terrestrial data, acquired in the JPL Mars Yard
into smaller cells and the process is repeated recursively. T#ging the Rocky 7 research rover [14], and imagery of Mars ac-
process stops dividing the cells when they have become snslired by the Mars Pathfinder lander and Sojourner rover [15].
enough to represent valid hypotheses or by some other roblige experiments using Mars imagery validate the use of these
stopping criterion. techniques to perform autonomous localization for Mars rovers
Our motivation for this research is the long-range scientéthout the need to downlink information to Earth.
rover project at JPL, which has developed the Rocky 7 MarsIn Section Il, we review previous work on robot localization,
rover prototype [14]. Mars rovers require increased self-locgPcusing on techniques that perform map matching in order to lo-
ization ability in order to perform with greater autonomy frongalize the robot. Section Il describes the probabilistic map sim-
both operators on Earth and from the lander bringing the roviarity measure that we use to determine which positions of the
to Mars. For example, the Sojourner Mars rover was limited t@bot are the most likely to be correct. Section IV gives an al-
moving short distances during each downlink cycle due to pgorithm for searching the space of possible robot positions to lo-
sitional uncertainty and it could not venture far from the landegate the position that maximizes this map similarity measure. Sec-
The method by which dead-reckoning errors were corrected fiin IV also discusses the application of this method to robot lo-
Sojourner was through a human operator overlaying a modelagization from discrete landmarks and by comparing occupancy.
the rover on stereo range data that was computed from dowihe technigues by which we perform subpixel estimation in dis-
linked imagery of the rover taken by the lander [15]. cretized pose spaces and estimate the uncertainty in the localiza-
The techniques described here are effective whenever a ri@p process are given in Section V. The experimental results that
can be generated in the robot's local coordinate frame and We have achieved with real and synthetic data are described in
have a map of the same terrain in the frame of reference in whigfction V1. Section VIl discusses the strengths and weaknesses
we wish to localize the robot. We can thus use rover imagegf,the algorithm and compares the method to other localization
either from the close-to-the-ground body-mounted camerasfgthods. Finally, Section VIl summarizes the paper and gives
from a rover mast such as the one on Rocky 7 (see Fig. 1) to géAme concluding remarks. We note that portions of this research
erate the local map. The global map might also be created fré\@ve been presented at recent conferences [19]-[21].
the rover imagery, but it could also be generated using imagery
from the lander (including imagery taken during the lander’s de-
scent to the surface), and itis possible that orbital imagery couldMobile robot localization is typically performed by com-
be used, although we will not have orbital imagery of Mars withining the results of dead-reckoning with some periodic
sufficient resolution to use for rover localization with submetesensor-based localization technique using, for example, an
precision in the near future [16]. extended Kalman filter. Many techniques have been used to

Il. PREVIOUS WORK
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provide the periodic sensor-based localization. Often thesegments. An alternative method for localization with such data
techniques operate by determining correspondences betwems explored by Crowlegt al.[36]. They extract an eigenspace
a set of sensed features (such as landmarks) and a known fnam a large set of range scans of the environment from various
of the environment. The known positions of the features in thiebot positions. Localization is performed by matching the maps
map, together with the sensed positions relative to the robitthe extracted subspace.
allow the robot’s current position to be determined. We give a Elfes [37] used an occupancy grid representation of the envi-
brief review of several such techniques here. ronment. Each cell in the grid was given a score betwekand
Some sensor-based techniques operate frequently, so fhavthere—1 represents unoccupied, 1 represents occupied, and
the robot moves a small amount between localization stepalues in between represent varying levels of certainty. Local-
This simplifies the problem, since the determination of thigation was performed by locating the position between a local
feature correspondences can be treated as a tracking problend, a global occupancy grid that maximized the product of the
rather than searching the map for the features. The drawbackatues at the corresponding cells in the grids.
this formulation is that the techniques must operate frequentlyAtiya and Hager [38] addressed the problem where the land-
enough to prevent the tracker from losing track of the feature@sarks are two-dimensional points in a plane. Correspondences
If the tracker makes a mistake by specifying an incorreatere determined by matching triples of sensed landmarks to
correspondence, it may have a drastic effect on the localizatimiples of map landmarks, since such triples yield lengths and
result. Examples of sensor-based techniques that opermtgles that are invariant to the robot position. Uncertainties in
frequently and combine results using the Kalman filter includbe localization estimate were computed by intersecting the un-
[22]-[26]. certainty regions of the landmarks, which were approximated
Many other methods have been proposed that do not requiserectilinear cells.
frequent sensor measurements. One such method is to locat# technique that has been used for coarse localization in
nearby landmarks and to perform a triangulation procedureddarge environment is to examine the features present on the
determine the position of the robot. Sugihara [27] addressed tiwrizon and to use some strategy to match them to a known
problem where the relative directions of the landmarks can bkevation map of the terrain. Talluri and Aggarwal [39] use
sensed, but not the distance to the landmarks. He developedranshape of the horizon line to search for the position of a
algorithm for performing localization from this data (»3) robot in a digital elevation map. They first perform pruning
time, wheren is the number of landmarks. Sugihara’s extenising geometrical constraints to eliminate many positions in
sions of this method yielded an(n? log n) algorithm for a a discretized space of possible robot positions. For positions
robot with a compass and &r(n?) algorithm for the case where that pass the first stage, a refinement step is used that performs
the landmarks are distinguishable. Betke and Gurvits [28] furtirve matching between the visible horizon and the estimated
ther consider the case where the landmarks are distinguishabt&izon line computed from the elevation map. The best match
By representing the landmark positions as complex numbeisstaken to be the most likely robot position. Stein and Medioni
they obtained a linear time algorithm with a least-squares erfd0] approximate the horizon line by a polygonal chain and
criterion. index a table storing subsections of the horizon as it would be
Another localization technique uses a search tree [29], [30]¢een from each position in a discretized pose space on the map.
perform matching between the features or landmarks detecfederification step for the indexed matches uses geometric
by a sensor and the known map. Drumheller [31] used this teadonstraints to select the best match. Thompsoral. [41]
nique to perform localization using walls detected by sonar. Ha&tract and match features on the horizon and other visible
incorporated aonar barrier testto check for inconsistencieshills and ridges. Matches between configurations of features
based on the constraints of sonar data. Simsatiah [32] de- are then searched for in a map that has been preprocessed.
scribed a variation of this technique where the map is decoifhe hypothesized locations are then refined and evaluated.
posed intoview-invariant regionswhich are used to guide theCozman and Krotkov [42] also detect mountain peaks on the
tree search and reduce the cost of feature matching. Talluri dradizon. They perform the search in a discretized space of
Aggarwal [33] similarly match line segments in the plane. Thegyositions using table look-up in order to maximize the posterior
have used a world model in which the regions of the pose sparebability of finding the correct position.
from which the same set of obstacle boundaries are visible areseveral probabilistic localization methods have recently been
computed. To compute the robot pose, they used a Hough tragplored that maintain a probability distribution over the pos-
form variation to limit the number of regions that must be exsible robot positions. The Markov localization paradigm, which
amined. A feature correspondence search was then perforrizedsed by several researchers [5]-[10], computes a probability
for each of the possible regions to determine the best matchdistribution over the space of possible robot positions. When the
Cox [34] also performed matching between line segmentsiiobot moves, the probability distribution is updated to take into
the plane using a laser range-finder to detect the line segmeatsount the additional uncertainty in the robot position that is
corresponding to building walls. However, Cox assumed that theluced by dead-reckoning errors. When the robot senses the
robot would have rough knowledge of its location and thus usedvironment, the distribution to updated to take into account
an iterative least-squares fitting procedure to improve the potie new data, thus reducing the uncertainty in the robot posi-
tion estimation. Lu and Milios [35] apply a similar technique fotion. Methods based on the extended Kalman filter [22]-[26]
map matching to the case where the local and global maps ea@ be considered a special case of this method, where the prob-
represented by the set of sensed points, rather than extractedaipiéty distribution is constrained to be a normal distribution.
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Nourbakhstet al.[5] use a partially observable Markov modelgiven the requisite covariance information. Since we search for
to perform localization without metric information. Simmonghe best relative position between these maps, these distances
and Koenig [6] combine a partially observable Markov modelre variables.
with an evidence grid in order to perform localization with both Let us say that our local mag consists ofn features
topological and metric information. Thret al.[10] use anex- {l;, ---, l,,} and that our global mag consists ofn features
pectation-maximization algorithm to perform simultaneous Idy, - - -, g }. These features may represent discrete land-
calization and map building according to a maximum-likelihootharks or they may represent cells in an occupancy grid. The
measure. Fort al.[9] give an active localization method usingdistance between a featukein the local map and a featurg
the Markov localization technique. in the global map, when the local map is at positi&nwith

The final technique that we mention is to perform localizarespect to the global map, is denot@ﬁ = dist( X (), g;),
tion by matching a three-dimensional map of the terrain near thwWbere the positionX, can be thought of as a function that
robot to a previously generated map. This is the approach thainsforms features in the local map into their corresponding
Kweon and Kanade [43] take in order to generate a terrain mpgsition in the global map. The distance from a feature in the
by fusing multiple local maps. They first generate a terrain magpcal map to the closest feature in the global map (at some
from stereo vision using thiecus methodThey then perform relative positionX between the maps) is calldgt®
matching between the maps in a two-stage procedure. First, an
estimate for the relative position is generated by extracting and D¥ = min d¥. 1)

matching map features (high curvature points). The estimate is 1<jsm Y

then refined using a iterative optimization procedure. Szeliski ., , . . L
g b P (¥Vhlle these distances are not pairwise independent, we have

[44] and Zhang [45] al§o describe te.chrn.ques that can be u?gund that modeling them as such yields good results. Recent
for matching 3-D terrain maps. Szeliski interpolates a surface

. . ork on determining the probability of a false positive for
from sparse range data and determines the transformation that " -

. . . : matching sparse features (such as landmarks) [46], [47] and for
makes it the most likely that a new set of points arise from the .
. o . matching dense features (such as edge maps and occupancy
same surface. The optimal transformation is determined usin .
radient descent search. Zhang's technigue uses an initial eg::uds) [12], [48] has also achieved accurate results when
g ) g q ttreating the features independently. We thus formulate the like-

f the relati iti f poi : " )
matg 0 t. e relative p03|.t|on betwegrj two sets o . pom.ts o |I|hood function for the robot positioX as the product of prior
eratively improve the estimated position. At each iteration, the

technique determines the closest match for each point and E‘E)Qbablhty of the position with the probability distributions of
r

dates the estimated position based on a least-squares me ﬁ}fe distances

with some modifications to increase robustness. n
L(X) = p(X) [] p(D) 2
=1

I1l. M AP SIMILARITY MEASURE

We perform localization by matching a map generated at theNOte that nc_)rmallzmr? the I|kel|r}ood fl,Jt':ICt'on ,SPCh that It in-
current robot position (thivcal map to a previously generated tegrates to unity over the space of possible positions is not nec-

map of the environment (thglobal map, which may be gen- €SSary for maximume-likelihood estimation, but a scale factor is

erated by combining previous local maps. The optimal positi&?cesgafy '_f we wish fOE(X_) fo be a probab|||t)_/ dlsmbutlon.

of the robot with respect to the global map is located using':é’r convenience, we work in the _L(X) domam_, since this

maximum-likelihood similarity measure for comparing imagegoeS not change the relative ordering of the positions

and maps [4]. This similarity measure (which is described below N

in more detgil) yields a score for each possible pos.ition of the In L(X) = ln p(X) + Z ln p(DY). 3)

local map with respect to the global map by computing a func- —

tion of the distance from each of the features in the local map to

the closest feature in the global map. When an appropriate functn our implementation, we take the position yielding the max-

tion is used, such that sensor uncertainty and the possibilityisfum likelihood to be the position of the robot. However, in en-

missing a feature is modeled, the measure is robust to outliaispnments where multiple positions appear to be similar, it is

noise, and occluded locations. In addition, it can be applied &dvisable to retain more than one position or even some repre-

either maps consisting of sparse landmarks or to a dense ocsrntation of the entire likelihood surface. The prior probability

pancy map representation. distribution of robot positions and the probability density func-
In order to formulate the map matching problem in terms dion (PDF) that is used for each featyreD;* ) together deter-

maximum likelihood estimation, we must have some set of memine the matching measure that is used between the maps. If

surements that are a function of the robot position. We use thething is known about the prior distribution of model positions,

distances from the visible features at the current robot locatithen it can be modeled by a constant and removed from the mea-

to the closest features in the global representation of the emstire. On the other hand, if we are tracking the robot position over

ronment. The method by which these distances are computiede (e.g., with an extended Kalman filter), we will have some

is problem dependent. We have used the Euclidean distancelkioown prior (a normal distribution in the case of the extended

both landmarks and occupancy maps, but more complex di&lman filter) and this will affect the computed position of the

tance functions, such as the Mahalanobis distance can be usdxbt.
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We must also estimate the PDF of the feature distances. Ac- ZZ Z
curate localization results can be achieved through the use of ¢ %
PDF that models the sensor uncertainty [4]. The feature local- PR —
ization errors can often be accurately modeled by a normal dis- 1 — B ¢ E
tribution. However, this does not allow for outliers in the local
feature map, which have no corresponding features in the global i -
map. The use of a normal distribution with a constant additive

term yields an accurate model for cases with outliers [21] ) ) ) »
Fig. 2. A search strategy is used that recursively divides and prunes cells of

the search space.

p(DF) = by~ P, @
oven For this case, we stop dividing the cells when they contain
In this PDF,s is the standard deviation of the feature unce/ single position in the discretization and we then test this
tainty andk; andk, are constants that vary with the frequency aposition explicitly. For more complex examples, we may set
outliers, the density of the maps, and the probability of missirggme threshold on the minimum cell size and test the center
a feature. The robot localization is insensitive to the settings @f the cell when the cell size is below the threshold. Subpixel
these constants, but a discussion of the values these consti@eglization estimates are useful in increasing the precision of
should take can be found in [21]. It should be noted that (4) ige localization in both cases (see Section V).
not a probability distribution, since it does not integrate to unity. The key to this strategy is a quick method to test the cells.
This is unavoidable if we wish to use a robust measure that ddesell is allowed to pass the test if it does not contain a good
not become arbitrarily close to zero for large value®gf. The pose, but it should never prune a cell that could contain a good
use of a function that does not integrate to unity does not affgrase, since this could result in the best position being missed. To
the accuracy of our results in any significant way. determine whether a particular cé€licould contain a pose that is
superior to the best one found so far, we examine the patsthe
center of the cell. In order to place a bound on the best position
within the cell, we compute the maximum distance between the
Now that a similarity measure between the maps has begBations to which a feature in the local map is transformed into
defined, we must discuss how the position that optimizes tkige global map by and by any other pose in the cell. Denote this
similarity measure is determined. A simple hill-climbing techdistanceA . This allows us to determine the quality of the robot
nique could be used, but such a method would require a gggskition represented by the center of the cell and then compute
initial estimate of the position of the robot, which is not always |arger value using\« to place an upper bound on the quality
available, particularly if we exercise the localization techniques any position in the entire cell.
infrequently. We describe a method to search a bounded pose we treat robot poses as functions that transform positions

space using a variation of branch-and-bound search that gyarthe local map into positions in the global map, th&a can
antees that we locate the optimal position (according to the Sige written

ilarity measure) in a discretized version of the search space. A
subsequent subpixel localization step is performed to gain pre- Ac = max max ||p(l) — ¢(1)||- (5)
cision. Following the general discussion of the search strategy, £

we discuss the application of this search strategy to maps conl—: h ft lationa. is simplv the dist ¢
sisting of landmarks and occupancy grids in more detail. orine space ottransiatiom, IS simply the distance from
the center of the cell to any corner of the cell, since the differ-

ence in the translated location of any feature in the local map for
any two translations is simply the difference between the trans-
We locate the most likely robot position by adapting @tions. When rotations are considered; is also a function of
multiresolution search strategy that has been applied to image local map. In this casg,« can be computed as a function of
matching using the Hausdorff distance [11]-[13]. We first teshaximum orientation change between the center of the cell and
the nominal position of the robot given by dead-reckoning (@he corners of the cell. While we concentrate on translations of
any other position, if no initial estimate is available) so thahe robot, since the robot orientation can be determined through
we have an initial position and likelihood to compare againsither sensors, further discussion of techniques to handle rota-
Next, the pose space is divided into rectilinear cells. Eaglons in such a branch-and-bound search strategy can be found
cell is tested using a conservative test to determine whetkgsewhere [12], [13].
it could contain a position that is better than the best positionTg place a bound on the quality of any position within the cell,
found so far (or any threshold, in general). Cells that cannge bound each of the distances that can be achieved by features
be pruned are divided into smaller cells, which are examingglthe local map over the cell. This is done by subtracting the
recursively (see Fig. 2). When cells of a certain (small) size afigaximum change in distance over the ceéll{) from the dis-
reached, the cells are tested explicitly. For example, when g ce achieved at the center of the defl
compare occupancy grids under translation, there is a natural
discretization of the pose space such that neighboring positions
move the maps by one grid cell with respect to each other. D = max (D§ — A¢, 0). (6)

IV. FINDING THE MOSTLIKELY POSITION

A. Search Strategy
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The values obtained are then propagated through the likeli-the search, since eadh can be computed efficiently over
hood function to bound the score that can be achieved by ahg entire global map by computing the distance transform of
position in the cell the map. Extensions of our method can be applied to nonbinary

occupancy grids.
P =In p(Df). (7) In order to implement this procedure efficiently, we first com-
o ) ] pute the distance transform of the global occupancy map. The

Py~ is the now maximum score that thté feature of the local gjistance transform measures the distance from each cell in a dis-
map can contribute to the IikeIi_hoo_d for any position in the gellretized map to the closest occupied cell [49], and can be com-
A bound on the best overall likelihood that can be found at@ie efficiently using an algorithm that is linear in the size of

position in the cell is given by the map [51], [52]. We next compute a relative index into the
n distance transform for each occupied cell in the local map. The
max L(X) < PE. (8) pose-space cell hierarchy is searched using a depth-first search
XeC P strategy. For each cell that is examined, we loop through the pre-

T computed indexes into the distance transform (which must be
I this likelihood does not surpass the best that we have fougglses by the position of the center of the cell). For each index,

so far, then we can prune the entire cell from the search. Othgrs get a distance in the global map. We then use (6)~(8) to de-
wise, the cellis divided into two cells of the same size by slicing, . ine whether the cell can be pruned.

it along the longest axis and the process is repeated recursively
until all of the cells have been exhausted. Since we place conger-
vative bounds on the maximum likelihood that can be achieved
by any cell that is pruned, this method is guaranteed to locate thd Nis approach can also be applied to matching maps con-
position with the largest likelihood in a discretized pose spac@isting of geometric landmarks. For example, in indoor envi-

It is likely that the discretization of the pose space will caug@nments, we may be able to detect and locate vertical edges,
the computed robot position to be slightly suboptimal with re2f we may use the peaks of rocks or other landmarks in out-
spect to the full continuous space. However, we can examin8@pr terrain. In this case, we can use efficient nearest-neighbor
fine discretization without adding much computation due to tif€arching techniques to compute eathexactly. For example,
pruning techniques, and we use subpixel localization methot§ may use the method of Lipton and Tarjan [53] or Bentley [54]

to further improve the localization estimate. to locate the nearest landmark, if the landmarks are represented

Our method for pruning cells does not provide tight bound® Points, and the distances can then be computed directly.
on the likelihood that can be achieved by each cell and thus it isThese techniques can be made even more efficient, at the cost
possible that more pruning could be performed with additiong@f & small amount of precision, by discretizing the landmark po-
computation at each cell. Our strategy has been to make ##éons. In this case, the distances can be computed using the
processing of each cell as fast as possible, rather than to ofitgtance transform of the map, as described above. We can then
mize the number of cells that are examined. Researchers on siige subpixel localization techniques to improve the precision
ilar problems in computer vision have taken an approach whét¢er the position yielded by the discretized search space (see
tighter bounds are sought at the expense of additional overh&g§tion V). Our experiments have indicated that the loss of pre-
[3], [13]. cision is quite small when using this technique.

We note that for cases where more than one qualitativeOnce the method of computing eaély is determined, the
position in the robot’s pose space has a significant likelihootgmainder of the search strategy is the same as described above.
the search strategy can easily modified to detect all positions
meeting some minimum likelihood. In environments where/. SUBPIXEL LOCALIZATION AND UNCERTAINTY ESTIMATION

many locations look similar (for example, in an office building), ging this probabilistic formulation of the localization
we could store a representation of the entire distribution un loblem, we can estimate the uncertainty in the localization in

the p_osition_has b_een disambi_guated. For example, a quaditge,q of poth the variance of the estimated positions and the
(or higher dimensional extension) could be used such that ey, pjjity that a qualitative failure occurred. In addition, we

cells are represented at the resolution at which they can 0g, herform subpixel localization in the discretized pose space
pruned by the search. by fitting a surface to the peak that occurs at the most likely
robot position. This need not be limited to the single highest
peak found in the pose space. Multiple possible robot positions
The search strategy described above is well suited ¢an be considered if their likelihood is sufficiently large.
matching maps that are represented by occupancy grids, since
these are inherently discretized. The space of translations of fiesubpixel Localization
robot can be discretized at the same resolution as the maps ar]fj . - .
o : ; et us take as an assumption that the likelihood function ap-
this yields a natural resolution of the search space at which to " L :
. L : prPX|mates a normal distribution in the neighborhood around a
end the recursive division of the cells. We consider the case'o

binary occupancy grids. This allows for a fast implementation2This assumes that the map is defined on a convex domain [50]. Since we
must deal with map errors (and search over the pose space), we always consider
1This assumes that the PDF is monotonically nonincreasing, which is true foconvex map. This ensures that a distance value is obtained for any feature at
any reasonable PDF, since we desire closer matches to yield higher scoresany map position in the pose space.

Landmarks

B. Occupancy Grids
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peak. Fitting such a normal distribution to the computed likeli- We can now solve foty ands,, using

hoods yields both an estimated variance in the localization es-

timate and a subpixel estimate of the peak location. Since the b

likelihood function measures the probability that each position o =dp = (18)

is the actual robot position, the uncertainty in the localization is

measured by the rate at which the likelihood function falls oftnd

from the peak. Our experimental results confirm that very accu- 1

rate results can be achieved with this normal approximation. Oz =
Now, since we actually perform our computations in the do-

main of the natural logarithm of the likelihood function, we must The derivation fory, and o, is the same, except that we

fit these values with a polynomial of order 2. We compute thgroject onto the liner = z,. The values ofro andyo yield

uncertainties inc andy independently. While this is not necesq subpixel localization result, since this is the estimated loca-

sary, it simplifies the presentation tion of the peak in the likelihood function, ard ando, yield

direct estimates for the uncertainty in the localization result.

(19)

— )2 — a2
In Lz, y) = In exp <_ (z 3250) _(y go) )
o0y 205 205 B. Probability of Failure
— 20)2 a2
=~ @ 32:0) - € ‘ZO) +In ! . (9) In addition to estimating the uncertainty in the localization
273 20y 200y estimate, we can use the likelihood scores to estimate the prob-

bility of a failure to detect the correct position of the robot. This

s"barticularly useful when the environment yields few land-
marks or other references for localization and thus many po-
sitions appear similar to the robot. We estimate this probability

In order to estimate the parameters that we are intereste
(%0, Yo, 0, andoy,), we project this polynomial onto the lines
T = x9 andy = o yielding

(& — 0)? 1 of failure by comparing the likelihood scores for the peak se-
L{z, yo) = — 5 20 +1In 5 (10) lected as the most likely robot position to the scores in the rest
Ti =Ty of the space. Alternatively, when there are multiple peaks, we
and can select enough peaks to ensure that one of them is the robot
position with some desired probability using this approach.
L(zo, y) = — (v — y0)? o 1 (11) We estimate the total likelihood of a peak by summing a small
0. Y)= 202 2oLy number of values around the peak, since they generally become
y %y

small very quickly. The remainder of the values are also esti-

We now fit these equations to theandy cross sections of mated efficiently. Whenever a cell in the search space is con-

the likelihood function at the location of the peak. If the peakidered, we compute not only a bound on the maximum score
in the discretized search space occurs at positign ,), we that can be achieved, but also an estimate on the average score

fit L(x, yo) to the values at the surrounding five positions alonghat is achieved by determining the score for the center of the

Y= Yp cell. If the cell is pruned, we estimate the score for the entire
cell by multiplying the score for the center by the size of the
P2 =L{x, — 2, yp) (12) cell. The estimated score for the entire cell is then added to a
po1=L(z,—1,y,) (13) running total. This yields a very good estimate, since cells with
_ large scores cannot be pruned until they become small. We thus
po = L(zp, yp) (14) . . .
get good estimates when the score is large. Lower quality es-
pr=L(zp +1, yp) (15)  timates are obtained when the score is small, but this does not
p2 =L(zy +2, yp). (16) significantly affect the overall sum.

Let S, be the sum obtained for the largest peak in the pose
While three is the minimum number of points necessary #pace and; be the overall sum for the pose space (including the
fit the parabola given by (10), we use five points in order tfargest peak) as described above. We estimate the probability of
achieve a better fit. We do not use more than five points, singérrectness for the largest peak as
more distant points may be influenced by other peaks or they
may fail to model the correct peak due to random noise. Sp

The least-squares fit to a parabola£ az? + bz + c) with P = S, (20)
x={-2,-1,0, 1, 2} yields
1 —i —1 —i 1 P_a VI. EXPERIMENTS
7 14 7 14 7
@ 1 1 1 1 P We have tested our approach in a number of experiments
bl = 5 710 0 10 5 Po |- using both synthetic data, where precise ground-truth was avail-
¢ 3 12 17 12 3 P able for comparison, and real range data from stereo vision, in-
35 35 35 35 35 P2 cluding experimental localization results for the Sojourner rover

(17) on Mars.



62 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 1, FEBRUARY 2000

1.0

1.04 1.5

Likelihood 7] Likelihood 0.84
0.8+
0.64
1.0 Fraction
0.6 correct
0.4
0.4
0.5 0.2+
0.2+
0.0 T T T T 1
0 2 4 6 8 10
0.0 o i 0.0 T T T \ Maximum angle error (degrees)
- -1 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0
Localization error Standard deviation
(@) (b) Fig. 4. Fraction of trials in which the correct qualitative robot position was
found in experiments using synthetic data with varying amounts of error in robot
orientation.

Fig. 3. Distribution of errors and estimated standard deviations in synthetic
landmark localization experiment. (a) Comparison of estimated distribution of

localization errors (solid line) to observed distribution of localization errors,: e ; ; ;
(ba_r graph). (b) Dist(ribution of)estimated standard deviations in the IocalizatiggllabIe and whether Qddltlona! sensing Is necessary to disam-
estimate. iguate between multiple positions.

In order to study the sensitivity of our approach to rotation
errors, we tested a problem where 90% of the data were in-
liers. In these experiments, a random error bounded by some

aximum value was added to the robot orientation in each trial.

%e search still examined only the space of translations of the
ot. Fig. 4 shows the fraction of trials in which the correct
osition was found as a function of the allowable error. The

A. Synthetic Data

We first applied these techniques to localization usi
landmarks in randomized experiments. In these experime
we randomly generated a synthetic environment containing 1

landmarks in @56 x 256 square. Let us say that each unit i$ tion of ful trials started drobping noticeably when
10 cm (though the entire problem scales to an arbitrarysize).ﬁ'ﬁ‘C on ot successiul tnais starte opping noticeably whe

. le errors above®5were allowed, but the performance was
each trial, seven of the ten landmarks closest to some rand 9 ’ P

robot location were considered to be observed by the rok}/(?t:y gt?]OCtj whenhlowert:]evels of e:crorbwtere_ alltovt\{ed. Thls indi-
(with Gaussian error in botlr andy with standard deviation cates that search overthe space ot robot orientations Is hecessary

o = 1 unit) along with three spurious landmarks not includeWhen the orientation is not known to better than 5

in the map. Localization was then performed using these ten o )
observed landmarks with no knowledge of the position of tfe Localization Using Stereo Range Data
robot in this environment. Over 100000 trials, the robot was |n practice, we perform matching between three-dimensional
correctly localized in 99.8% of the cases, with an averaggcupancy maps in order to achieve localization for planetary
error in the correct trials of 0.356 units in each dimension. Thgvers. For these occupancy maps, we consider each cell to
average estimated standard deviation in the localization usisg either occupied or unoccupied (with no in-between states).
the techniques from Section V was 0.427 units. While several methods can be used for generating such a rep-
Fig. 3(a) shows the distribution of actual errors observedsentation, we use stereo vision on the Rocky 7 rover [14] to
versus the distribution that we expect from the average standattinpute range images using the techniques that have been pre-
deviation estimated in the trials. The close similarity of theiously described by Matthies [18], [55].
plots indicates that the estimated standard deviation is a veryOnce a range image has been computed from the stereo im-
good estimate of the actual value. It appears that this estimatgery, we convert it into a voxel-based map representation. We
is slightly smaller than the true value, since the frequency fifst rotate the data such that it has the same relative orientation
the observed errors is slightly above the curve at the tails agglthe map we are comparing it to. Here we operate under the as-
lower at the peak. However, the overall similarity is very highsumption that the orientation of the robot is known through sen-
The similarity between these plots validates the approximatigdrs other than vision (for example, both Sojourner and Rocky 7
of the likelihood function as a normal distribution in thehave rate gyros and accelerometers and Rocky 7 also uses a
neighborhood of the peak. Fig. 3(b) shows the distribution gfin sensor for orientation determination [56]). The localization
the estimated standard deviations in this experiment. It canteehniques can also be generalized to determine the robot’s ori-
observed that the estimate is very consistent between triglatation.
since the plot is very strongly peaked near the location of theThe next step is to bin the range points in a three-dimensional
average estimate. Taken together, these plots indicate thatdbeupancy map of the surroundings at some specified scale. We
standard deviation estimates are very likely to be accurate #iminate the need to search over the possible translations of
each individual trial. the robot in thez-direction by subtracting a local average of the
We also tested the probability of correctness measure in théseain height from each cell (i.e., a high-pass filter). This step
trials. The average probability of correctness computed for thenot strictly necessary, and it reduces our ability to determine
trials that resulted in the correct localization was 0.993, whileeight changes in the position of the robot, but it also reduces
the average probability of correctness for the failures was 0.648e computation time that is required to perform localization. A
The probability of correctness measure thus yields informatisabsequent step can be performed to determine the robot eleva-
that can be used to evaluate whether the localization resultian, if desired. Each cell in the occupancy map that contains a
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average absolute error in the position estimates was 0.0342 min
the downrange direction and 0.0367 m in the sideways direction
from the position measured by hand. Much of this error can be
attributed to human error in determining the ground truth for the
data.

Additional tests were performed on imagery where the
camera system was panned®2Bft and right. In these tests,
occupancy maps from the panned images were matched to
occupancy maps for the unpanned images. All 24 trials yielded
the correct qualitative result. The average absolute error was
0.0138 m in the downrange direction and 0.0225 m in the
sideways direction.

In these tests, the average number of positions examined was
18.45% of the total number of positions in the discretized search
space. A speedup of greater than 5 was thus achieved through
the use of the efficient search techniques.

D. Mars Pathfinder

To validate our approach for use on a Mars rover, we have
tested it using data from the Mars Pathfinder mission. A map
of the terrain surrounding the Pathfinder lander was first gen-
erated using stereo imagery. For each position of Sojourner at
which we tested the localization techniques, we generated an
occupancy map of the terrain using range data from Sojourner’s

®) stereo cameras. This local map was then compared to the global

map from the lander.

Fig. 5. Terrain map generated from Pathfinder imagery: (a) annotated imagelnfortunately, this test has only been possible at a few loca-

n:gf:c',cirﬂgsgﬂoumer and rocks on Mars and (b) terrain map generated frgig, ¢ e to the limited amount of data returned to Earth, the lack

® 9en: of interesting terrain in some of the imagery we do have, and
the lack of a comparison value for most positions (except those

range pixel is said to beccupied and the others are said to beyhere Sojourner was imaged by the lander cameras). In prac-

unoccupiedFig. 5 gives an example of a terrain map that wagce, these techniques could be exercised much more frequently

generated using imagery from the Mars Pathfinder mission. since they would not require downlinking image data to Earth

We have tested this method using both terrestrial data as§d the comparison value is only necessary for testing. We en-
data from the Mars Pathfinder mission. These experiments ingision a scenario where the data from the rover's body-mounted
cate that self-localization can performed using our method wigameras, which would be operating frequently in order to per-
approximately the same results as a human operator, with@sfin obstacle detection, would be used to perform localization
requiring a downlink cycle. In addition, only a few seconds afghenever sufficient terrain was evident in the imagery. In addi-
needed to perform localization. Experiments indicate that I@on, the imagery from mast cameras could be used for localiza-
calization can be performed on a SPARCstation 20 in under §$n when the positional uncertainty grows beyond the desired

with maps discretized at 2-cm resolution. Similar experimenigve| and the imagery from the body-mounted cameras is un-
performed on-board Rocky 7 (Motorola 68060 CPU) require aggitable.

proximately 20 s to perform localization. As an example of the data, Fig. 7 shows the position of So-
journer as seen from the lander and the view from Sojourner at
C. Mars Yard the end of sol 24 of the Mars Pathfinder mission. Note that the

We initially tested our method with images taken in the JPgtereo data obtained from Sojourner is not as good as we hope
Mars Yard using cameras mounted on a tripod at approximatel§ achieve in future missions. Accurate stereo data is achieved
the Rocky 7 mast height. Fig. 6 shows a set of images that vy for the central portion of the Sojourner imagery due to inac-
used in testing the localization techniques. The set consistsCfate calibration of the fish-eye lenses. The field-of-view that
12 stereo pairs acquired at one meter intervals along a straigithave to work with is thus relatively small. However, we have
line with approximately the same heading. achieved good localization results with this data.

In these tests, we determined the estimated position changebaPle | shows the results of localization using the techniques
by finding the relative position between each pair of consec escribed in this paper versus the localization that was obtained
tive images. The localization techniques yielded a qualitativey @ human operator through overlaying a rover model on the
correct position between each pair of consecutive images. THgreo data obtained from imaging the rover from the lander.

3See http://robotics.jpl.nasa.gov/tasks/scirover/marsyard 4A solis a Martian day.
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TABLE |
COMPARISON OFROVER POSITIONS DETERMINED BY A HUMAN
OPERATOR OVERLAYING A ROVER MODEL ON STEREO
DATA OF THE ROVER AND BY OUR
LOCALIZATION TECHNIQUES

Operator Localization Difference

Sol |z (m) y(m)|z(m y(m)|z(m) y(m
4 328 -269| 3.01 -264} -027 005
10 434 -324| 424 -3271 -0.10 -0.03
21 3.32  -2.60 3.37  -2.65 0.06 -0.05
27 | -542 285 | -498 275| 044 -0.10
42a | -3.00 -1.86| -3.02 -1.87( -002 -0.01
42b | -3.00 -1.86| -3.00 -1.87( 0.00 -0.01
72 | -893 -1.57 | -899 -1.35( -0.06 0.22

VII. DISCUSSION

The primary contribution of our approach is the devel-
opment of a robust, global localization method that uses all
available three-dimensional information. Accurate localization
is performed in the presence of outliers and significant noise
in the map data through the use of the maximume-likelihood
map matching measure. An efficient search of the global pose
space is performed through the use of the branch-and-bound
pruning techniques. The maximum-likelihood measure yields
a likelihood surface over the possible positions of the robot
and thus our method can be used to generate probability
distributions for use in the Markov localization method (see,

() for example, [5]-[10]). This method provides a means for
combining probability distributions generated at multiple robot
Fig. 7. Sojourner on sol 21 (near “Souffle”): (a) image from the lander and (Bositions and incorporating uncertainties from dead-reckoning
image from Sojourner.
errors.
Most work on mobile robot localization has dealt with indoor
For sol 42, we have two localization results, one prior to arehvironments, where the environment is usually modeled in two
one after a turn by the rover. The operator localization was pelimensions. In contrast to previous research, we have concen-
formed after the turn. trated on achieving localization in completely unstructured out-

The results show very close agreement between our tedoor terrain, such as a rover might encounter on Mars. In such
nigues and the operator localization for four of the cases. Rerrain, a three-dimensional representation of the environment
sols 4, 27, and 72, there is some disagreement. Possible souixesucial. We note, however, that our approach is general, and
of error include inaccurate calibration of either the rover aran be applied to virtually any environment that can be mapped.
lander cameras and operator error in performing localizatiofhe application of this approach to other environments, such as
Manual examination of the maps has shown that the localizatiarbuilding interior is straightforward using either discrete fea-
techniques determine the qualitatively correct position in thegges or an occupancy grid representation. It should be noted
cases. While no ground truth exists, the similarity of the podhat in such cases, more locations in the environment will look
tions estimated by our method and by the human operator indisite similar and thus selecting a single robot position may not
cate that our method can perform localization approximately bBe sufficient for robust navigation. In this case, we should main-
well as a human operator. tain a list of the robot positions that achieve a likelihood above
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some threshold. An even better strategy would be to maintain theDur goal in the design of this approach is to provide greater
entire likelihood surface using a multi-resolution data structusseitonomy for Mars rovers. Through the use of our method,
[57] or sampling [58]. This likelihood can then be propagatede can perform self-localization on Mars within the confines
after the robot moves in order to disambiguate the positions.of a science site where panoramic stereo imagery has been

A possible drawback to this technique is the assumption thaken from the lander or from the rover mast cameras. These
the environment sensed by the robot contains sufficient shadpehniques can also be used to improve position estimation on
to reliably estimate the robot position. However, since our afeng traverses by periodically stopping to perform localization
proach can be extended to allow disambiguation using multiptersus the previous position and to image the terrain ahead
robot positions, this is not a strong limitation. Any localizatiorof the rover. The application of these technigues to data from
method requires some distinctive feature in the environment thlaé Mars Pathfinder mission indicates that we can perform
allows that robot to determine its position in a map. autonomous localization with approximately the same accuracy

At present, this method has been implemented only for robag a human operator without requiring communication with
translations. Our experiments indicate that an error in the rotcarth.
orientation of up to 5is acceptable for an implementation that An area that bears further study is the development of a lo-
does not search over the robot orientation. For cases wherecahlizability measure for terrain maps in order to plan effective
orientation is completely unknown, the extension of these tedbealization steps. In the future, we also plan to integrate our
niques to additional degrees of freedom is not complex. If vapproach into an integrated navigation methodology, in which
know the orientation of the robot to some degree through otreeKalman filter is used to synthesize a robot position estimate
sensors, and thus can bound the search space, the addititroat a variety of sensors and the robot’s path planner interacts
search time will not grow drastically. However, a fully unconwith the Kalman filter and the localization techniques to plan
strained pose space will require significant computational redhen and where localization should be performed.
sources using this search strategy.

. Gutmanret al.[59] hgve compared Markov_ Iocalization tech- ACKNOWLEDGMENT
nigues to scan matching using a Kalman filter. They find that
scan matching techniques are more efficient and accurate, bufhis research is an element of the Long Range Science Rover
that Markov localization techniques are more robust to noiféoject, which is developing technology for future Mars mis-
and sensor error. Our technique shares the robustness of Marki§¥s- The author would like to thank all of the people who have
localization techniques (if we do not limit our analysis to th8een involved with the Mars Pathfinder mission and the Long
single highest peak in the likelihood function). In addition, sincange Science Rover project. In particular, thanks are due to
we use all of the available metric information and detect tHe Matthies for generating the range images from the Pathfinder
robot position to subpixel accuracy in a discretized pose spatdP cameras that were used in some experiments reported here
we are able to achieve high accuracies. Furthermore, the te@Rd to S. Laubach for collecting the data in the Mars Yard used
niques that we describe can be used as part of a Kalman f||||!épther eXperimentS. Fina”y, the author would like to thank the
position estimator. However, since we perform global localiz®e0ple who have read and commented on various versions of
tion, we are not able to match the efficiency of scan matchin@is research, including B. Wilcox, S. Hayati, M. Maimone, A.
where an initial estimate is refined in order to determine the pgohnson, and the anonymous reviewers.
sition of the robot.

REFERENCES

VIIl. SUMMARY [1] J.Borenstein, H. R. Everett, L. Feng, and D. Wehe, “Mobile robot posi-
tioning: Sensors and techniqued,”"Robot. Systvol. 14, pp. 231-249,
We have described a method for performing self-localization _ Aug. 1997.

. . . L . 2] R. Talluri and J. K. Aggarwal, “Position estimation techniques for an
for mobile robots using maximum-likelihood matching of maps. autonomous mobile robot — A review,” iHandbook of Pattern Recog-

The map of visible features at the robot’s current positionis com-  nition and Computer VisiarC. H. Chen, L. F. Pau, and P. S. P. Wang,
paredtoaglobal mapthathasbeen previously generated (possiblg} Eds.  Singapore: World Scientific, 1993, ch. 4.4, pp. 769-801.

.S , : . [3] D.P.Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
by combining the maps from the robot’s previous positions). The images using the Hausdorff distancéEEE Trans. Pattern Anal. Ma-

best relative position between the maps is detected using aglobal chine Intell, vol. 15, pp. 850-863, Sept. 1993.
branch-and-bound search technique that does not require an |ni4] C. F. Olson, “A probabilistic formulation for Hausdorff matching,” in

. . L . Proc. IEEE Conf. Comput. Vision Pattern Recogrif98, pp. 150-156.
tial estimate of the robot position. The search is performed relas; | Nourbakhsh, . Powers, and S. Birchfield. “DERVISH: An office-

tive to a novel maximume-likelihood map similarity measure that navigating robot,’Al Mag. vol. 16, no. 2, pp. 53—-60, 1995.

selects the robot position at which the maps best agree. This maﬁ§] R. Simmons and S. Koenig, “Probabilistic navigation in partially ob-
servable environments,” lroc. Int. Joint Conf. Artificial Intell, vol. 2,

measure is very general and robust to map errors. 1995, pp. 1660—1667.
This probabilistic formulation of the map matching problem [7] A.R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under uncer-
allows the uncertainty in the localization of individual map fea-  tainty: Discrete Bayesian models for mobile robot navigationpiic.
be treated ratelv in the matchin rocess. In addi IEEE/RSJ Int. Conf. Intell. Robot. Systol. 2, 1996, pp. 963-972.
t_ures to be r.ea ed accu : y : . g_p - ] S. Koenig and R. G. Simmons, “Unsupervised learning of probabilistic
tion, performing a polynomial fit to the log-likelihood function models for robot navigation,” iRroc. IEEE Conf. Robot. Automavol.

allows both subpixel localization to be performed and uncer- 3. 1996, pp. 2301-2308. o o
. . b ted. which can be propagated in g)] D. Fox, W. Burgard, and S. Thrun, “Active Markov localization for mo-
tainty estimates to be computed, whi propag ! bile robots,”Robot. Auton. Systvol. 25, no. 3-4, pp. 195-207, Nov.

position tracking mechanism such as the extended Kalman filter.  1998.



66

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 1, FEBRUARY 2000

[10] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concur-[37] A. Elfes, “Sonar-based real-world mapping and navigatioBEE J.

(11]

(12]

(13]
[14]
(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

rent mapping and localization for mobile robotsjach. Learningvol.

31, no. 1-3, pp. 29-53, 1998.

D. P. Huttenlocher and W. J. Rucklidge, “A multi-resolution technique
for comparing images using the Hausdorff distance,Pioc. IEEE
Conf. Comput. Vision Pattern Recognit993, pp. 705-706.

C. F. Olson and D. P. Huttenlocher, “Automatic target recognition by
matching oriented edge pixeldEEE Trans. Image Processingol. 6,

pp. 103-113, Jan. 1997.

W. J. Rucklidge, “Efficiently locating objects using the Hausdorff dis- [41]

tance,”Int. J. Comput. Visiopvol. 24, no. 3, pp. 251-270, Sept. 1997.
S. Hayatiet al,, “The Rocky 7 rover: A Mars sciencecraft prototype,” in
Proc. IEEE Conf. Robot. Automatol. 3, 1997, pp. 2458-2464.

D. Shirley and J. Matijevic, “Mars Pathfinder microroveriuton.
Robot, vol. 2, pp. 283-289, 1995.

L. H. Matthies, C. F. Olson, G. Tharp, and S. Laubach, “Visual localiza- [43]

tion methods for Mars rovers using lander, rover, and descent imagery,”
in Proc. 4th Int. Symp. Artificial Intell. Robot. Automat. Spat@97, pp.
413-418.

S. L. Laubach, C. F. Olson, J. W. Burdick, and S. Hayati, “Long range

navigation for Mars rovers using sensor-based path planning and visuafol

localization,” inProc. 5th Int. Symp. Atrtificial Intell. Robotic. Automat.
Space 1999, pp. 455-461.

L. Matthies, “Stereo vision for planetary rovers: Sto-chastic modeling
to near real-time implementationfit. J. Comput. Visionvol. 8, no. 1,

pp. 71-91, July 1992.

C. F. Olson, “Mobile robot self-localization by iconic matching of range
maps,” inProc. Int. Conf. Adv. Robqt1997, pp. 447-452.

C. F. Olson and L. H. Matthies, “Maximum-likelihood rover localization (48]

by matching range maps,” iRroc. Int. Conf. Robot. Automatvol. 1,
1998, pp. 272-277.

C. F. Olson, “Subpixel localization and uncertainty estimation using oc-
cupancy grids,” inProc. Int. Conf. Robot. Automatvol. 3, 1999, pp.
1987-1992.

N. Ayache and O. D. Faugeras, “Maintaining representations of the en>0l

vironment of a mobile robot,IEEE Trans. Robot. Automatol. 5, pp.
804-819, Dec. 1989.

A. Curran and K. J. Kyriakopoulos, “Sensor-based self-localization for
wheeled mobile robots,J. Robot. Systvol. 12, no. 3, pp. 163-176,
1995.

J. Horn and G. Schmidt, “Continuous localization of a mobile robot

based on 3d-laser-range-data, predicted sensor images, and dead—regg]
(54]

oning,” Robot. Auton. Systvol. 14, pp. 99-118, 1995.

J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacondEEE Trans. Robot. Automatvol. 7, pp.
376-382, June 1991.

Z. Zhang and O. Faugeras, “A 3D world model builder with a mobile
robot,” Int. J. Robot. Resvol. 11, no. 4, pp. 269-285, August 1992.

K. Sugihara, “Some location problems for robot navigation using a[56]

single camera,’'Comput. Vision, Graphics, Image Processingl. 42,
pp. 112-129, 1988.

M. Betke and L. Gurvits, “Mobile robot localization using landmarks,”
IEEE Trans. Robot. Automatol. 13, pp. 251-263, Apr. 1997.

P. C. Gaston and T. Lozano-Pérez, “Tactile recognition and localization
using object models: The case of polyhedra on a plal#EE Trans.

Pattern Anal. Machine Intellvol. PAMI-6, pp. 257-265, May 1984. (58

W. E. L. Grimson and T. Lozano-Pérez, “Model-based recognition and
localization from sparse range or tactile dataf’ J. Robot. Resvol. 3,

no. 3, pp. 3-35, 1984.

M. Drumheller, “Mobile robot localization using sonatEEE Trans.
Pattern Anal. Machine Intellvol. PAMI-9, pp. 325-332, Mar. 1987.

K. T. Simsarian, T. J. Olson, and N. Nandhakumar, “View-invariant re-
gions and mobile robot self-localizatiodEEE Trans. Robot. Automat.
vol. 12, pp. 810-816, Oct. 1996.

R. Talluri and J. K. Aggarwal, “Mobile robot self-location using model-
image feature correspondencéEEE Trans. Robot. Automatol. 12,
pp. 63-77, Feb. 1996.

I. J. Cox, “Blanche—An experiment in guidance and navigation of a
autonomous robot vehicleJEEE Trans. Robot. Automatvol. 7, pp.
193-204, Apr. 1991.

F. Lu and E. Milios, “Robot pose estimation in unknown environment
by matching 2D range scans). Intell. Robot. Syst.vol. 18, pp.
249-275, 1997.

J. L. Crowley, F. Wallner, and B. Schiele, “Position estimation usini
principal components of range datd&gbbot. Auton. Systvol. 23, pp.
267-276, 1998.

(38]

(39]

[40]

[42]

(44]

(47]

[49]

[51]

(52]

(58]

[57]

(59]

Robot. Automatvol. RA-3, pp. 249-265, June 1987.

S. Atiya and G. D. Hager, “Real-time vision-based robot localization,”

IEEE Trans. Robot. Automatol. 9, pp. 785-800, Dec. 1993.

R. Talluri and J. K. Aggarwal, “Position estimation for an autonomous

mobile robot in an outdoor environmentEEE Trans. Robot. Automat.

vol. 8, pp. 573-584, Oct. 1992.

F. Stein and G. Medioni, “Map-based localization using the panoramic

horizon,”|EEE Trans. Robot. Automatol. 11, pp. 892—-896, Dec. 1995.

W. B. Thompson, T. C. Henderson, T. L. Colvin, L. B. Dick, and C. M.

Valiquette, “Vision-based localization,” iRroc. DARPA Image Under-

standing Workshqpl 993, pp. 491-498.

F. Cozman and E. Krotkov, “Automatic mountain detection and pose

estimation for teleoperation of lunar rovers,’'Rnoc. IEEE Conf. Robot.

Automat, vol. 3, 1997, pp. 2452-2457.

I. S. Kweon and T. Kanade, “High-resolution terrain map from multiple

sensor data,IEEE Trans. Pattern Anal. Machine Inteliol. 14, pp.

278-292, Feb. 1992.

R. Szeliski, “Estimating motion from sparse range data without corre-

spondence,” ifProc. Int. Conf. Comput. Visiori988, pp. 207-216.

Z. Zhang, “Iterative point matching for registration of free-form curves

and surfaces,Int. J. Comput. Visiopvol. 13, no. 2, pp. 119-152, 1994.

W. E. L. Grimson and D. P. Huttenlocher, “On the sensitivity of the

Hough transform for object recognitiodEEE Trans. Pattern Anal. Ma-

chine Intell, vol. 12, pp. 255-274, Mar. 1990.

W. E. L. Grimson, D. P. Huttenlocher, and D. W. Jacobs, “A study of

affine matching with bounded sensor errdnt. J. Comput. Visionvol.

13, no. 1, pp. 7-32, 1994.

W. E. L. Grimson and D. P. Huttenlocher, “Analyzing the probability

of a false alarm for the Hausdorff distance under translationProrc.

Workshop Performance versus Methodology in Comput. Vidi®84,

pp. 199-205.

A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture pro-

cessing,”J. ACM vol. 13, pp. 471-494, 1966.

J. Piper and E. Granum, “Computing distance transformations in convex

and nonconvex domainsPattern Recognitvol. 20, no. 6, pp. 599-615,

1987.

G. Borgefors, “Distance transformations in digital imag&gmput. Vi-

sion, Graphics, Image Processingl. 34, pp. 344-371, 1986.

S. Pavel and S. G. Akl, “Efficient algorithms for the Euclidean distance

transform,”Parallel Processing Lettvol. 5, no. 2, pp. 205-212, 1995.

R. J. Lipton and R. E. Tarjan, “Applications of a planar separator the-

orem,” SIAM J. Computingvol. 9, no. 3, pp. 615-627, 1980.

J. L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected time al-

gorithms for closest point problemsXCM Trans. Math. Softwarevol.

6, pp. 563-580, 1980.

L. Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle detection

for unmanned ground vehicles: A progress report,Pmc. Int. Symp.

Robot. Res.1996, pp. 475-486.

R. Volpe, “Navigation results from desert field tests of the Rocky 7 Mars

rover prototype,’Int. J. Robot. Resvol. 18, no. 7, pp. 669-683, July
999.

W. Burgard, A. Derr, D. Fox, and A. B. Cremers, “Integrating global
position estimation and position tracking for mobile robots: The dy-
namic Markov localization approach,” Proc. IEEE/RSJ Int. Conf. In-
tell. Robot. Syst.1998, pp. 730-735.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localiza-
tion for mobile robots,” inProc. IEEE Conf. Robot. Automaf.999, pp.
1322-1328.

J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige, “An experimental
comparison of localization methods,” Rroc. IEEE/RSJ Int. Conf. In-
tell. Robot. Syst.1998, pp. 736—743.

Clark F. Olson (S'92-M'94) received the B.S. de-
gree in computer engineering and the M.S. degree in
electrical engineering from the University of Wash-
ington, Seattle, in 1989 and 1990, respectively. He
received the Ph.D. degree in computer science from
the University of California, Berkeley, in 1994.

After spending two years as a Postdoctoral
Researcher at Cornell University, he was employed
by the Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, where he is currently a
Member of the Technical Staff in the Machine Vision

Group. His research interests include computer vision and mobile robotics.



