PATTERN
RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

PERGAMON

Pattern Recognition 34 (2001) 1247-1256
www_elsevier.com/locate/patcog

Locating geometric primitives by pruning the parameter space
Clark F. Olson*!

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 125-209, Pasadena, CA 91109-8099, USA
Received 27 July 1999; received in revised form 27 March 2000; accepted 27 March 2000

Abstract

This paper examines the detection of geometric primitives using 2D edge pixels or 3D range points. The geometric
primitives are described by parametric equations in the image space. An explicit error model allows the primitives to be
extracted robustly, while a hierarchical search of the parameter space with conservative pruning allows the primitives to
be located efficiently. The result is an efficient search strategy that is robust to distractors, missing data and noise, and
that does not require an initial estimate of the positions of the geometric primitives. We apply these techniques to circle
detection, for locating craters on planetary bodies and analyzing engineering drawings, and to cylinder detection, for
finding unexploded ordnance in test ranges. © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd.
All rights reserved.

Keywords: Geometric primitive extraction; Parameter estimation; Divide-and-conquer search; Robust error modeling; Randomized

algorithms

1. Introduction

The extraction of geometric primitives from image
data is a useful tool in many applications. In some
applications, such as transcribing engineering drawings
or crater detection, the extraction of geometric primitives
is an end result. Other applications use the extracted
primitives for higher-level analysis and recognition tech-
niques. In either case, applications in which geometric
primitive extraction is necessary require robust, accurate,
and efficient results. This paper presents a new method
for extracting geometric primitives that has these charac-
teristics.

Several methods have been previously used to extract
geometric primitives from image data. The most popular
methods are variations on the Hough transform (see
Refs. [1,2] for reviews). These methods map the image
features (such as edge pixels in an image or surface points
in a range map) into the space of possible primitive
parameters and then search for peaks in this parameter

*Tel: + 1-818-354-0638; fax: + 1-818-393-4085.
E-mail address: olson@robotics.jpl.nasa.gov (C.F. Olson).
Lhttp://robotics.jpl.nasa.gov/people/olson/homepage.html

space, since these peaks correspond to likely geometric
primitives. Other approaches include the use of robust
statistics to fit the image data in the presence of noise and
outliers [3,4], methods that hypothesize primitive posi-
tions using small sets of data features and then test each
position that is hypothesized [5,6], minimization of
a cost function through iterative optimization [7], and
region growing [8].

A key drawback to many of these methods is that it is
difficult to both propagate the effects of localization error
in the data features and handle large amounts of distract-
ing data (a particular primitive may consist of a small
fraction of the total data). Methods that are robust tend
to be inefficient. In this work, we take an approach that
deals with the effects of localization error explicitly
through the use of a bounded error model, can handle
large amounts of distracting data, does not require an
initial estimate of the primitive positions, and is com-
putationally efficient.

Our approach is inspired by research on object recog-
nition in which the parameter space is recursively divided
and pruned [9,10]. We retain the splitting and pruning
search strategy, but rather than using discrete points as
our model, we use a parameterized equation to describe
the geometric primitives. Similar ideas are also used in

0031-3203/01/$20.00 © 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(00)00064-9

1248 C.F. Olson | Pattern Recognition 34 (2001) 1247-1256

the fast Hough transform [11], although this method
applies only to linear models and lacks robustness since it
does not propagate error into the parameter space.

We extract geometric primitives from the image data
by searching for parameters corresponding to primitives
that satisfy an acceptance criterion based on how many
of the data features are fit by the primitive up to a
bounded error. In order to perform this search, we con-
sider cells of the parameter space. For each cell that is
examined, we determine whether the cell could contain
the parameters for a primitive that meets the acceptance
criterion. If not, then the cell is pruned. Otherwise, the
cell is split into two subcells and the subcells are exam-
ined recursively. When a very small cell is reached, we
test the primitive at the center of the cell to determine if it
meets the acceptance criterion.

An interesting facet of our search strategy is that a hi-
erarchy is constructed not only in the parameter space,
but also in the image feature space. This allows many
image features to be pruned at each step with little
computation, in addition to the pruning in the parameter
space. Empirical evidence suggests that this technique
reduces the complexity of the extraction process. This use
of a feature hierarchy is a general technique that can also
be applied to previous methods that use a search strategy
that prunes the parameter space [9-11]. Robust random
sampling techniques are also used to improve the speed
of the search.

2. Search strategy

In order to describe the search strategy that we use, we
must first discuss how the primitives will be represented
and how we decide which primitives should be reported.

Each class of primitives is represented by a set of
parametric equations f(X;I') = 0, where X is a vector of
the data feature parameters and I' is a vector of the
primitive parameters. For example, circles may be repre-
sented with X =[x y]'and T’ = [x. y. r]' by the follow-
ing equation:

(X_xc)2+(y_yc)2_r2:0~

We use an acceptance criterion based on the number of
data features that lie within some allowable error e of the
primitive. We denote this number N,(I'), where I is some
primitive position. When primitives of arbitrary scale are
considered, it is often useful to normalize this count by
the scale of the primitive (e.g. for circles, we would divide
by the radius), so that there is no bias towards large
primitives. Either the best primitive according to the
criterion can be reported, or all primitives that surpass
some threshold T. This criterion is able to handle occlu-
sion by setting the threshold at an appropriate value.
While lower thresholds can result in false positive instan-

ces, this is a universal problem for primitive extraction
that must be dealt with if we wish to also detect occluded
primitives.

To find the primitives that satisfy the acceptance cri-
terion, we consider rectilinear cells in the parameter
space. (At the start of the search, the parameter space
may consist of a single large cell or it may be split into
subcells.) Each point in the parameter space represents
a possible position of a geometric primitive in the data.
The cells are volumes of the parameter space and thus
represent a continuous space of possible geometric primi-
tive locations. Each cell in the parameter space is tested
to determine if it can contain the parameters of a primi-
tive that satisfies the acceptance criterion. An efficient
testing mechanism is used that is conservative in that it
never rules out a cell that contains a good primitive, but
it can fail to rule out a cell that does not contain any good
primitive. This does not result in false positives since the
cells are recursively examined at finer resolutions until
we reach very small cells. The smallest cells are tested by
considering the primitive represented by the center of the
cell.

In order to test each cell (aside from the smallest cells),
we compute a bound on the number of image features
that can match any primitive in the cell. To accomplish
this, we consider the primitive ['¢ represented by the
center of the cell. For each image feature p, we sum
the distance d, from the feature to this primitive and the
maximum deviation in the distance that can be achieved
by any other primitive in the cell. In general, this devi-
ation is a function of the size and position of the cell and
the position of the image feature:

de., = max [d(f(X:T).p) = d(/(X: Tc).

where d(f(X;I),p) is the distance from the primitive
represented by f(X; ') to the image feature, p.

For the sake of efficiency, we place a bound on this
value for any feature in the image:

de = max max [|d(f(X;T), p) — d(f(X;Tc), p)ll,

T'eC peD

where D is the set of image features (see below for an
example).

We next count the number of image features such that
the bound on the distance from any primitive in the cell,
d, — dc, is less than the allowable error e. The cell can
be pruned if this count is below the threshold set by the
acceptance criterion, since we can guarantee that the cell
cannot contain a primitive that meets the acceptance
criterion. If the cell cannot be pruned, it is divided into
two subcells by slicing it at the midpoint of one of the
parameters and the subcells are considered recursively
using a depth-first search.

To prevent this method from dividing the cells until
they become arbitrarily small, we set a threshold on d,.

C.F. Olson | Pattern Recognition 34 (2001) 1247-1256 1249

When d¢ falls below the threshold, we test the cell by
considering the quality of primitive at the center of the
cell to see if it meets the acceptance criterion. This is
equivalent to imposing some underlying discretization
on the parameter space, and considering only those posi-
tions in the underlying discretization. It is possible that
this could cause a primitive that meets the acceptance
criterion to be missed, but since the cells are very small
when they are tested in this manner, it is unlikely that
a significant error will be made. To formalize this, it can
be shown that, when d. < J, we are guaranteed to find
any primitive for which N,_s > T.

The computation of d¢ varies depending on the class of
primitives that we are trying to locate. We examine the
detection of circles as an example in this section. When
we wish to detect circles, we use f(X,T) = (x — x.)* +
(v — y¢)* — r2. Given two circles, I'y = [x,,V.,,71]" and
', =[x, Ve,], the difference in the distance of any
point from these two circles can be bounded by distance
between the centers of the circles and the difference in
radii.

d< \/(xm - xcz)z + (ycx — Ve)2 + |V1 - 1'2|.

Note that this does not depend on the circles them-
selves, only the difference between the parameters,
0 =TIy —T';, so we can rewrite this using o,

d <\/6% + 8% + 5,

Now, for any cell in the parameter space,
C = {[xe, v, 1111 S Xe < X301 S Yo S YTy ST LTy,

we can use this relationship to place a bound on d:

2 2
Xp — X Yn — Wi Iy — 1
de < i —h)
¢ /(2 >+< 2 >+< 2)

This bound on d¢ will not always allow us to prune the
cell from consideration. When a cell cannot be pruned,
we must decide which parameter should be chosen to
subdivide the cell. We subdivide the parameter that
causes our bound on d¢ to be reduced the most.

3. Image feature hierarchy

We can improve the search strategy described above
by performing hierarchical pruning not only in the para-
meter space, but also in the image feature space. It is
possible to rule out a cell containing multiple image
features for a particular parameter space cell by examin-
ing a single image location using a pruning technique
that generalizes the basic search strategy.

Consider a cell I in the image feature space. Let p; be
the center of this cell, d; be the distance from p; to the
furthest image feature in the cell, and d,, be the distance
from p; to the primitive represented by I'¢ (the center of

the parameter space cell C). We redefine d such that the
bound must now apply only to the image features in I:

dc = max max lld(f(X;T), p) — d(f(X;Tc), p)ll-

If d,, —d; —dc > e, then no image feature in the image
cell can match any primitive in the parameter space cell
up to the error, e, and we can thus prune the image cell
for this parameter space cell and any of its subcells that
are examined.

To take advantage of this idea, we build a hierarchy of
image feature cells that is similar to an R-tree [12], see
Fig. 1. This is a binary tree in which each node corres-
ponds to a cell in the image feature space. The root of the
tree is a cell just large enough to contain all of the image
features. Each cell that contains more than one image
feature has two children that are roughly half its size. The
union of the subcells need not be equivalent to the parent
cell, though, since we need only ensure that the subcells
cover all of the image features in the original cell. Each
individual feature is a leaf of the tree. This tree is built
recursively by subdividing the cells at the midpoint of the
longest axial direction. Each subcell is then contracted
such that it is just large enough to contain all of the data
features within it.

Once we have built this data structure, we can improve
the efficiency of the search strategy by pruning cells in the
image hierarchy, in addition to the pruning performed in
the parameter space. When a particular parameter space
cell is examined, we search this tree of cells in the image
space, rather than considering each feature individually.

° The root of the
° i tree is a cell
large enough to
b hold all of the
® ! image features.

hd \ Each non-leaf node
- has two children

[] that are subcells

3 containing the
features in the

A\ parent cell.

. Individual features
are leaves of the
tree.

Fig. 1. The image features are recursively subdivided into cells.

1250 C.F. Olson | Pattern Recognition 34 (2001) 1247-1256

This is performed in a manner similar to the search over
the parameter space cells. For each image space cell that
is examined, we determine if it can be pruned. If the cell
cannot be pruned, then we examine its subcells, unless
it is a leaf, in which case we increment the count on the
number of features that cannot be pruned.

Note that any image feature cell that is pruned for
some parameter space cell need not be considered in the
recursive examination of the parameter space subcells,
since the primitives represented by the subcells are a sub-
set of those represented by the original cell.

This technique is general enough to be used in combi-
nation with previous object recognition and curve detec-
tion methods (e.g. Refs. [9-11]), and the performance of
these methods can be improved through its use.

4. Random sampling

In many cases, there is more data than necessary to
extract a geometric primitive. For example, a cylinder
that covers only a 25 x 100 patch in a range image yields
2500 points on the cylinder, which is far more than
is necessary to extract the cylinder. We can use random
sampling techniques to reduce the amount of data that is
examined, while only slightly decreasing the accuracy of
the techniques. To accomplish this, we randomly sample
some set of the image features, which are processed as
described above. If we find a cylinder that matches
enough of the data features then we test the cylinder
using all of the data features.

We assume that only geometric primitives consisting
of at least some fraction « of the n image features are
salient and must be located. If we sample s features and
test the full cylinder if ys of the sampled features belong to
a primitive then the probability that a primitive is missed
due to sampling is

DGl

P = A smk)

fail kgo (g) 5
where g = [7s’| and n is the number of image features.
We compute y numerically such that a small predeter-
mined error rate (e.g. Pp; < 0.01) is satisfied. For
example, a 256 x 256 range image containing a cylinder
composed of 2500 pixels has o = 0.0381. If 1000 points
are sampled and a probability of failure no more
than 0.01 is desired, then we can use y < 0.0260 to
achieve this.

5. Overall algorithm

The complete algorithm using the steps in the above
sections is given in Fig. 2. We first subsample the set of
data points (line 3), if necessary. The data is then pre-

processed to obtain the data structure described in
Section 3, which is performed with a function call to
pre-process on line 15 of the pseudo-code. This pre-
processing step uses a recursive method, where the set of
points is divided into two subsets and then each of the
subsets is processed. The recursion ends when we exam-
ine individual points of the set (lines 16-17). Otherwise,
this procedure builds up a binary tree storing the set of
data points in a hierarchy determined by the geometry of
the set (lines 19-24).

Next, we examine the pose space using a recursive
procedure, starting with a cell that contains the entire
space. For each cell that is examined, we use the process-
cell procedure (line 25) to count the number of data
points that are consistent with some primitive in the pose
space cell by traversing the tree of pre-processed data
points, pruning branches when possible using the test
described in Sections 2 and 3 (lines 30 and 37), in which
case a value of zero is returned (lines 33 and 40). When
the cell is not pruned we return the sum of the values
from the childen of the cell (line 38), unless the cell is a
leaf, in which case we return 1 (line 31).

Finally, we examine the number of consistent points
reported by process-cell (line 6). If the count is above our
threshold (which may be a function of the cell position to
take into account information such as the radius of the
primitive), then we either report a candidate location (if
the pose space cell is a leaf) or divide the cell into subcells
to examine recursively (lines 10-12).

6. Performance

The empirical performance of this method for extract-
ing geometric primitives has been tested in several experi-
ments. We note that the computation complexity of these
techniques is O(pn), where p is the number of positions in
the underlying discretization of the parameter space and
n is the number of data features present in the image. We
can achieve this complexity with a brute force search of
every position in the discretization of the parameter
space and checking whether each feature is within e of the
geometric primitive at that position. The pruning tech-
niques do not improve upon the worst-case complexity,
since we cannot guarantee that the number of positions
in the parameter space that are examined is less than
O(n). However, this complexity is not informative, since
the pruning and randomization techniques make a
pronounced difference in the running time, and, indeed,
reduce the empirical complexity observed in real
images.

We have performed experiments for circle detection in
two-dimensional data to examine the empirical running
time of the techniques with respect to several parameters.
Random sampling was not used in these experiments, in
order to test the performance of the pruning techniques.

C.F. Olson | Pattern Recognition 34 (2001) 1247-1256 1251

1. locate(D,C,T,e): /* D is the set of data points. C' is the current pose cell. */
2. /* T is the acceptance function and e is the allowable error */
3. Subsample D (if necessary).
4. I=pre-process(D).
5. Count=process-cell(/,C, e).
6. If (Count> T'(CY)) then
7. If (C is a leaf) then
8. Report a candidate location at C.
9. Else
10. Bisect C' along longest dimension into Cpegin and Ceng.
11. locate(D, Chegin, T)
12. locate(D, Cena, T)
13. Else
14. Prune C.
15. pre-process(D): /* D is the current set of data points. */
16. If (||| = 1) then
17. Return D
18. Else
19. Select the longest dimension of D.
20. Bisect longest dimension at midpoint p.
21. Divide the points in D into two sets: Dyegin and Deng.
22. Struct->First=pre-process(Dyegin)
23. Struct->Last=pre-process(Dena)
24. Return Struct
25. process-cell(Z,C,e): /* I is a set of pre-processed data points. */
26. /* C is the current pose cell and e is the allowable error. */
27. Compute ¢ (the center of C).
28. Compute d¢ (this is problem dependent).
29. If (I is a leaf) then
*30. If (dist(Z, ¢) — dc < e) then
31 Return 1
32. Else
33. Return 0
34. Else
35. Compute i (the center of I).
36. Compute d; (the radius of points in T).
37. If (dist(z,¢)—dc — dr <€) then
38. Return process-cell(I->First),C, e)+process-cell(I->Last),C, €)
39. Else
40. Return 0

Fig. 2. Pseudo-code of the algorithm.

We first tested the change in the running time as a func-
tion of the number of features in the image. This experi-
ment was performed with images of varying size, but with
the same feature density, thus images with more features
correspond to larger images. Fig. 3 shows the results. It
can be observed that the running time of the techniques is
very closely linear up to 10,000 image features.

If we instead vary the density of the pixels in an image
of the same size, the results are very different, see Fig. 4.
In this case, we held the threshold at which circles were
reported constant, so that in the lower density images, no
circles were found. The running time appears to be ex-
ponential in the density of the image. This, in part, shows
why the asymptotic complexity mentioned earlier is mis-
leading. The amount of work that is done is still bounded
by a linear function of the number of features and the
number of possible model positions. However, due to the
optimizations, we examine far fewer than the total num-

ber of possible model positions and, for each model
position, we do not examine all of image features. The
amount of work that is done with the optimizations rises
sharply with the density of the features in the image.
These two graphs indicate that choosing an appropri-
ate threshold for the given density of image features is
crucial to maintaining high efficiency. If a threshold is
chosen such that the number of primitives meeting the
acceptance criterion due to the random accumulation of
features is large, then the running time of the detection
techniques is likely to be poor. However, when the thre-
shold is chosen such that a small number of significant
primitives are detected, the running time will be good.
In order to determine the benefit gained by the pruning
techniques, we have tested a method that does not take
advantage of the image space pruning. Fig. 5 shows the
speedup that is achieved by the pruning in the image
space through the use of our image feature hierarchy over

1252 C.F. Olson | Pattern Recognition 34 (2001) 1247-1256

Time

150
|

100
|

° T I I I

(o] 2000 4000 6000 8000 9999
Number of features

Fig. 3. When the threshold on which circles are detected is
varied with the density of the image features, the running time of
the techniques grows slowly.

[e]
0
N
.
Time
[e]
o _|
@
o
9 _|
o |
0n
]
I T T |
o] 2000 4000 6000 8000 9999

Number of features

Fig. 4. The running time of the techniques appears to be ex-
ponential when the density of the image features is increased
without changing the threshold on which circles are detected.
However, maintaining the same threshold as the density in-
creases significantly is not realistic in practice.

a method that does not use image space pruning. In these
experiments, the number of data features was increased
through the examination of various size images with
the same image density. The speedup that is achieved

20

Speedup

° I I l I

(o} 2000 4000 6000 8000 9999
Number of features

Fig. 5. The speedup that is achieved through the using of prun-
ing in the image space is linear in the number of image features.

3000
|

Time

2000
|

1000
|

<]
I f \ I
o 2000 4000 6000 8000 9999

Number of features

Fig. 6. The time required when the image space pruning tech-
niques are not applied is quadratic in the number of image
features.

through the use of the image feature hierarchy increases
with the size of the image, as expected. Since this speedup
is linear, and the running time also increases approxim-
ately linearly with the number of features, the running
time of the techniques without this pruning should be

C.F. Olson | Pattern Recognition 34 (2001) 1247-1256 1253

approximately quadratic in the number of features. This
is supported by the running times observed, see Fig. 6. It
thus appears that the use of these pruning techniques
yields a decrease in the practical complexity of the primi-
tive extraction algorithm from quadratic to linear in the
size of the image.

The observed quadratic complexity for the case where
image pruning is not used is because there is not only
a linear increase in the possible positions at which the
model may appear, but also a linear increase in the
number of features processed at each of the positions that
are examined. The pruning techniques effectively elimin-
ate the linear factor due to the number of features pro-
cessed, thus reducing the overall computation time to
linear in the size of the image.

7. Relationship to previous work

The techniques we have described can be thought of as
an efficient implementation of robust Hough transform
techniques. The reporting criterion that we use is the
same as in a robust version of the Hough transform [13]
and the method detects the geometric primitives by
searching the parameter space. However, the method by
which the space is searched is somewhat different from
a conventional Hough transform implementation. In-
stead of explicitly mapping sets of image features into
a quantized parameter space, the parameter space is
considered as a recursive hierarchy of cells, each of which
is tested to determine whether it could contain a primi-
tive satisfying the acceptance criterion.

The fast Hough transform technique of Li et al. [11]
uses a strategy that is similar to ours to search the
parameter space, since the parameter space is recursively
divided and pruned. However, their technique is limited
to linear problems, such as line or plane detection. In
addition, they use an acceptance criterion that is not
robust. For each cell in the parameter space, they count
only the image points that fall exactly on a primitive that
is represented by a point in the cell. When the cells
become small, the error in the image feature detection
will cause points to fall outside of the cell that represents
the best primitive. This criterion relies upon the smallest
cells being large enough to catch most of the points from
the correct primitives, while being small enough not to
detect false positives. However, this technique is prone to
failures [13,14].

The most closely related work to ours is Breuel’s
method for line detection under bounded error [15].
Breuel uses both a similar search strategy and a robust
acceptance criterion. This paper is limited to the detec-
tion of lines, for which Breuel gives a very detailed analy-
sis, while we consider techniques that apply to any para-
meterized geometric primitive. Our work can thus be
considered to be a generalization of Breuel’s work to

arbitrary geometric primitives with the additional exten-
sion of image space pruning.

We note that it is possible to use object recognition
techniques directly in the extraction of geometric primi-
tives, by constructing a canonical primitive composed
of a set of discrete points [10]. However, there are two
disadvantages to this approach. First, if we do not know
the scale of the primitive, the sampling of points on the
primitive will be either too coarse, and thus a poor
representation, or too fine, and thus inefficient in the
search. Second, some primitives (such as cylinders) have
unbounded potential extent. If we place an artificial
bound on the extent of such primitives, the extent is likely
to be too short or too long, leading to problems as above.
In addition, this adds a degree of freedom to the search,
since we must now search the translations along the axis
of the cylinder. This adds considerably to the computa-
tion required by the method.

8. Results

We have applied these techniques to two problems. In
the first, we perform circle detection in order to extract
craters from imagery of planetary bodies and to analyze
engineering drawings. The second considers locating
surface-lying ordnance by extracting cylinders from
three-dimensional range data. Of course, there are many
other applications for extraction of circles and cylinders
from image data and also many other primitives that can
be extracted through the use of these techniques.

8.1. Circle detection

For several applications, it is desirable to be able to
detect craters on planetary bodies. Some examples in-
clude mapping of planetary bodies, geological studies,
and optical navigation of spacecraft. One approach to
accomplishing this is to perform edge detection on an
image of the surface of a planetary body and detect the
circles (or ellipses) that are present in the edge image. We
use the following parameterization for circles:

(x = x)* + (1 —y)? —r*=0.

In this application it is useful to incorporate knowledge
about the lighting direction in the extraction process,
since the gradient orientations at the edges of craters will
have roughly the same orientation as the lighting direc-
tion (positive dot-product), while shadow edges will have
the opposite orientation (negative dot-product). We can
thus screen out the shadow edges through the use of this
information.

Fig. 7 shows an application of these techniques to
detecting craters on the surface of Phobos (a moon of
Mars). Edges were first detected in an image from Viking

1254 C.F. Olson | Pattern Recognition 34 (2001) 1247-1256

Fig. 7. Finding craters by locating circles in edge images: (a) an image of the surface of Phobos (the larger of the two moons of Mars), (b)
the edges detected in the image, (c) the craters detected overlaid on the original image.

ATREF
= ot —— 5 45 3.3 —
b 5 SPNES@ .49
1 5.50 —
E— : : 2.500 - —
(a)

(b)

Fig. 8. Circle detection example in a noisy, scanned engineering drawing: (a) original image, (b) circles detected.

Orbiter. We then searched for the circles in the edge map
that had Ny 5(I')/r = &, where N 5(I') is the number of
image pixels that matched the circle up to a maximum
error of 1.5 pixels and r is the radius of the circle. We did
not use the random sampling techniques for this case,
since the volume of the data was not large. Eight circles

were found that met the acceptance criterion and these
correspond to the eight significant craters in the image.

Fig. 8 shows an example where these techniques have
been applied to a noisy, scanned engineering drawing.
In this case, we searched for circles in the edge map where
Ny oI)/r = 2n, where Ny o(I') is the number of image

C.F. Olson | Pattern Recognition 34 (2001) 1247-1256 1255

N 7’
Y-

Fig. 9. Parameterization of a cylinder.

/e i
< fIX - P

pixels that matched the circle up to a maximum error of
1.0 pixels and r is the radius of the circle. Each of the
complete circles was detected in the image and the signifi-
cant clutter in the image did not result in any false
positives being found.

8.2. Cylinder detection

A second problem that we have examined is the local-
ization of unexploded, surface-lying ordnance using
stereo imagery for the purpose of semi-autonomous
remediation. This is motivated by the existence of many
test ranges in the United States (and abroad) where
live-fire testing is performed that contain dangerous
ordnance. In current practice, technicians walk the range
marking the locations of ordnance for disposal, a danger-
ous task. We use a binocular stereo system [16] to
generate range images of outdoor scenes. We extract
cylinders from stereo range data to determine if there is
an unexploded bomb present.

-

&

(it
i fan

(a)

Cylinders have five degrees of freedom, but in this
application, we assume that the radius of the bomb is
known so that the search space is reduced to four para-
meters. We also use the known geometry of cylinders
to prevent portions of the cylinder that should be self-
occluded from matching points in the image. We para-
meterize the cylinders with the equation

X — PII* = (X — P)4)* —r* =0,

where X describes the points on the cylinder, P is an
arbitrary point on the cylinder axis, 4 is the axis direc-
tion, and r is the radius of the cylinder, see Fig. 9. This
parameterization allows multiple representations of the
same cylinder, since it has seven free parameters rather
than five. We incorporate two constraints so that we
have a unique representation for each possible cylinder:

14l =1
and
A-P=0.

Fig. 10(a) shows an example image containing a
bomb where we have applied the cylinder detection
techniques. Fig. 10(b) shows the surface map that
was extracted using stereo vision. In this case, we sampled
5% of the range data and used numerical techniques to
determine an appropriate threshold for testing to the
entire data set. A cylinder was detected at the location of
the bomb shown in Fig. 10(c). No other cylinders were
detected.

9. Summary

This paper has explored the detection of geometric
primitives in image data. We have adopted a search
strategy where the parameter space is recursively divided

Fig. 10. The use of cylinder detection to find unexploded ordnance. (a) Left image of a stereo pair containing surface-lying ordnance.
(b) Range map extracted from the stereo pair. (c) A cylinder meeting the acceptance criterion was found at the location of the bomb.

This image shows the axis and boundaries of the cylinder.

1256 C.F. Olson | Pattern Recognition 34 (2001) 1247-1256

and pruned. This allows geometric primitives to be ro-
bustly and efficiently extracted from noisy data that
contains large amounts of distracting data, without re-
quiring an initial estimate of the primitive locations.

Further improvements have been gained through the
use of a hierarchical representation of the image features
that allows them to be efficiently processed and the use of
random sampling to reduce the volume of data that must
be processed. The use of this hierarchical image repres-
entation to reduce the search time is a general technique
that can be applied in addition to previous algorithms.
Empirical experiments indicate that this technique reduc-
es the search time for quadratic to linear in the number of
image features.

Finally, these techniques have been applied to the
detection of craters on planetary bodies, analysis of en-
gineering drawings, and locating surface-lying ordnance
in military test ranges.

Acknowledgements

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the Wright Laborat-
ory at Tyndall Air Force Base, Panama City, Florida,
through an agreement with the National Aeronautics
and Space Administration.

References

[1] J. lllingworth, J. Kittler, A survey of the Hough transform,
Comput. Vision Graphics Image Process. 44 (1988)
87-116.

[2] V.F. Leavers, Which Hough transform? CVGIP: Image
Understanding 58 (2) (1993) 250-264.

[3] D.S. Chen, A data-driven intermediate level feature extrac-
tion algorithm, IEEE Trans. Pattern Anal. Mach. Intell.
11 (7) (1989) 749-758.

[4] P.Meer, D. Mintz, A. Rosenfeld, D.Y. Kim, Robust regres-
sion methods for computer vision: a review, Int. J. Com-
put. Vision 6 (1) (1991) 59-70.

[5] R.C.Bolles, M.S. Fischler, A RANSAC-based approach to
model fitting and its application to finding cylinders in
range data, Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 1981, pp. 637-642.

[6] G. Roth, M.D. Levine, Extracting geometric primitives,
CVGIP: Image Understanding 58 (1) (1993) 1-22.

[7] F. Solina, R. Bajcsy, Recovery of parametric models from
range images: the case for superquadrics with global defor-
mations, IEEE Trans. Pattern Anal. Mach. Intell. 12 (2)
(1990) 131-147.

[8] P.J. Besl, R.C. Jain, Segmentation through variable-order
surface fitting, IEEE Trans. Pattern Anal. Mach. Intell.
10 (2) (1988) 167-192.

[9] T.M. Breuel, Fast recognition using adaptive subdivisions
of transformation space, Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 1992,
pp. 445-451.

[10] D.P. Huttenlocher, W.J. Rucklidge, A multi-resolution
technique for comparing images using the Hausdorff dis-
tance, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1993, pp. 705-706.

[11] H.Li, M.A. Lavin, R.J. Le Master, Fast Hough transform:
a hierarchical approach, Comput. Vision Graphics Image
Process. 36 (1986) 139-161.

[12] A. Guttman, R-trees: a dynamic index structure for spatial
searching, Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, 1984,
pp. 47-57.

[13] C.F. Olson, Constrained Hough transforms for curve
detection, Comput. Vision Image Understanding 73 (3)
(1999) 329-345.

[14] W.E.L. Grimson, D.P. Huttenlocher, On the sensitivity of
the Hough transform for object recognition, IEEE Trans.
Pattern Anal. Mach. Intell. 12 (3) (1990) 255-274.

[15] T.M. Breuel, Finding lines under bounded error, Pattern
Recognition 29 (1) (1996) 167-178.

[16] L. Matthies, Stereo vision for planetary rovers: stochastic
modeling to near real-time implementation, Int. J. Com-
put. Vision 8 (1) (1992) 71-91.

About the Author—CLARK F. OLSON received the B.S. degree in Computer Engineering and the M.S. degree in Electrical Engineering
from the University of Washington, Seattle in 1989 and 1990, respectively. He received the Ph.D. degree in Computer Science from the
University of California, Berkeley in 1994. After spending two years as a post-doctoral research at Cornell University, he was employed
by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, where he is currently a member of the Machine
Vision group. His research interests include computer vision and mobile robotics.

