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Abstract

Hierarchical clustering is a common method used to determine clusters of similar data
points in multidimensional spaces. O(n?) algorithms are known for this problem [3,4,11,19].
This paper reviews important results for sequential algorithms and describes previous work
on parallel algorithms for hierarchical clustering. Parallel algorithms to perform hierarchical
clustering using several distance metrics are then described. Optimal PRAM algorithms
using n/log n processors are given for the average link, complete link, centroid, median,
and minimum variance metrics. Optimal butterfly and tree algorithms using n/log n
processors are given for the centroid, median, and minimum variance metrics. Optimal
asymptotic speedups are achieved for the best practical algorithm to perform clustering
using the single link metric on a n/log n processor PRAM, butterfly, or tree.

Keywords: Hierarchical clustering; Pattern analysis; Paralle]l algorithm; Butterfly network;
PRAM algorithm

1. Introduction

Clustering of multidimensional data is required in many fields. One popular
method of performing such clustering is hierarchical clustering. This method starts
with a set of distinct points, each of which is considered a separate cluster. The
two clusters that are closest according to some metric are agglomerated. This is
repeated until all of the points belong to one hierarchically constructed cluster.
The final hierarchical cluster structure is called a dendrogram (see Fig. 1), which is
simply a tree that shows which clusters were agglomerated at each step. A
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Fig. 1. A dendrogram shows how the clusters are merged hierarchicaily.

dendrogram can easily be broken at selected links to obtain clusters of desired
cardinality or radius. This representation is easy to generate and store, so this
paper will concentrate on the determination of which clusters to merge at each
step.

We must use some metric to determine the distance between pairs of clusters.
For individual points, the Euclidean distance is typically used. For clusters of
points, there are a number of metrics for determining the distances between
clusters. The distance metrics can be broken into two general classes, graph
metrics and geometric metrics.

(1) Graph metrics. Consider a completely connected graph where the vertices are
the points we wish to cluster and the edges have a cost function that is the
Euclidean distance between the points. The graph metrics determine interclus-
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ter distances according to the cost functions of the edges between the points in
the two clusters. The common graph metrics are:

e Single link : The distance between two clusters is given by the minimum cost
edge between points in the two clusters.

e Average link : The distance between two clusters is the average of all of the
edge costs between points in the two clusters.

eComplete link: The distance between two clusters is given by the maximum
cost edge between points in the two clusters.

(2) Geometric metrics. These metrics define a cluster center for each cluster and
use these cluster centers to determine the distances between clusters. Exam-
ples include:

e Centroid: The cluster center is the centroid of the points in the cluster. The
Euclidean distance between the cluster centers is used.

e Median: The cluster center is the (unweighted) average of the centers of
the two clusters agglomerated to form it. The Euclidean distance between the
cluster centers is used.

o Minimum variance: The cluster center is the centroid of the points in the
cluster. The distance between two clusters is the amount of increase in the sum
of squared distances from each point to the center of its cluster that would be
caused by agglomerating the clusters.

Useful clustering metrics can usually be described using the Lance-Williams
updating formula [9]. The distance from the new cluster i + j to any other cluster k
is given by:

d(i+j, k) =a(i)d(i, k) +a(j)d(j. k) +bd(i, j) +cld(i. k) —d(j, k)|

Table 1 gives the coefficients in the Lance-Williams updating formula for the
metrics described above. O(n?) time algorithms exist to perform clustering using
each of these metrics [3,4,12,19]. Any metric that can be described by the
Lance-Williams updating formula can be performed in O(n® log n) time [3].

This paper rcviews several important sequential algorithms and discusses previ-
ous work on parallel algorithms for hierarchical clustering. Optimal algorithms are
given for hierarchical clustering using several intercluster distance metrics and
parallel architectures.

2. Sequential algorithms

Several important results on sequential hierarchical clustering algorithms are
summarized in [11]. Additional results are presented in [3). This section describes
some of these results. In each of the following algorithms, D(i, j) will represent



1316 C.F. Olson / Parallel Computing 21 (1995) 1313-1325

Table 1
Parameters in the Lance-Williams updating formula for various clustering metrics. (] x | is the number of
points in cluster x)

Metric ali) b ¢
. . 1 1
Single link 3 0 -3
A link 7] 0 0
verage lin
[il+1/1
C ! !
“omplete link - 0 2
omplete lin 5 5
_ )i il1]
Centroid - - - 0
lil+] 71 (lil+1j1)
1 1
Median — - 0
2 4
Mini . lit+ k| k| 0
inimum variance - S
il+1j1+ 1kl lil+1j1+1k]

the distance between clusters i and j and N(i) will represent the nearest neighbor
of cluster i.

2.1 Single link, median, and centroid metrics

Clustering using the single link metric is closely related to finding the Euclidean
minimal spanning tree of a set of points and they require the same computational
complexity since the minimal spanning tree can easily be transformed into the
cluster hierarchy. While o(n?) algorithms exist to find the FEuclidean minimal
spanning tree {20], these algorithms are impractical when the dimensionality of the
cluster space d > 2.

Fig. 2 gives a practical algorithm for the single link metric. Computing arrays
storing each D(i, j) and N(i) requires O(n?) time. Given these arrays, computing
the two closest clusters can be performed O(n) time by examining each cluster’s
nearest neighbor. To agglomerate the clusters, we simply store which clusters were
agglomerated and update the arrays. The single link metric has the property that if
we agglomerate clusters ¢ and j into i +j, any cluster that had either / or j as its

Function cluster-single-link(input: point-set)
For each {i,j : 0< i< j < n}compute D(7,7).
For each {i : 0 <t < n} compute N(i).
Repeat n — 1 times:
Determine z,J such that D(4, j) is minimized.
Agglomerate clusters ¢ and j.
Update each D(z,7) and N(:i) as necessary.
End

Fig. 2. An efficient algorithm to perform single link clustering.
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Fig. 3. Nearest neighbors for a set of clusters before and after an agglomeration. When the SANN
property holds, the nearest neighbors remain the same, with the new cluster taking the place of both of
the clusters that were agglomerated to form it.

nearest neighbor now has i +j as its nearest neighbor. We will call this the same
agglomerative nearest neighbor property or SANN property. See Fig. 3. The SANN
property allows us to update the arrays in O(n) time for the single link metric,
yielding an O(»?) time algorithm.

To perform clustering using other metrics, the updating step is more compli-
cated, since the SANN property does not hold. Determining the new nearest
neighbors when using these metrics requires O(n) time each. For the centroid and
median metrics, Day and Edelsbrunner [3] have shown that the number of clusters
for which we need to determine the new nearest neighbor is bounded by a function
that is O(min(2<, n)), which for constant d is O(1). Thus, for these metrics, the
algorithm still requires O(n) per iteration to update the arrays and O(n?) time
overall.

Note that this algorithm requires O(n?) space to store each of the pairwise
distances for the single link metric. (For the centroid and median metrics, we can
store the cluster centers in O(n) space and generate the distances as needed.)
Sibson [19] gives an O(n?) time algorithm for the single link case requiring O(n)
space and Defays [4] gives a similar algorithm to perform complete link clustering.

2.2 Metrics satisfving the reducibility property

For metrics that satisfy the reducibility property [11] we can perform clustering in
O(n?) time by computing nearest neighbor chains. The reducibility property
requires that when we agglomerate clusters ¢/ and J, the new cluster i +j cannot be
closer to any cluster than both clusters /i and j werc. Formally, if the following
distance constraints hold for clusters i, j, and & for some distance p:

D(i, j)<p
D(i,k)>p
D(j, k)>p
then we must have for the agglomerated cluster i + j:
D(i+j, k)>p.

The minimum variance metric and all of the graph metrics satisfy this property,
so they are ideal metrics for use with this algorithm. The centroid and median
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Fig. 4. The centroid and median metrics do not satisfy the reducibility property. In this case, when
clusters B and C are agglomerated, the center of the new cluster is closer to 4 than either of the
previous clusters.

Function cluster-reducible-metrics(input: point-set)
Pick 0 < ¢; € n at random.

1:=1.
Repeat n — 1 times:
Repeat:
1i=14+ 1.

Determine ¢; = N{ci-1).
until ¢; = ¢i-2.
Agglomerate clusters ¢; and N{c,).

ifi>3
ir=i-3.
else
i=1.
End

Fig. 5. An algorithm to efficiently perform clustering using metrics that satisfy the reducibility property.

metrics do not satisfy the reducibility property (see Fig. 4). This algorithm still
provides a good approximate algorithm for these cases, but the order of examining
the points can change the final hierarchy.

Fig. 5 gives the algorithm. This algorithm works by following a nearest neighbor
chain until a pair of mutual nearest neighbors are found and then agglomerating
them. See Fig. 6. By amortizing the cost of determining the nearest neighbors, it
can be seen that this algorithm requires O(n?) time and O(n) space for clustering
techniques using cluster centers. It can also be used to perform clustering using

Fig. 6. The algorithm for reducible metrics determines which clusters to merge by following a nearest
neighbor chain to its end.
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Function cluster-general(input: point-set)
For each point 1:
Generate a priority queue P; of the distances to each other point.
Repeat n — 1 times:
Determine the closest two clusters ¢ and .
Agglomerate clusters z and j.
Update each P;.
End

Fig. 7. An algorithm to perform clustering efficiently in the general case.

graph theoretical metrics by keeping an array of the intercluster distances, increas-
ing the space requirement to O(n?).

2.3 General metrics

For any metric where the modified intercluster distances can be determined in
O(1) time (e.g. using the Lance—Williams updating formula), clustering can be
performed in O(n® log n) time using the algorithm in Fig. 7 [3].

In this algorithm, we use priority queues to determine the nearest neighbor of
each cluster. These can be implemented as heaps and thus each can be generated
in O(n) time. At each iteration of the loop, we determine the closest pair of
clusters in O(n) time by examining the head of each priority queue. We must then
create a new priority queue for the agglomerated cluster, remove a cluster from
each queue and update the distance to a cluster in each queue. This step requires
O(n log n) time and is performed O(n) times. The total time required is thus
O(n? log n).

3. Previous parallel algorithms

Several authors have previously examined parallel algorithms for hierarchical
clustering. In addition, there has been much recent work on parallelizing parti-
tional clustering algorithms (another popular type of clustering.) See, for example,
[15,17,21].

Rasmussen and Willett [16] discuss parallel implementations of clustering using
the single link metric and the minimum variance metric on a SIMD array
processor. They have implemented parallel versions of the SLINK algorithm [19],
Prim’s minimal spanning tree algorithm [14], and Ward’s minimum variance
method [7]. Their parallel implementations of the SLINK algorithm and Ward’s
minimum variance algorithm do not decrease the O(n?) time required by the serial
implementation, but a significant constant factor speedup is achieved. Their
parallel implementation of Prim’s minimal spanning tree algorithm achieves
O(n log n) time with sufficient processors.

Li and Fang [10] describe algorithms for hierarchical clustering using the single
link metric on an sn-node hypercube and an n-node butterfly. Their algorithms are
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paralle]l implementations of Kruskal’s minimal spanning tree algorithm [8] and run
in O(n log n) time on the hypercube and O(n log® n) on the butterfly, but in fact
the algorithms appear to have a fatal flaw causing incorrect operation. In their
algorithm, each processor stores the distance between one cluster and every other
cluster. When clusters are agglomerated, they omit the updating step of determin-
ing the distances from the new cluster to each of the other clusters. If this step is
added to their algorithms in a straightforward manner, the times required by their
algorithms increase to O(n?).

Driscoll et al. [6] have described a useful data structure called the relaxed heap
and they have shown how it can be applied to the parallel computation of minimal
spanning trees. The relaxed heap is a data structure for manipulating priority
queues that allows deleting the minimum element to be performed in O(log n)
time and the decreasing the value of a key to be performed in O(1) time. The use
of this data structure allows the parallel implementation of Dijkstra’s minimal
spanning tree algorithm [5] in O(n log n) time using m /(n log n) processors on a
PRAM, where n is the number of vertices in the graph and m is the number of
edges.

Bruynooghe [2] describes a parallel implementation of the nearest neighbors
clustering algorithm suitable for a parallel supercomputer. At each step, this
algorithm dispatches tasks to determine the nearest neighbor of each cluster in
parallel and then agglomerates each pair of reciprocal nearest neighbors in
parallel. While this will achieve a speedup of the algorithm in most cases, some
cases require n — 1 iterations each of which require O(n) time. The worst-case
complexity is thus the same as the sequential algorithm.

4. Parallel algorithms

This section discusses parallel implementations for each for the metrics on
PRAMSs and butterflies. In these algorithms, each cluster is the responsibility of
one processor. When two clusters are agglomerated, the processor with the lower
number of the two takes responsibility for the new cluster. If the other processor
no longer has any clusters in its responsibility, it becomes idle.

4.1 Single link metric

We can use a parallel version of the algorithm in Fig. 2 to efficiently perform
clustering using the single link metric on a PRAM. The intercluster distance and
nearest neighbor arrays are easily computed in O(n/p) time, where p is the
number of processors. For each iteration of the loop, we find the minimum of the
nearest neighbor distances. The indexes of these clusters are then broadcast. Each
processor updates the distances from the clusters that it is responsible for to the
new cluster. Since the SANN property holds for the single link metric, we can
update the nearest neighbors efficiently. The nearest neighbor of the new cluster is
determined by finding the cluster with the minimum distance to it.
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ﬁ‘unction minimal-spanning-tree(input: point-set)
Pick 0 < ¢ < n at random.
{ Foreach0<j<n
1 A(j) :=the distance between points ¢ and j.
\ Repeat n — 1 times:
Find the minimum A(y).
Add j to the minimal spanning tree.
For each k not in the minimal spanning tree:
A(k) ==min(A(k), D(j, k))-
End

Fig. 8. An efficient algorithm to determine the minimal spanning tree of a set of points on a butterfly.

If we use n/log n processors (each processor is responsible for log # clusters),
we can perform the broadcast and minimization operations in O(log ») time on a
PRAM. The entire algorithm thus requires O(n log n) time using n/log n proces-
sors, which is optimal.

This algorithm is not efficient on a butterfly or tree since the distance from the
new cluster to each of the other clusters would be stored on the same processor,
requiring O(n) time to update at each step. For this case, we can use a variant of
the parallel minimal spanning tree algorithm given by Driscoll et al. [6] (see Fig. 8).
If we use n/log n processors, the loop requires O(log n) time to find the
minimum A(j) and thus O(n log n) time overall on a butterfly or tree. The
minimal spanning tree can then easily be transformed into the cluster hierarchy
[12,18]. Fig. 9 shows how the trees are built in these algorithms.

4.2 Centroid and median metrics

The single link PRAM algorithm can also be used for the centroid and median
metrics with small modifications. When each pair of clusters is agglomerated, we
now need to determine the new nearest neighbor of each of the clusters that had

{a) (b}

Fig. 9. The minimal spanning tree is built differently in the two algorithms. Shown is a point set after 5
agglomerations for both cases. (a) The PRAM algorithm generates a forest of trees and agglomerates
the closest two clusters at each step. (b) The butterfly algorithm generates a single tree and adds the
closest cluster to it at each step.
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one of the agglomerated clusters as its nearest neighbor. Day and Edelsbrunner [3]
have shown that there are O(1) clusters that can have any specific cluster as a
nearest neighbor for these metrics. We can write the indexes of the clusters that
need new nearest neighbors to a queue on some processor. We then iterate
through this queue, broadcasting the index of each cluster and determining the
new nearest neighbor using a minimization operation. We can thus perform this
algorithm in O(n log n) time using n/log n processors on a PRAM, butterfly or
tree.

4.3 Minimum variance metric

For the minimum variance metric, we will use a parallel version of the algorithm
in Fig. 5. We must perform the inner loop (determining the nearest neighbor of a
cluster) no more than 3n times and this step dominates the computation time. If
we use n/log n processors, we can simply store the location of the center of each
cluster on each processor and find the nearest neighbor in O(log n) on a PRAM,
butterfly or tree by performing minimization on the distance from the cluster in
question to the clusters that each processor is responsible for. The algorithm thus
requires O(n log n) and is optimal,

4.4 Average and complete link metrics

For the average and complete link metrics on a PRAM, we can use the same
algorithm as for the minimum variance metric, except that we must now keep an
explicit array of the intercluster distances. This array can be updated in O(log n)
time per agglomeration.

This algorithm does not achieve optimality for the average and complete link
metrics on a butterfly or tree, since in this case we must specify which processor
stores each distance. If each processor stores all of the distances for the clusters it
is responsible for, then all of the distances for the agglomerated cluster will be
stored on the same processor and we will not be able to update the array
efficiently. The following subsection gives the best known algorithm for this case.

4.5 General metrics

For general metrics, we have no bound on the number of clusters that may have
any particular cluster as a nearest neighbor. In addition, we cannot use the nearest
neighbor chain algorithm since the metric may not satisfy the reducibility property.
In this case, we can employ a parallel variant of the algorithm in Fig. 7 for any
metric where the new intercluster distance can be determined in constant time,
given the old intercluster distances (i.e. using the Lance—-Williams updating for-
mula.)

We can create a priority queue in O(n) time on a single processor and in
Oflog n) time on a n processor PRAM, but we must now update each priority
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Processor Processor
0 1 2 3 0 1 2 3
Dq0|D1,0[D2,0{D3,0 Dqo\D1.0|D2.0|D3,0
Do.1|D1,1|D2,1|D3,1 D3,1|Do,1|D1,1{D2,1
Dy 2|D12|D2,2{D3 2 D3,2|D3,2|Do2|D1,2
Dy 3|D1,3|D2,3{D3,3 D 3|D2,3|D3,3|Do,3

(a) (b)

Fig. 10. Distribution of D values between processors. This example shows the case for p = n = 4. (a)
Straightforward distribution (b) Skewed distribution of values.

queue after each agglomeration, a step that requires O(log #) time. This algorithm
thus requires O(n log n) time on an n processor PRAM, but since the sequential
algorithm for general metrics required O(n? log n) time, this is optimal.

We cannot use this algorithm naively on local memory machines, since we
cannot store all of the distances to a single cluster on the same processor (each
agglomerated cluster would require O(n) work on a single processor at each step).
We can use a new storage arrangement to facilitate this implementation (see Fig.
10). In the skewed storage arrangement, each processor p stores the distance

Table 2

Summary of worst case running times on various architectures

Network Distance Metric Time Processors Work
Sequential Single link O(f(n, d)t 1 O(f(n, )

Average link
Complete link

Centroid O(n?) 1 0O(n?)

Median

Minimum variance
Sequential General O(n? log n) 1 O(n? log n)
PRAM Single link

n
Butterfly Centroid O(n log n) ——0(n?)
log n

or Tree Median

Minimum variance

PRAM Average link O(n log n) 0(n?)
logn
Complete link
General
Butterfly Average link O(n log n) n 0(n? log n)

Complete link

¥ The best known complexity derives from the time to find the Euclidean minimal spanning tree, which
can be computed in O(n?~ %@ log! ~%Dp) time where a(d)=2"9""! [20], but this algorithm is
impractical for most purposes. The best practical algorithms for d > 2 use O(n?) time.
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between clusters i and j if (i +j) mod n = p. For this case, each processor must
update only two values per agglomeration for each cluster that it is responsible for.

Updating the data structure now requires more work, since each updated
distance is a function of three intercluster distances in the Lance—Williams
updating formula and only one of them will be stored on the processor where the
result will be determined and stored. We need to perform two permutation routing
steps to collect this information into the appropriate processors. General permuta-
tion routing on a butterfly requires O(log? n) time in the worst case, but since we
only need to consider O(n?) possible permutations (corresponding to the
n{n —1)/2 pairs of clusters we could merge), we can compute deterministic
O(log n) time routing schedules for each of them off-line [1]. These schedules are
then indexed by the numbers of the clusters that are merged. Thus, we have an
efficient parallel algorithm for general algorithms on a butterfly network, but we
now require computing O(n?) routing schedules off-line and sufficient memory to
store the schedules on each processor.

5. Summary

We have considered parallel algorithms for hierarchical clustering using several
intercluster distance metrics and parallel computer architectures. Table 2 summa-
rizes the complexities achieved. In addition to the results discussed here, O(n)
time algorithms for n processor CRCW PRAMSs exist for each metric except for
the general case [13). We have achieved optimal efficiency for each metric on a
PRAM and for the single link, centroid, median, and minimum variance metrics on
a butterfly or tree. Due to the nature of the average link and complete link
metrics, we hypothesize that optimal parallel performance is not possible for them
on parallel architectures with local memory.
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