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Probabilistic Indexing for Object Recognition
Clark F. Olson

Abstract—Recent papers have indicated that indexing is a promising
approach to fast model-based object recognition because it allows most
of the possible matches between sets of image features and sets of model
features to be quickly eliminated from consideration. This correspon-
dence describes a system that is capable of indexing using sets of three
points undergoing three-dimensional transformations and projection by
taking advantage of the probabilistic peaking effect. To be able to index
using sets of three points, we must allow false negatives. These are over-
come by ensuring that we examine several correct hypotheses. The use of
these techniques to speed up the alignment method is described. Results
are given on real and synthetic data.

Index Terms—Object recognition, indexing, probabilistic algorithms,
probabilistic peaking effect, alignment method.

1. INTRODUCTION

Feature set indexing is a tool that is useful in object recognition
algorithms. These indexing methods determine which sets of model
features could have projected to various sets of image features, elimi-
nating the need to consider other sets of model features as possible
matches. This correspondence discusses indexing techniques for the
problem of recognizing three-dimensional objects represented by
feature points from a single image of intensity data.

Indexing systems typically require the feature sets to be of some
minimum cardinality to perform their function correctly. A previous
indexing system for indexing general three-dimensional model points
from two-dimensional image data [4] required the point sets to con-
sist of at least four points and each set was represented on a two-
dimensional surface in a four-dimensional table. By using a probabil-
istic method that allows false negatives (matches that are correct, but
are not indexed), a system has been created that can perform indexing
using point sets with cardinality three and that represents each set in a
single bucket in a two-dimensional look-up table.

This work uses the probabilistic peaking effect {1], [2], [3] to dis-
criminate between likely and unlikely matches. The principle of the
probabilistic peaking effect is that angles and ratios of distances be-
tween points in the model do not vary much when projected onto the
image as the viewpoint varies over much of the viewing sphere. This
means that the probability density functions of these angles and ratios
of distances of projected (image) points have a strong peak at the
preprojection (model) value. This effect has been used to build a
probabilistic indexing system that can index using point sets with
cardinality three.

The ability to index using point sets with cardinality three is impor-
tant. If there are n image points and m model points, then there are
on*) sets of image points and O(m* ) sets of model points with cardi-
nality k. Thus, reducing the set cardinality necessary reduces the num-
ber of such sets to consider immensely. In addition, several algorithms
(e.g., [5), [11], [13]) use initial matches of three image points to three
model points since this is the minimum number necessary to constrain
the number of transformations that align the points to a finite set. Cur-
rent indexing systems that require sets larger than three points cannot
generate ideal candidate matches for these algorithms.

While this method has the advantage that smaller image and
model groups can be used, it has the disadvantage that we will not
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index all of the correct model groups. This will be overcome by en-
suring that we examine several correct hypotheses.

Let us call the sets of image points that have been grouped to-
gether for use in indexing the table image groups and the sets of
model points that are hypothetically matched to them model groups.
If each of the points in an image group is the projection of the corre-
sponding point in a model group, then we will say that the two
groups are in actual correspondence. The premise of this system is
that the probabilistic peaking effect is a strong enough indicator of
image feature values to eliminate the vast majority of model groups
that are not in actual correspondence with a specific image group
while indexing the one that is a significant fraction of the time.

II. INDEXING FOR OBJECT RECOGNITION

Indexing systems for machine vision generate an index vector from a
set of image features. This vector is used to look up the sets of model
features that could have projected to the image features in a multidi-
mensional index table. Ideally, one is able to represent a set of model
features by an index vector that remains the same regardless of trans-
formation or projection. Such an index vector is said to be invariant.

Once an invariant vector has been found, an index table can be
created by discretizing the vector space of invariant parameters.
Model features are then stored in the index table at the locations cor-
responding to their invariant vector. At run-time, the index vector
associated with the image features can be used to look up the model
features in the index table. Image noise complicates the indexing
process considerably.

Invariants have been found for several model representations. For
example, Lamdan et al. [12] describe invariants of two-dimensional
point sets (with cardinality four or more) undergoing affine transfor-
mations and orthographic projection. Forsyth et al. [8] describe pro-
jective invariants of two-dimensional algebraic curves (e.g., conics.)
Differential invariants of general two-dimensional curves are given
by Weiss [17].

It has been proven that no invariants exist for single views of general
three-dimensional points sets [3], {4]. Despite this, Clemens and Jacobs
[4] have shown that an indexing system for this problem can be built
that (in the noiseless case) indexes exactly those groups that could have
projected to a specific image group under weak-perspective. This sys-
tem requires groups to consist of (at least) four points.

Since Huttenlocher and Ullman [11] have shown that any set of
three non-colinear model points can be brought into alignment with
any three image points by a weak-perspective transformation, it is
clear that no conventional indexing system can perform indexing for
this case using sets of three points. This property also holds for per-
spective projections.

III. THE PROBABILISTIC PEAKING EFFECT

While it has been proven that there is no affine or projective in-
variant for general three-dimensional point sets, it has been observed
that there is a strong peaking effect in the probability densities of
many angles and ratios of lengths in images at the values taken by the
features in the model [1], [2], [3]. This means that there is a large
range of viewing directions over which these values change in the
image by a small amount. This information can be used to discard
matches between image groups and model groups that have a small
likelihood of being in actual correspondence.

Consider a model group that has been projected onto the image
plane. Let p;, p,, and p; be the points in the model group and g, ¢,

and g5 be the corresponding image points. Also, let & be the angle
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4p\pap3 and B be the angle Zg1g.g;. Define the segment lengths as

follows: a; = lrpzl, a = m, b= |ﬁ|, b, = Iq,!q3 . See Fig. 1.

The features that are used in this system to determine which groups
are most likely to match are:

1) The angles formed by the points in the model (&) and in the
image (f).
2) The ratios of the lengths of the segments in the model ( ) and

in the image (%)

Fig. 1. A model group projected onto the image plane using the perspective
projection.

Ben-Arie [1] gives an equation to approximate the probabilistic
peaking effect of these features as it varies with E and b,a It

should be noted that this peaking effect varies not only w1th these
ratios, but also with « (or alternatively with ¢, B, and b ) ) Ben-

Arie’s approximation of the joint probability density does not model
this effect. To better model the probabilistic peaking effect, the prob-
ability histograms have been recreated through numerical integration
with the additional variable c. As in the experiments performed by
Ben-Arie, the viewing sphere was tessellated and the area of each
tessellation was added to the bucket corresponding to the image angle

B and the ratio of lengths %2% from the viewing direction at the cen-

ter of the tessellation.

In addition, previous models for the probabilistic peaking effect
have not modeled localization error in the feature detection process.
To account for such noise, the probability histograms have been gen-
erated with bounded noise (€ = 1.0 and € = 3.0) added to the image
parameters. The bounded noise model specifies that the true location
of each image feature is within some distance € of the measured lo-
cation. Fig. 2 shows examples of the joint probability histograms for
the case with noise (€ = 1.0).

IV. PROBABILISTIC INDEXING

The probabilistic peaking effect can be used to create a system that
can determine through indexing which model groups are likely to
have projected to specific image groups. The first step is to create a

look-up table containing the features values (o and :—;) for each

model group.

To determine which model groups are the most likely to have pro
jected to an image group, we search the probability histograms de-
scribed in the previous section. This search determines a subset of
buckets in the index table that is called a cloud due to its shape. To
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Fig. 2. The joint probability histograms showing the probabilistic peaking
effect for selected values of the model angle o with noise (€ = 1.0). The x-axis
is the image angle B. The y-axis is the logarithm of the ratio of lengths
log{‘z—z- . The z-axis is the probability. (a) &= 30°; (b) x=90°.

determine the extent of the cloud we vary the model angle & and the
ratlo +—= and determine which cells of the histogram have values
greater ’Lllllan some predetermined threshold. We do not need to vary
the angle 8 because this is fixed by the image group. Each histogram
bucket then corresponds to one or more index table bucket. (We take
the range of o above the threshold for some o and divide it from
%= to get the range of index table buckets.) We need not worry about
nmse in the image features when indexing because we have already
accounted for it in the probabilistic peaking effect probability histo-
grams. Each model group contained in each bucket of the cloud is
considered as a possible match for the current image group.

The performance of probabilistic indexing has been estimated for

various probability thresholds through experimentation on random
point sets. These experiments transformed the models by a random
three-dimensional rotation and projected them onto the image using
the perspective projection. Bounded noise (¢ = 1.0) was added to
coordinates of each image point. Table I shows the fraction of correct
matches and incorrect matches that were indexed for various prob-
ability thresholds.
If we know the prior probability distribution of image group fea ures,
we can use Baye’s rule to determine the posterior probability of each
match being correct. Let b = b; be the proposition that the bin the
image group falls in is b; and let & be the proposition that the model
group and the image group are in actual correspondence.
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TABLE I
FRACTION OF CORRECT AND INCORRECT MATCHES INDEXED FOR VARIOUS
PEAKING PARAMETER THRESHOLDS WITH NOISE. T IS THE PROBABILITY
THRESHOLD USED TO DETERMINE WHICH MATCHES ARE INDEXED,
P 1S THE FRACTION OF CORRECT MATCHES INDEXED,
P 1S THE FRACTION OF INCORRECT MATCHES INDEXED.

T p P
001 468 0655
002 335 0277
1003 265 0160
1004 226 0109
005 193 0081
006 173 0062
007 159 0051
008 140 0042
1009 128 10035
010 115 0029
P(hlb = b)) = 2Re=b) (hl)’fb(i::))ilh)

P(b = b; | h) is given by the probability histograms of the probabil-
istic peaking effect. P(b = b;) is given by the prior probability histo-
gram of image feature values. This histogram has been generated
through numerical integration similar to the peaking effect histo-
grams. See [15] for details. I have assumed that the prior probability
of each possible match (and thus each possible hypothesis k) is the
same, so we can drop the P(h) term without changing the ranking of
the hypotheses. Of course, if we had knowledge that model groups
were not equally likely to appear in the image, we could use it here.

Probabilistic indexing has been extended to point sets with cardinal-
ity greater than three. Details can be found in [15] and a discussion of
the merits of using larger groups can be found there or in [16].

V. FAST ALIGNMENT

Probabilistic indexing techniques can be used to improve the per-
formance of many recognition systems. For example, this section will
discuss how these techniques can be used to speed up the alignment
method [11].

The alignment method is a model-based object recognition tech-
nique for recognizing three-dimensional objects from a single view in
intensity images. The key to the alignment method is that a unique
(up to a reflection) weak-perspective transformation between the
model and the image of the model can be found by matching three
model points to three image points. To recognize objects, all triples
of image points can be hypothetically matched to all triples of model
points. For each such match, the transformations that bring them into
alignment are determined and each of these transformations is then
tested to determine if it is correct.

If there are m model points and n image points, this would require
O(m*n® log n) operations, since the testing step is O(m log n). It is
thus not desirable to examine each possible match between three
image points and three model points. If an object is present in the
image, it is likely that a substantial number of triples of model points
can be detected. In the best case, only one of these triples needs to be
found and matched to recognize the object. If all of the matches are
examined, then much work is being done that is not necessary. Even
if we stop once a adequate match has been found, we can use infor-
mation about the likelihood of each match being correct to determine
which matches are best to examine.

Speedup can be achieved by using probabilistic indexing to de-
termine which matches are most likely to be correct. These matches
are tested and the rest are not considered. Error criteria are given in
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[14] that can be used to further reduce the number matches that need
be examined.

A. Speedup

We can use the results from random points sets to estimate the
speedup and the probability of a false negative when using probabil-
istic indexing in conjunction with the alignment method. Let’s exam-
ine the speedup achieved with two different stopping criteria:

1) All image groups are used for indexing. Each match between
an image group and a model group that is indexed is tested and
the best match is accepted as correct if it meets some criterion.

2) Tmage groups are examined in some order. Matches that are in-
dexed are tested. As soon as one of these matches meets some
criterion, it is accepted as correct and the remainder of the
matches are not examined.

Let’s define the speedup as the expected number of transforma-
tions that must be tested by the algorithm when not using probabilis-
tic indexing divided by the expected number when using probabilistic
indexing. I do not consider the overhead necessary to determine if a
match is indexed, since this process is a fast, constant time operation
(when amortized over the matches) and the testing step is O(m log n).
Let g be the total number of matches considered, p be the fraction of
total matches indexed, ¥ be the number of correct matches consid-
ered, and p be the fraction of these matches that are indexed.

With the first stopping criterion, we examine gp matches when
using probabilistic indexing and g matches when not using probabil-
istic indexing, so the speedup is simply -11;.

With the second stopping criterion, if we assume that matches are
examined in random order, we have a hypergeometric distribution.
For large values of g, this can be approximated by the binomial dis-
tribution. The expected number of matches that must be tested in this

case when not using probabilistic indexing is approximately %.
When using probabilistic indexing, the expected number of matches
that must be tested is approximately %. The speedup is thus ap-
proximately %. This analysis assumes that ¥ > 0, that is, a correct
match exists. If 7= 0, as is the case when the model is not present in
the image, the speedup is the same as for the first stopping criterion.

TABLE 1I
SPEEDUPS FOR VARIOUS INDEXING THRESHOLDS: T IS THE INDEXING
THRESHOLD, p IS THE FRACTION OF CORRECT MATCHES INDEXED, » IS THE

FRACTION OF INCORRECT MATCHES INDEXED £‘IS THE SPEEDUP FOR

4
STOPPING CRITERION 2 WHEN 7 >0, i 1S THE SPEEDUP FOR STOPPING
CRITERION 1 AND STOPPING CRITERION 2 WHEN 7 =0.

I I T
002 335 0277 12.1 36.1
005 .193 .0081 23.8 123.5
.008 140 0042 333 238.1
010 115 .0029 39.7 344.8

Table II shows p, p, and the expected speedups for some values of
the indexing threshold. Large speedups are attained for the first
stopping criterion and for the second stopping criterion when 7= 0.
The speedups for the second stopping criterion when ¥ > 0 are not as
large, but we can still use these techniques to speed up the recogni-
tion process by up to a factor of 40. Note that the case ¥ = 0 is the
common case, since each model in the database must be considerec
and there are usually few of the models present in the image.
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The speedup achieved through the use of probabilistic indexing is
a constant factor speedup. The computational complexity of the al-
gorithm remains the same. It should be noted though, that several
studies have shown that feature indexing systems index a constant
fraction (on average) of the feature groups in the index table in the
presence of noise [4], [9], [10]. If each of the indexed groups re-
quires at least O(1) time to process, we cannot achieve more than a
constant factor speedup through indexing, despite what some authors
have claimed.

If we assume that the probability of a correct match being indexed
is independent of whether other correct matches are indexed (this
assumption will be discussed below), the probability of a false nega-
tive as a result of not indexing any correct matches is (1 — p)” for both
stopping criteria.

TABLE III
PROBABILITY OF A FALSE NEGATIVE FOR VARIOUS VALUES

OF p (THE FRACTION OF CORRECT MATCHES INDEXED)
AND Y ’ (THE NUMBER OF CORRECT MATCHES).

p Y =25 Y’ =50 ¥ =100
115 4.72x1072 2.22x107 4.95x10°°
.140 2.30x107 5.31x10™* 2.82x107
.193 4.70x10° 2.21x10° 4.87x107°
335 3.72x10° 1.38x10”° 1.91x107%

If even 10 points from a model are present in an image, there are
120 correct matches (for 20 model points there are 540 correct
matches). Not all of these will result in a correct identification of the
object, due to noise, but many will: Let 7 be the number of correct
matches that result in correct identification of the object. Table III
shows the probability of a false negative for the values of p from
Table Il and ¥ * = 25, 50, and 100. Even for relatively smail values of
v’ and p, there is a small chance of a false negative. As ¥y’ or p in-
creases, the likelihood of a false negative becomes negligible.

Let’s now consider the question of whether the probabilities of
different correct matches being indexed are independent. Specifi-
cally, we want to know if it is possible for some object to be in an
orientation from which all model groups appear in unlikely configu-
rations in an image and are thus not indexed. Unlikely configurations
occur when the viewing direction is such that the model group is
considerably foreshortened. This means that groups of coplanar
points will have unlikely configurations from the same viewing di-
rections. Objects that are not nearly flat will not be a problem since
they have groups in a wide variety of orientations. The performance
of probabilistic indexing will also be good on flat or nearly flat ob-
jects that are not considerably foreshortened, since all or almost all of
the correct matches will be indexed. When such objects are rotated
such that they are considerably foreshortened in the image, they pro-
duce angles and distance ratios far from the probability peaks and
thus will be difficult to recognize using probabilistic indexing tech-
niques.

B. Real Images

Probabilistic indexing has been tested on real images of several
planar and nonplanar objects. Feature points were detected in the
images using a fast and precise interest operator [6], [7]. Indexing
was then performed using these points. Table IV shows the fraction
of correct and incorrect matches that were indexed for several of
these images with T = .005. The fractions of correct and incorrect
groups indexed in these images are consistent with the fractions de-
termined using synthetic data (r = .193 and p = .0081). The third
object in Table IV (called “cross”) is a planar object and the fractions
are given in decreasing order of the foreshortening of this object. The

image with the maximum foreshortening is rotated such that slant of
the cross is approximately 60°. Thus, even when there is significant
foreshortening, enough correct groups were indexed by probabilistic
indexing to recognize this object.

TABLE IV
INDEXING PERFORMANCE ON REAL IMAGES FOR T'= .005:
p 1S THE FRACTION OF CORRECT MATCHES INDEXED,
p 1S THE FRACTION OF INCORRECT MATCHES INDEXED.

Image P p
staplerl .250 .0086
stapler2 214 .0087
stapler3 257 .0101
stapler4 302 .0086
staplerS 152 .0094
stapler6 179 .0084

disk1 .247 .0082

disk2 216 .0075

disk3 .226 .0076

disk4 456 .0080

crossl .154 .0085

cross2 325 .0086

cross3 781 .0085

Figs. 3 and 4 show examples of recognition being performed using
these techniques. Fig. 3(a) shows the comers found in an image of a
stapler. While many of the modeled stapler corners were found, several
were not. In addition, many unmodeled features were found in this
image. The circles in Fig. 3(b) show the points of one of the correct
groups that was indexed. The outline of the stapler that is drawn in is
the stapler model after being transformed such that the correct model
points were aligned with the three image points by a weak-perspective
transformation as given by Huttenlocher and Ullman [11]. Of course,
many other correct and incorrect groups were indexed. The verification
techniques described by Huttenlocher and Ullman can be used to de-
termine which of the matches are correct. For this image, a speedup of
29.1 was achieved in recognizing the stapler using the second stopping
criterion. A speedup of 116.3 was achieved in determining that no other
objects were present in the image.

Fig. 4 shows a more complicated scene with two objects in it. The
corners that were found in this image are shown in Fig. 4(a). Fig. 4(b)
shows a correct group that was indexed for each model and the model
poses that were determined for them. While the stapler pose is quite
good, the pose of the disk is mediocre due to the perspective effects in
the scene. The disk is not far enough from the camera for these effects
to be negligible and the pose determined under weak-perspective is not
ideal. Note that this is not a problem with probabilistic indexing. For
this object, 21.6% of the correct groups were indexed, despite the per-
spective distortion. To alleviate the problem, we could use probabilistic
indexing with an algorithm that models the perspective projection (e.g.,
[5], [13]). For this image, a speedup of 24.6 was achieved in recogniz-
ing the stapler, a speedup of 30.1 was achieved in recognizing the disk,
and a speedup of 117.6 was achieved in determining that no other ob-
jects were present in the image.

VI. SUMMARY

This correspondence has described an indexing system for use in
recognizing three-dimensional objects in single two-dimensional
images. The probabilistic peaking effect has been shown to be effec-
tive for use in indexing model groups undergoing general rigid
transformations in three-dimensions from image points generated
using the perspective projection. Its use has allowed us to reduce the
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cardinality of the sets of image and model points necessary in an
indexing system, while retaining the indexing speedup. The disadvan-
tage to this system is that not all correct matches between image
groups and model groups are indexed. Since a far higher fraction of
correct matches are indexed than of incorrect matches, probabilistic
indexing can be used to help discriminate between correct and incor-
rect hypotheses. These techniques have been applied to the alignment
method and found to speed up the recognition process by a consider-
able amount.

1G] (®)

Fig. 3. Recognition of a stapler: (a) The corners found in the image; (b) A
correctly indexed group and the corresponding model pose.

(@ ()

Fig. 4. Recognition in a more complicated scene: (a) The corners found in the
image; (b) Correctly indexed groups and the corresponding model poses.
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Color Constant Color Indexing

Brian V. Funt and Graham D. Finlayson

Abstraci—Objects can be recognized on the basis of their color alone
by color indexing, a technique developed by Swain and Ballard [15]
which involves matching color-space histograms. Color indexing fails,
however, when the incident illumination varies either spatially or spec-
trally. Although this limitation might be overcome by preprocessing with
a color constancy algorithm, we instead propose histogramming color
ratios. Since the ratios of color RGB triples from neighboring locations
are relatively insensitive to changes in the incident illumination, this
circumvents the need for color constancy preprocessing. Results of tests
with the new color-constant-color-indexing algorithm on synthetic and
real images show that it works very well even when the illumination
varies spatially in its intensity and color.

Index Terms—Color indexing, color constancy, retinex, object
recognition.

I. INTRODUCTION

Swain and Ballard [15] developed a very clever, simple scheme
that identifies objects entirely on the basis of color. Their method,
which they call color indexing, radically departs from traditional
object recognition strategies based on geometric properties. Color
indexing turns out to be remarkably robust in that variations such as a
change in orientation, a shift in viewing position, a change in the
scene background, partial occlusion, or even a radical change in
shape (e.g., a shirt tossed onto a chair two different ways), degrade
recognition only slightly.

On the other hand, Swain’s algorithm is very sensitive to the
lighting. Simple changes in the illumination’s intensity—let alone its
color—radically alter the algorithm’s results. Clearly, one solution to
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