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AbstractÐImage matching applications such as tracking and stereo commonly

use the sum-of-squared-difference (SSD) measure to determine the best match.

However, this measure is sensitive to outliers and is not robust to template

variations. Alternative measures have also been proposed that are more robust to

these issues. We improve upon these using a probabilistic formulation for image

matching in terms of maximum-likelihood estimation that can be used for both

edge template matching and gray-level image matching. This formulation

generalizes previous edge matching methods based on distance transforms. We

apply the techniques to stereo matching and feature tracking. Uncertainty

estimation techniques allow feature selection to be performed by choosing

features that minimize the localization uncertainty.

Index TermsÐImage matching, tracking, stereo, maximum-likelihood estimation.

æ

1 INTRODUCTION

IMAGE matching is a common tool in many applications, including
object recognition, stereo matching, and feature tracking. Some
applications use a template composed of edge pixels, which are
robust to variations in lighting and viewpoint, but others operate
directly on the gray-levels present in the image. Many applications
of gray-level image matching use the sum-of-squared-differences
(SSD) measure to determine the best match. However, this
measure is sensitive to outliers and is not robust to variations in
the template, such as those that occur at occluding boundaries in
the image. This method has been improved through the use of
robust measures to compare image pixel intensities [1], [2].
However, these methods still compare only the overlapping pixels
at some relative position between the images.

We describe a new measure for image matching. Rather than

using a nonrobust measure, such as the SSD, or even a robust

measure comparing overlapping pixels, we generalize previous

work on matching edge images using a probabilistic framework.

This method considers the distance from each pixel in the template

(at some position with respect to the image) to the closest matching

pixel in the image. It is not restricted to overlapping pixels. The

distance encompasses both the image distance and the intensity

variation. This technique is robust to small changes in viewpoint,

illumination, and other variations in the template and is applicable

to both edge templates and gray-level templates.

Our method is general with respect to the set of pose

parameters allowed. We formulate the method using two-dimen-

sional edge and intensity templates with the pose space restricted

to translations in the plane in order to simplify the presentation.

However, the techniques can be adapted to more complex

transformations, as we have demonstrated by applying these

techniques to object recognition under similarity transformations

of the object template [3].

We first describe a new image matching measure that is based

upon maximum-likelihood estimation of the template position

using the distance values from the template pixels (edges or

intensities) to the image pixels. When a particular likelihood

function is introduced for the distance from each template feature

to the closest matching image feature, this formulation yields a

conventional matching method. We use a different likelihood

function to generate a new image matching measure that more

accurately models errors and outliers in the data.

This probabilistic formulation for image matching yields

several benefits. Perhaps most importantly, we can consider an

arbitrary likelihood function for the matching error between edge

or intensity features. In contrast to Hausdorff distance-based

measures for edge matching [4], [5], this allows us to eliminate the

sharp distinction between matched and unmatched template

features. In contrast to previous image matching applications, we

allow matches between pixels that do not directly overlap. An

efficient search strategy is described that generalizes previous

work for detecting the template position that optimizes a variation

on the Hausdorff distance.

We apply these techniques to real images in two application

areas. The first application is stereo matching, where we obtain

dense, subpixel disparities through the use of these techniques.

Next, we show that uncertainty estimation techniques can be

adapted to optimal feature selection for tracking features in an

image sequence and we compare the performance of the method to

image matching using the SSD, SAD (sum-of-absolute-differences),

and Lorentzian function for distance comparisons.

2 MAXIMUM-LIKELIHOOD MATCHING

We use a maximum-likelihood matching formulation that has been

previously applied to robot localization [6]. This section reviews

this method and discusses a novel application of it to gray-level

image matching.

2.1 Maximum-Likelihood Measure

To formalize the problem, let us say that we have a set of model (or
template) features, M � �1; . . . ; �mf g, and a set of image features,
I � �1; . . . ; �nf g. Both M and I can be considered to be discrete sets
of points at the locations of the occupied pixels in the image or
template. For now, the elements of M and I will be vectors of the x
and y image coordinates of edge pixels.

We let t be a random variable describing the position of the
template in the image. This position can be thought of as a function
that maps the template features into the image. The position could
be a simple translation of the template with respect to the image,
but it also may encompass more complex transformations, such as
similarity transformations or affine transformations. Here, we
make an implicit assumption that exactly one instance of the
template appears in the image. Note that, if we are seeking
templates that may appear more than once in an image or not at
all, we must only set some threshold on the likelihood function, as
is usually done in matching applications. The template positions
that surpass the threshold are reported as the possible positions of
the template.

In order to formulate the problem in terms of maximum-
likelihood estimation of the template position, we must have some
set of measurements that are a function of the position of the
template. Similar to methods based on the Hausdorff distance [4],
we use the distance from each template pixel (at the position
specified by t) to the closest occupied pixel in the image as our set
of measurements. We denote these distances D1�t�; . . . ; Dm�t�. In
general, these distances can be found quickly for any t, if we
precompute the distance transform of the image [7], [8], [9].

The joint probability density function (PDF) for the distances,
given t, can be approximated as the product of each individual
PDF, if the distance measurements are independent. We have
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found that this yields accurate results since the correlation between
the distances falls off quickly as the points become farther apart.

p�D1�t�; . . . ; Dm�t� j t� �
Ym
i�1

p�Di�t��; �1�

where p�Di�t�� is the probability density function (PDF) of Di�t�
evaluated at the template position t. In order to find the most likely
t, we find the position that maximizes (1).

It is often easier to work with the logarithm of (1) since this
involves addition, rather than multiplication, and yields a measure
that preserves the ordering of the template positions.

lnL�D1�t�; . . . ; Dm�t� j t� �
Xm
i�1

ln p�Di�t��: �2�

We seek the position t that maximizes this likelihood function
and this results in a maximum likelihood estimate for the template
position.

2.2 Estimating the PDF

While it is only formally correct to use a probability density in (1)
or (2), any function p�d� will yield a matching criterion for image
templates in the above formulation. We note that a measure
equivalent to the Hausdorff fraction [5], [10] can be obtained
through the use of:

ln p�d� � k1 � k2; if d � �;
k1; otherwise:

�
�3�

Each feature in the model template contributes one of two

values, depending on the distance to the closest image feature (as

in the Hausdorff fraction). If there is support for the template

feature in the image at this position (i.e., an image feature lies with

� of it), then some constant value is assigned to p�d� (a uniform

likelihood in the distance to nearest feature). Otherwise, some

smaller constant likelihood is assigned to p�d� (also uniform, but

less likely). The precise values of k1 and k2 are unimportant in this

case (they do not change the ranking of template positions) as long

as k2 > 0. Note, however, that this function is not a probability

density function since it does not integrate to unity.

Previous formulations for edge template matching using the

Hausdorff fraction do not accurately model the uncertainties in the

matching process (since (3) is not accurate). The use of a function

that closely models the uncertainties results in a measure that is

able to detect templates with fewer false positives and allows

accurate uncertainty estimation to be performed. We use a function

based on the principle that the density can be modeled as the sum

of two terms (one for inliers and one for outliers):

p�d� � �p1�d� � �1ÿ ��p2�d�: �4�
The first term describes the error density when the edge pixel is

an inlier (in the sense that the edge pixel also appears in the
image), where � is the probability that the pixel is an inlier. In this
case, d is the error in the location of the pixel. Usually, we can
model the probability density as normal in the distance to the
closest edge pixel. Assuming �x � �y � � we have:

p1�d� � 1

2��2
eÿ�d

2
x�d2

y�=2�2 � 1

2��2
eÿd

2=2�2

: �5�

Note that this is a bivariate probability density in dx and dy,
rather than a univariate probability density in

d �
�������������������
dx

2 � dy2
q

;

which would imply different assumptions about the error density.
Formally, we should think of d as a 2-vector of the x and y
distances to the closest edge pixel in the image. However, to
compute the probability density function, it will only be necessary
to know the magnitude of d. Thus, the orientation of the error
vector is irrelevant (as long as the errors in each direction are
independent.) The second term in (4) describes the probability
density of the distances when the edge is an outlier. In this case,
the template pixel does not appear in the image for some reason
(such as occlusion). In theory, this term should also decrease as d
increases since even outliers are usually not far from some edge
pixel in the image. However, this allows pathological cases to have
an undue effect on the likelihood for a particular template position.
In practice, we have found that using the expected probability
density for a random outlier yields excellent results:

p2�d� � pexp: �6�
Note that, like (3), (6) is not a probability density function. This is

unavoidable in a robust measure. Any true probability density

function must become arbitrarily close to zero for large values of d

(owing to the limited density that can be assigned over the range of

the function). This means that any true PDF will yield a nonrobust

measure when used in our maximum-likelihood method since a

single outlier can cause the likelihood function to become

arbitrarily close to zero (and, thus, the logarithm becomes an

arbitrarily large negative number). We do not wish this to occur

and have found that using the expected probability density is a

useful alternative. Note that, while our probability density function

is not derived from a generative model, this does not cause a

problem in practice.

2.3 General Search Strategy

In order to determine the template position that maximizes the
likelihood function developed above, we use a search strategy that
generalizes previous methods for matching with the Hausdorff
distance [11], [12]. This method has been previously described in
some detail [6], so we give only an overview here. The basic idea of
these methods is to use a multiresolution search that examines a
hierarchical cell decomposition of the space of possible template
positions. This method divides the space of template positions into
rectilinear cells and determines which cells could contain a
position satisfying the acceptance criterion. The cells that pass
the test are divided into subcells, which are examined recursively,
while the rest are pruned. Note that each template position can be
evaluated quickly, if we precompute the distance transform of the
image, allowing each distance to be determined using a single
memory access.

In addition to determining the most likely template position, we
can estimate the uncertainty in the localization in terms of both the
variance of the estimated positions and the probability that a
qualitative failure has occurred. The uncertainty is estimated by
measuring the rate at which the likelihood function falls off from
the peak. This is performed by fitting a normal distribution to a
neighborhood of values in the likelihood function around the
location of the maximum. The probability of failure is estimated by
comparing the sum of the likelihood scores under the selected peak
with the remainder of the pose space.

2.4 Grey-Level Images

While these techniques have, so far, been described in terms of
binary templates, they can be extended to gray-scale templates by
considering the image to be a surface in three dimensions (x, y, and
intensity). We will, thus, describe the techniques in terms of the
occupied pixels, which are the edges in an edge map or the
intensity surface in the three-dimensional representation of a gray-
scale image. For grayscale images, the model templates and images
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are sets of 3-vectors (corresponding to the occupied pixels in the

images). We must now define a distance function over the three

dimensions, but the remainder of the methodology is unchanged.
For two pixels �i � �xi; yi; zi� and �j � �xj; yj; zj�, where z is the

intensity, we have used a variation of the L1 distance metric since

this makes the distance computations simple:

D��i; �j� � jxi ÿ xjj � jyi ÿ yjj � 
jzi ÿ zjj:
The value of 
 should be chosen such that the expected error in

each dimension has the same standard deviation.
It is interesting to note that we could achieve the same results as

the SSD measure by assuming that there are no outliers (� � 1) and

using:

D��i; �j� � zi ÿ zj; if xi � xj and yi � yj;
1; otherwise:

�
The maximum-likelihood measure gains robustness by expli-

citly modeling the possibility of outliers and allowing matches

against pixels that do not precisely overlap the template pixel. The

SAD and robust measures, such as the Lorentzian [1], [2], can be

similarly placed into this framework.

3 RESULTS

This section applies the maximum-likelihood matching techniques

to stereo matching and feature tracking, including the use of

uncertainty estimation techniques to select the best features for

tracking. For these experiments, we used � � 0:75, which is lower

than we expect the actual value to be. We have found the method is

insensitive to this value, as long as it is not close to one or zero. We

estimate pexp by sampling random locations from the image.

3.1 Stereo Matching

Our method can be applied to tracking and stereo matching
applications in a manner similar to correlation-based methods,
where small windows from one image are used as the templates,
and they are matched against windows in another image from a
slightly different viewpoint (for stereo) or after motion has taken
place.

Fig. 1 shows an example where stereo matching was performed
using these techniques. The disparity, uncertainty, and probability
of a false match were computed for each template in the left image
of the stereo pair by matching against the right image. The
complete disparity map, which is shown in Fig. 1c, contains
outliers and inaccuracies due to occlusions and image regions with
low texture. Darker values correspond to smaller disparities. Fig. 1d
displays an uncertainty image, where the darker pixels show the
image locations that are more likely to produce large errors in
the disparity computation. The disparity map, after pruning the
locations for which the uncertainty estimate or probability of
failure is large (Fig. 1e), contains no remaining outliers. Note that
the disparity varies smoothly within objects, but changes abruptly
along object boundaries. This can be attributed to the robustness of
the matching measure with respect to data arising from multiple
sources (e.g., a car and the background). For the windows
containing edges from multiple depths, the window is automati-
cally assigned the disparity corresponding to the majority of the
textured data.

For comparison, Figs. 1f, 1g, and 1h show the results of
applying these same techniques using the SSD measure, the SAD
measure, and the Lorentzian, respectively. For these cases, we can
still compute an uncertainty and probability of failure using our
techniques. However, the results are less accurate with these
methods. A small number of outliers remain in the disparity map
for each case. In addition, this measure yields lower quality results
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uncertain). (e) Disparity map after pruning. (f) Disparity map computed using SSD. (g) Disparity map computed using SAD. (h) Disparity map computed using Lorentzian.



in the neighborhoods of occlusion boundaries since they are less

robust to changes in the composition of the template.

3.2 Feature Selection and Tracking

Since our techniques provide estimates of the uncertainty for

matching a template, they can be adapted to perform feature

selection for tracking applications. This is performed by estimating

the uncertainty of matching each possible feature and selecting

those with low uncertainties. We generalize our previous work on

landmark selection for robot localization here [13].
We first compute a distribution over the image intensities that

captures the template variations as the camera moves. This

distribution models only the changes in pixel intensity, ignoring

the translation of the pixels in the image, since the template

matching procedure searches over the translations. To estimate this

distribution, we initially take the intensity surface of the template

to have probability 1. (This initial distribution implies that we

would observe the same intensity value at each pixel as in the

template, with no possibility of a different value.) This distribution

is next smoothed in both position and intensity to model noise and

warping as the camera moves. We then perform uncertainty

estimation for each possible template by matching against the

computed distribution (which is treated as a three-dimensional

image). The locations with low uncertainties are selected as the

optimal features to track [13].
Fig. 2 shows an example of the feature selection techniques

applied to an image of rocky terrain. In this case, 100 7� 7 feature

templates were selected for tracking. We then performed tracking

in a subsequent image, after the camera had undergone motion.

For each selected feature, we searched over the entire postmove

image for a match.1 Fig. 2b shows the 72 features that survived

pruning using the uncertainty and probability of failure measures.

No false positives remain in the tracked features for this case.
To compare against other techniques, the same procedure was

applied to a sequence of images similar to Fig. 2. The results for our

method, as well as the SSD, SAD, and Lorentzian, can be found in

Table 1. Our maximum-likelihood method achieves both a higher

tracking rate and lower fraction of outliers than the other methods,

owing the higher robustness to template variations at occluding

boundaries, where many of the features occur.

4 RELATED RESEARCH

There has been considerable research on topics related to this
work, including probabilistic recognition, robust image matching,
and distance transform-based edge matching. In this section, we
describe the most closely related work and its relationship to our
work.

Robust measures for motion estimation have been developed by
Black and Anandan [1], Black and Rangarajan [2], and Black et al.
[14]. Rather than the squared difference between pixel intensities,
they have used robust measures (usually the Lorentzian) that
have an influence function that tends to zero for large distances.
Unlike our work, they have also examined methods for
improving models for appearance change, rather than treating
such changes as outliers.

Improvements to previous edge-based matching methods using
the Hausdorff distance (or a variation) were given by Huttenlocher
et al. [4]. The classical Hausdorff distance uses the distance of the
worst matching point in calculating the distance between two sets
of points. However, this does not improve the robustness of the
measure since a single outlier in either set may result in an
arbitrarily large error in the measure. In order to allow outliers,
Huttenlocher et al. define a partial distance between point sets,
which uses a predetermined quantile to eliminate some fraction of
the worst matching points and, thus, allows outliers. Another
variation is to determine the maximum fraction of the points that
can be used in one or both sets such that the distance is below some
threshold [5], [10]. Our method can be considered a generalization
of these techniques. Instead of simply counting the number of
points that lie within some distance, all of the points contribute a
probabilistic score to the overall likelihood. Some methods based
on the Hausdorff distance yield a reverse distance that measures
how well the image matches the template (where the forward
distance measures how well the template matches the image). Our
approach does not yield such a reverse distance.

Viola and Wells [15] describe an information theoretic approach
based on maximizing the mutual information between the
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TABLE 1
Comparison of the Tracking Rate and Outlier Rate of Four Methods

1. In practice, the search space is usually reduced using prior knowledge
about the camera motion. We performed the search over the entire image in
this experiment to demonstrate the robustness of the matching techniques.

Fig. 2. Optimal feature selection for grayscale matching. (a) Features selected. (b) Tracked features.



template and the image. Rather than working with features
extracted from an image, this method works directly on the image
intensities and is able to gain greater robustness to lighting
variation than correlation-based methods. Their method uses an
iterative optimization method to detect the optimal template
positions, so an initial estimate of the position is necessary. While
this method is able to achieve robust recognition, applications of
the method usually examine only a fraction of the image data
(using sampling), since the computation is time consuming.

Rucklidge [16] has given an alternative strategy for robust
matching of gray-level images. He first generalizes previously
developed search strategies to apply to gray-level image matching.
This strategy is applicable to the matching measure described in
this paper. In addition, he describes a new matching measure
based on neighborhood difference functions. In this method, each
pixel is allowed to match any gray level spanned by a neighbor-
hood of pixels, with a nonzero distance only if the value is outside
this span. While this improves upon the brittleness of the SSD
measure, it still imposes a sharp boundary in the image space
between allowable matches and nonallowable matches, rather than
using a continuous likelihood function.

5 SUMMARY

In this paper, we have described a new formulation for image
matching in terms of maximum-likelihood estimation. This
formulation seeks local maxima in the likelihood function of the
position of the template with respect to the image. While this
implicitly assumes that the template appears once in the image,
this formulation can be applied when the template does not appear
in the image (or appears multiple times), if an appropriate
threshold is used to determine which locations are output as
likely template positions.

This formulation yields advantages over previous methods. The
measure is more robust to template variations than the conven-
tional SSD measure. It is also superior to improved measures, such
as SAD and the Lorentzian function. In contrast to measures based
on the Hausdorff distance, we use a smoothly varying probability
density function that eliminates the sharp boundary inherent in the
conventional two-valued support function.

We have applied this technique to stereo matching and feature
tracking with optimal feature selection. Improved results were
obtained in both domains.
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