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AbstractÐIn edge and corner detection applications, it is typical to examine a single scale without knowing which scale is appropriate

for each location in the image. However, many images contain a wide variation in the distance to the scene pixels and, thus, features of

the same size can appear at greatly differing scales in the image. We present a method where the scale of the filtering and feature

detection is varied locally according to the distance to the scene pixel, which we estimate through stereoscopy. The features that are

detected are, thus, at the same scale in the world, rather than at the same scale in the image. This method has been implemented

efficiently by filtering the image at a discrete set of scales and performing interpolation to estimate the response at the correct scale for

each pixel. The application of this technique to an ordnance recognition problem has resulted in a considerable improvement in

performance.

Index TermsÐFiltering, edge detection, feature detection, stereo, smoothing, scale-space.

æ

1 INTRODUCTION

IMAGE filtering and feature detection have been intensely
studied subjects in computer vision and image proces-

sing. The selection of an appropriate filter size or scale for
these processes is a problem that has received less attention.
It is well-known that using a single fixed scale over the
entire image produces undesirable results, since edge
phenomena occur at a multitude of scales. To alleviate this
problem, techniques have been developed that examine the
entire space of scales [1], [2], [3], [4], or that adaptively select
a scale based on local image properties [5], [6], [7], [8].
However, the optimal method for combining the informa-
tion in the scale-space is unclear and scale selection
methods that base their decisions on image properties,
rather than the true scale at which the phenomena occur,
can be confused by perspective effects.

In many applications, it is desirable to detect image
phenomena that are at the same scale in the world, which
we call the true scale, rather than at the same scale in the
image or by selecting a scale based on local image
properties. Consider, for example, an image containing a
textured surface in the foreground and an object of interest
further from the camera. Techniques based on local image
properties consider the textured surface at the scale it
appears in the image, where an irrelevant feature can
appear significant, owing to perspective effects. If a method
(such as stereoscopy) is available to determine the distance
of the scene locations from the camera, we can safely
smooth these phenomena, while preserving the significant
edges. Furthermore, if we seek objects of known size, the
filtering and feature detection processes can be tuned to

detect objects at the appropriate scale, regardless of the
distance from the camera.

A motivating example is shown in Fig. 1. This image was
collected at a live-fire test range near Nellis Air Force Base
and contains two instances of live ordnance (one in the
lower left, one in the upper right). In this case, the image
was smoothed using a Gaussian filter with a constant scale
(� � 2:0 pixels) prior to differentiation and edge detection.
It can be observed in the edge map that the edges of the
bomb at close range are rough and there is considerable
clutter in the foreground. However, when the scale of
smoothing is increased, the edges of the ordnance in the
background are no longer sharp and the shape is distorted
by the large size of the filter. We wish to be able to smooth
the image and perform edge detection such that the edges
of both instances of ordnance are well-behaved and there is
little clutter in the edge map.

In addition to its value for scale selection, range data is
also useful for determining edge salience with respect to the
scene characteristics. For example, edge salience measures
such as the length and straightness of the edge have been
used [9]. However, the values these measures take are
highly dependent on the distance of the edge from the
camera. The range data can be used to normalize these
measures with respect to the edge depth and it is, thus,
possible to determine edge salience with respect to the true
scale rather than the image scale.

The filtering techniques that we describe are general and
can be applied to most edge and feature detection methods.
We have implemented these techniques using a variation of
the Canny operator [10] to perform edge detection and a
variation of the FoÈrstner and GuÈ lch operator [11] to perform
feature detection. A mapping function between the distance
to the pixel and the image scale is first determined. We next
filter the image at a discrete set of scales. The response for
each pixel at the appropriate scale is then interpolated from
the discrete set of filter responses (similar to ideas of
steerable filters [12] or deformable kernels [13]). These
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responses are normalized, since the overall response to a
general filter (e.g., a Gaussian derivative) is a function of the
scale of the filter. Feature detection can then proceed
according to the preferred operator.

2 PREVIOUS WORK

Since edges (and other features) appear at a wide variety of
scales in an image, the concept of an image scale-space has
been introduced [1], [4]. The scale-space can be defined as:

S�x; y; �� � I�x; y� � g�x; y; �� �Z 1
ÿ1

Z 1
ÿ1

I�u; v� 1������
2�
p

�
eÿ

�xÿu�2��yÿv�2
2�2 dudv:

While many researchers have noted the need to examine a
variety of scales in the image, the means by which the scale-
space is used is not straightforward. One method that has
been investigated by Bergholm [14] is to track edges
through the scale-space in a coarse-to-fine manner. The
edges are detected at a coarse scale and progressively
refined through the examination of smaller scales. Alter-
natively, Lu and Jain [3] have devised a complex system of
rules for reasoning about edges in the scale-space, including
six rules governing the progression of scales examined.
When the scale of the edge is unknown, they recommend
starting at a maximum scale �1 and decreasing the scale
parameter by one pixel at each iteration.

Several methods of selecting a single local scale for each
image pixel have also been proposed. Jeong and Kim [6]
select the local scales through the minimization of an energy
functional over the scale-space using a regularization
approach. The functional includes terms that encourage a
large scale in uniform intensity areas, a small scale where
intensities change significantly and a smoothly varying
scale over the image. Morrone et al. [8] suggest that the local
scale should be a monotonically decreasing function of the
gradient magnitude. They argue that this results in good
localization through the use of a small scale when the
contrast is high and good sensitivity using a large scale with
the contrast is low. Lindeberg [7] notes that edge detection
procedures seek to find maxima in the gradient magnitude
in the spatial variables and that this principal can also be
applied to the scale variable. He, thus, seeks the edge

position in the scale-space where gradient magnitude is
maximized.

Elder and Zucker [5] select the ªminimum reliable scale,º
which in their definition is the minimum scale at which the
response level can be considered statistically reliable given
the noise, edge amplitude, and image blur. This concept is
used by Liang and Wang [15] to regulate an anisotropic
diffusion process such that time at which the diffusion ends
is computed for each pixel according to the minimum
reliable scale given by a local noise estimate. Marimont and
Rubner [16] also consider a minimum reliable scale, which
they compute according to a statistical confidence measure.

Unlike these methods, we select the local scale of
examination based on an estimate of the true scale, rather
than trying to determine an appropriate scale through
examination of the image. Our method is, thus, likely to
yield better results when the real world scale is the
important one. As an alternative to selecting a single scale,
our techniques can be used to complement scale-space
techniques [4]. In this case, the range data can be used to
transform the scale-space such that each scale plane is level
with respect to the true scale rather than the image scale.

3 DEPTH ACQUISITION

While any method that can associate range values with
image pixels can be used with our adaptive filtering
method, we use stereoscopy to compute dense range maps
of the scene. The techniques that we use to compute the
stereo range data have been described elsewhere [17], [18].
We briefly summarize this method here.

An off-line step, where the stereo camera rig is
calibrated, is first performed. We use a perspective camera
model [19] that has been extended to include radial lens
distortion [20]. The remainder of the method is performed
online.

At run time, each image is first warped to remove the
lens distortion and the images are rectified so that the
corresponding scanlines yield corresponding epipolar lines
in the image. The disparity between the left and right
images is measured for each pixel by minimizing the
sum-of-squared-difference (SSD) measure of windows
around the pixel in the Laplacian of the image. Subpixel
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Fig. 1. Motivating example: (a) Original image. (b) Edges detection after Gaussian smoothing with � � 2:0 pixels.



disparity estimates are computed using parabolic interpola-
tion on the SSD values neighboring the minimum. Outliers

are removed through consistency checking and smoothing
is performed over a 3� 3 window to reduce noise. Finally,
the coordinates of each pixel are computed using
triangulation.

Note that not every pixel is assigned a range with this
method. There are a number of factors that result in various
pixels not being assigned a range, including occlusion,
window effects, finite disparity limits, low texture, and
outliers. Despite this problem, we must have a range
estimate at each pixel in the image in order to estimate the

scale that should be used for smoothing at that pixel. To
resolve this issue, we propagate the range values from
neighboring pixels using a fast method for performing
nearest-neighbor search.

Fig. 2 shows an example of the range data computed
using these techniques. In this case, we fail to get range data
at the left edge of the image, since this is the left image of a
stereo pair and there are significant areas over the rest of the
image where the range data is discarded as unreliable.
These values are filled with estimates using the nearest-

neighbor propagation techniques.

4 FILTERING WITH VARIABLE SCALE

We perform variable scale filtering using the range data to
select the appropriate scale at each pixel. The first step is to
specify a mapping between the range data and the scale at
which the smoothing should be performed. We map the
range data into scales using:

��x; y� � K

R�x; y� ;

where R�x; y� is the range computed at the image pixel
�x; y�, ��x; y� is the scale to be used at �x; y�, and K is a
predetermined constant.

The constant, K, in this function can be determined using
several methods. One possibility is to modify an automatic
scale selection method (see, for example, [21]) to examine
the image scale normalized by the depth values. A second
possibility is to not limit ourselves to a single scale, but to

consider the scale-space, with the scale-space warped such
that the scale levels correspond to the true scale rather than
the image scale. We use a third alternative. Since our
primary application for these techniques is in detecting

objects of known size, we select K using the known size of

the objects.
In order to smooth the image before the application of

the feature detection methods, we should convolve the

image with a Gaussian filter. However, since we vary the

scale at each pixel, the responses that we desire are

governed by:

S�x; y� �
XW
i�ÿW

XW
j�ÿW

I�x� i; y� j� 1

��x; y� ������2�
p e

ÿ i2�j2
2��x;y�2 ;

where I�x; y� is the image brightness at �x; y� and 2W � 1 is

the filter size.
Unfortunately, it is time consuming to compute this

function over an image, since there is no efficient

implementation for the exact computation of the function.

We approximate this function by convolving the image with

a discrete set of Gaussian filters of various scales and

interpolating the result at the appropriate scale for each

pixel. This method for approximating a continuum of

parameterized filters is similar to the techniques of steerable

filters [12] and deformable kernels [13]. We have chosen

parabolic interpolation rather than the linear combinations

of the deformable kernels technique for simplicity and ease

of implementation.
Since the range of scales that we are concerned with may

be very large and Koenderink has shown that a logarithmic

sampling of the scale space is stable and in accordance with

the principle that no scale should be preferred above others

[1], we work in the log2 � domain. We have found that using

discrete scales related by factors of two (�n � 2n�0) is both

convenient and effective.
The result of smoothing at each pixel with a filter of scale

��x; y� can be estimated through parabolic interpolation

using the response of the discrete filter that is closest to the

desired scale, F�k�x; y�, and its two neighbors, F�kÿ1
�x; y�

and F�k�1
�x; y�. In determining an equation that yields the

appropriate response, it is useful to perform a coordinate

transform such that z � log2
��x;y�
�k

. For �kÿ1 � 1
2�k � 1

4 �k�1,

this yields zkÿ1 � ÿ1, zk � 0, and zk�1 � 1. With this

transformation, it is simple to show that the interpolated

result given by:
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Fig. 2. Range data extracted from a stereo pair: (a) Left image of a stereo pair, (b) distance from the camera mapped into gray values (black pixels

indicate no valid range data), and (c) distances after filling pixels with no range data.
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5 EDGE DETECTION

In our application of these techniques to edge detection, we
use Canny's edge detection method [10] following the

variable scale smoothing described above. This technique
computes the image gradients over the image in the x- and
y-directions in order to determine the orientation and

magnitude of the gradient at each pixel. Note, however,
that if the gradient magnitudes are to be comparable, we
must normalize them. This can be easily recognized by
observing that the response of a step edge to a Gaussian

derivative filter varies with the scale of the filter. A
Gaussian derivative aligned with a step edge yields a
response proportional to 1

� . The gradient magnitudes will,

thus, be stronger in the image regions that are smoothed at
smaller scales if we do not normalize them. To correct this
problem, we normalize the gradient magnitude at each

pixel by multiplying by ��x; y�. Finally, nonmaxima
suppression is performed and the edges are detected using

hysteresis thresholding. We determine the hysteresis
thresholds adaptively through examination of the histo-
gram of gradient magnitudes.

Fig. 3 shows the application of these techniques to a
synthetic image containing a warped plane of dots. Noise
was added with a standard deviation that was inversely
proportional to the range in order to simulate small-scale
image texture that has increasing perceptual salience with
decreasing range. For this example, it can be clearly seen
that each of the edge maps detected with constant-scale
smoothing is suboptimal (Fig. 3d, Fig. 3e, and Fig. 3f). When
the scale is small, the noise in the image causes poor edge
detection for the closer dots. When the scale is large, the
shape of the smaller dots is distorted due to the large size of
the smoothing operator. When variable-scale smoothing
guided by range information is used, accurate edge maps
are obtained at both large and small ranges. In addition, we
used the ideas of Lindeberg [7] to choose a scale adaptively
without using range data. This method selects the scale that
maximizes the normalized gradient response. We approxi-
mated this measurement through parabolic interpolation of
the same scales used by the range-guided smoothing. The
adaptive-scale smoothing and edge detection method
performed the best in this experiment.

Figs. 4 and 5 give examples of edge detection with and
without stereo-guided scale selection on a pair of real
images. The original images are 750� 500 pixels and can be
found in Figs. 1 and 2. In these examples, the edges were
detected at three scales (� � 1:0; 2:0; 4:0) without the help of
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Fig. 3. Example applied to a synthetic image: (a) Original image, (b) edges detected with our method, (c) edges detected with Lindeberg's method,

(d) edges detected with � � 1:0 pixels, (e) edges detected with � � 2:0 pixels, and (f) edges detected with � � 4:0 pixels.



scale selection. Also given is the result with scale selection,
where the response at each pixel was interpolated from the
same three scales.

It can be seen that when a small scale (� � 1:0) is used,
many of the edges, due to phenomena close to the camera,
are rough and a number of extraneous edges are detected
due to the small scale, even though there is little image
texture. However, when the scale is increased, we lose the
details at the further phenomena (see, for example, the trees
in the background and the end of the railing in Fig. 5). On
the other hand, when the scale is selected adaptively using
the range data, we have good performance at both close and
far edge phenomena.

6 EDGE SALIENCE EVALUATION

In addition to its use in performing edge detection, range
data is also helpful in determining edge salience. Shorter
edges that are detected at a larger distance are more likely
to correspond to salient world edges than edges at close
range that appear to be long due to perspective effects. We
have primarily examined the summed gradient magnitude
over the length of the edge and the local straightness of the
edge as salience criteria, although many other salience
measures could be used [9].

Consider, for example, a saliency measure where the
gradient magnitude is summed along the length of the
edge. The range data can be used to weight the gradient
magnitude by the true edge length rather than the image

edge length.1 Alternatively, we could sum the ranges to the

pixels (normalized appropriately for the field-of-view and

edge direction) to estimate the length of the edge in the

world coordinates.
As a second example, we may consider the local

straightness of the edges at each of their edge pixels by

examining the difference in the gradient direction at

neighboring edge pixels along the edge. However, we

would not expect identical edge phenomena appearing at

different ranges to yield the same differences in the gradient

direction between the neighboring edge pixels. Edges closer

to the camera will appear to be straighter, since the local

gradient differences will be smaller. To allow for this effect,

the differences in gradient direction can be weighted by the

range to the edge.

7 FEATURE DETECTION

We have also applied these techniques to feature detection.

In this case, we have used the method of FoÈrstner and

GuÈ lch [11] subsequent to the Gaussian smoothing. Since this

operator also uses the image derivatives to determine

whether a feature should be detected, we must normalize

the gradients as was done for the edge detection. For each
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Fig. 4. Edge detection results for the image in Fig. 1: (a) Edges detected with � � 1:0, (b) edges detected with � � 2:0, (c) edges detected with

� � 4:0, and (d) edges detected with stereo-guided scale selection.

1. For nonfrontal scenery, the orientation of the edge also affects the edge
length. This effect can be accounted for if we estimate the three-dimensional
orientation of the edge.



pixel, we then compute the circularity of the confidence

ellipse q and the precision w:

q � 4 � det�N�
trace�N�2

w � 2 � det�N�
trace�N�

N �
�I
�x

ÿ �2 �I
�x � �I�y

�I
�x � �I�y �I

�y

� �2

24 35:
The circularity q is between zero and one. We desire

values closer to one, since this indicates gradients in

multiple directions, rather than a single straight edge. A

large value for w indicates the presence of strong gradients

and measures the precision of the feature localization. We,

thus, select, as corners, those positions that are local

maxima and have w and q above some threshold value.
Fig. 6 shows an example of the application of these

techniques to an image of Mars from the Pathfinder

mission. It can be observed that when corners are detected

with adaptive scale selection, fewer features are detected in

the foreground, since they are less relevant. On the other

hand, more features are detected further from the camera,

where they are more relevant, but appear smaller due to the

perspective transformation.

8 APPLICATION RESULTS

Our target application for these techniques is to recognize

surface-lying ordnance in military test ranges using a stereo

system mounted on an unmanned ground vehicle for the

purpose of autonomous remediation. One method to

evaluate the edge detection techniques is by the perfor-

mance of this application when using the stereo-guided

smoothing and edge detection versus the performance

when it is not used. We have tested the techniques on a set

of 48 gray-scale images consisting of barren terrain with an

inert piece of ordnance present at various distances and

orientations (see Fig. 7).
In this experiment, we tested three scales individually

(� � 0:8; 1:6; 3:2) and the result with stereo-guided scale

selection using the same three scales to interpolate from.

After edge detection was performed, an algorithm to detect

the ordnance using geometric cues was used to find

candidate ordnance positions [22]. We also considered the

combination of all of the candidates found at the three

discrete scales (with duplicates removed).
Table 1 summarizes the results of this experiment. When

the variable-scale smoothing and edge detection was

performed, we achieved 40 correct recognitions out of the

48 cases. The eight failures occurred due to cases where the

ordnance was at a significant distance from the camera and

at an orientation nearly aligned with the camera axis (the

worst case). In addition, 18 false positives were detected in
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Fig. 5. Edge detection results for the image in Fig. 2: (a) Edges detected with � � 1:0, (b) edges detected with � � 2:0, (c) edges detected with

� � 4:0, and (d) edges detected with stereo-guided scale selection.



the images. Fig. 7 shows two examples, one of which
contains a false positive.

For each individual scale that was examined, we had
more cases where the ordnance was missed than with
stereo-guided scale selection and, in two of them, we also
found more false positives. While the largest constant scale
that was examined (� � 4:0 pixels) resulted in four fewer
false positives, the detection performance was significantly
degraded, since five additional ordnance instances were
missed. When all of the candidates from the three scales
were combined, there was one less false negative, but in this
case the number of false positives rose sharply to 45.

Overall, the use of the stereo-guided scale selection
techniques resulted in performance that was significantly
superior to any of the individual scales or the combination
of the scales.

9 DISCUSSION

In the application of these techniques, there are some
practical issues that should be considered, since the
techniques may not be appropriate for all situations. A
potential drawback to our method is that it relies on first
obtaining a dense depth map of the scene. Some methods
for estimating depth do not generate dense values. Even in
methods that estimate dense values, areas of low texture
can cause measurements to be significantly in error. In the
stereo method that we use [17], measurements are pruned if
they are suspected to be inaccurate. This can be observed in
Fig. 2b, where the black areas correspond to pruned data.
We use nearest-neighbor propagation techniques to fill the

unknown values. This is adequate in many cases. However,
some depth estimation methods may produce measure-
ments that are too sparse to be generate good estimates. In
this case, the performance of our method will be degraded.
In general, errors in the range estimates cause a suboptimal
filter scale to be used. However, in this method it is critical
only to use a scale near the optimal value at each location.
Small deviations in the estimated scale do not cause large
changes in the derived edge map. Note also that areas of
low texture, where depth estimates are likely to be in error,
are areas in which we will not detect any edges or other
features. Areas that contain features are likely to yield
accurate depth estimation, since correlation-based matching
techniques work well in these areas.

Another issue of concern in some applications is the
existence of occlusion boundaries where the depth map is
not smooth. In this case, the filter will span multiple depths
at these locations and will, therefore, be inappropriate for a
portion of the image to which they are applied. A related
issue is whether it is appropriate to look for a single
ªtrue scaleº for any location in the image, when events
occur over the space of scales. In some applications, using
the image depth to select a single scale for each image
location may be inappropriate. However, there are many
useful applications where this simplifying assumption
yields excellent results and requires less computation than
considering the full space of scales. An example can be seen
in the ordnance recognition application we discussed in
Section 8. Where there are depth discontinuities, our
experience is that the stereo estimate usually corresponds
to the surface with greater texture. If we are to choose a
single depth for these locations, this estimate is a reasonable
(perhaps the best) one to choose.

Lindeberg and GaÊrding [23] have described a related
technique to perform smoothing adaptively. They use local
image measurements to determine the appropriate shape of
the filter in order to reduce distortions that occur in the
estimation of 3D shape. This technique was applied to
improving both shape-from-texture and shape-from-dis-
parity by applying the adaptive smoothing techniques prior
to estimating the shape of the surfaces. They further suggest
an approach where the adaptive smoothing is guided by the
interimage deformations for use in shape-from-disparity.
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Fig. 6. Feature extraction using adaptive scale selection: (a) Original image, (b) corners detected with � � 2:0, and (c) corners detected with adaptive
scale selection.

TABLE 1
Results in Ordnance Recognition Application



This method would adapt the shape of the filters such that
the filters applied to the left and right images backproject to
the same patch in the world (up to a first-order approxima-
tion). Our approach, while not attempting to achieve this
same backprojection, uses a similar idea, where range
estimates derived from the stereo pair are used to guide the
smoothing process. This method could be adapted to use
local shape estimates from the image to guide the shape of
the smoothing filter in a manner similar to that suggested
by Lindeberg and GaÊrding.

10 SUMMARY

We have described techniques that perform filtering and
feature detection (edges and corners) adaptively using
range data to select the scale at each pixel. This allows
processing of the image to be performed with respect to the
true scale of objects rather than the scale observed in the
image. We have also used the range data for evaluating the
salience of edges with respect to the true scale. These
techniques have been implemented by convolving the
image with Gaussian derivatives at a discrete set of scales.
The correct response at each image pixel is estimated
through parabolic interpolation of the known responses and
normalization is performed so that the results are compar-
able across the image. Improved results were obtained after
the variable-scale filtering using both Canny's edge detector
[10] and the feature detection method of FoÈrstner and
GuÈ lch [11]. In addition, the application of this method to the
problem of detecting unexploded ordnance in test ranges
has resulted in a considerable improvement in performance.
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