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Abstract. In the exploration of the planets of our solar sys-
tem, images taken during a lander’s descent to the surface of
a planet provide a critical link between orbital images and
surface images. The descent images not only allow us to lo-
cate the landing site in a global coordinate frame, but they
also provide progressively higher-resolution maps for mission
planning. This paper addresses the generation of depth maps
from the descent images. Our approach has two steps, motion
refinement and depth recovery. During motion refinement, we
use an initial motion estimate in order to avoid the intrinsic mo-
tion ambiguity. The objective of the motion-refinement step is
to adjust the motion parameters such that the reprojection er-
ror is minimized. The depth-recovery step correlates adjacent
frames to match pixels for triangulation. Due to the descend-
ing motion, the conventional rectification process is replaced
by a set of anti-aliasing image warpings corresponding to a set
of virtual parallel planes. We demonstrate experimental results
on synthetic and real descent images.
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1 Introduction

Future space missions that land on Mars (and other planetary
bodies) may include a downward-looking camera mounted
on the vehicle as it descends to the surface. Images taken by
such a camera during the descent provide a critical link be-
tween orbital images and lander/rover images on the surface
of the planet. By matching the descent images against orbital
images, the descent vehicle can localize itself in global co-
ordinates and, therefore, achieve precision landing. Through
analysis of the descent images, we can build a multiresolu-
tion terrain map for safe landing, rover planning, navigation,
and localization. This paper addresses the issue of generating
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multiresolution terrain maps from a sequence of descent im-
ages. We use motion-estimation and structure-from-motion
techniques to recover depth maps from the images. A new
technique for computing depths is described that is based on
correlating the images after performing anti-aliasing image
warpings that correspond to a set of virtual planar surfaces.

It is well known that, when the viewed terrain is a planar
surface, the motion-recovery problem is ill-posed, since trans-
lations parallel to the surface appear similar to rotations about
axes parallel to the surface. Motion recovery is, therefore, not
generally reliable for this scenario. However, if we have an in-
dependent means to measure the orientation of the camera, we
can obtain stable motion recovery. For planetary exploration
missions, such measurements can be provided by the inertial
navigation sensors on the landing spacecraft.

For space missions, it is likely that the motion will be
nearly perpendicular to the planetary surface. For the Mars
Polar Lander mission, which was unable to return data due
to loss of the lander, it was planned that the camera would
take an image every time the distance to the ground halved.
In other words, there would be roughly a scale factor of two
between adjacent frames in the sequence. A similar scenario is
likely in future missions. The large change of scale prohibits
us from tracking many features across several frames. For
most features, we limit our correlation and depth recovery to
adjacent frames for this reason.

The descending motion also causes problems in correlat-
ing the images. Since the epipoles are located near the center
of the images, it is not practical to rectify adjacent frames in
the same manner that traditional stereo techniques do. Instead,
we perform a virtual rectification, resampling the images by
considering a set of parallel planar surfaces through the terrain.
Each surface corresponds to a projective warping between the
adjacent images. The surface that yields the best correlation at
each pixel determines the depth estimate for that location. This
methodology not only aligns images according to the epipo-
lar lines but also equalizes the image scales using anti-aliased
warpings.

Of course, many other approaches have been proposed
for recovering motion and depth from image sequences
[2,4,6,8,11,14]. This work differs from most previous work
in two ways. First, almost all of the motion is forward along
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Fig. 1. Descent motion

the camera pointing direction. Second, large movements in the
camera position occur between frames, usually doubling the
resolution of the images at each frame. This work is thus in
part, an application of previous work to the problem of map-
ping spacecraft descent imagery and, in part, new techniques
for dealing with the above problems. The technique produces
dense maps of the terrain and operates under the full perspec-
tive projection.

In the next two sections, we describe the motion-
refinement and depth-recovery steps in detail. We then dis-
cuss our experiments on synthetic and real descent images.
The results demonstrate the various terrain features that can
be recovered. Near the landing site, small obstacles such as
rocks and gullies can be identified for planning local rover
navigation. Further from the landing site, larger features such
as mountain slopes and cliffs are visible for use in long-range
planning.

2 Motion refinement

Recovering camera motion from two or more frames is one
of the classical problems in computer vision. Linear [7] and
nonlinear [13] solutions have been proposed. Our scenario in-
volves a downward motion towards a roughly planar surface
(as in Fig. 1). Generic motion recovery from matched features
is ill-posed owing to a numerical singularity (rotations and
translations are difficult to distinguish.) Since the camera can
be rigidly attached to the lander, and the change in the lander
orientation can be measured accurately by an inertial naviga-
tion system onboard, we can eliminate the singularity prob-
lem by adding a penalty term for deviating from the measured
orientation. The following two subsections briefly explain our
feature correspondence and nonlinear optimization for motion
refinement.

2.1 Feature correspondence

For each pair of adjacent frames in the sequence, we deter-
mine correspondences for features that have been selected in
the higher-resolution frame into the lower-resolution frame.
Forstner’s interest operator [3] is used to evaluate the distinc-
tiveness of the features in the higher-resolution frame. We
select the features with high scores while disallowing features
that are too close together (Fig. 2a).
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Fig. 2a,b. Feature correspondence between adjacent frames. a Se-
lected features. b Correspondences detected

Once the image resolutions have been equalized (using
downsampling or anti-aliasing warping, if necessary), feature
correspondence can be determined in a straightforward man-
ner. For every feature in the reference image, we search an area
in the target image for a match. The location of the search area
is derived from the initial estimate of the vehicle ego-motion
and its altitude. The initial estimates do not need to be precise.
The size of the search area is determined by how uncertain the
initial estimates are. Once the search area is located, we detect
the feature match through normalized correlation.

2.2 Nonlinear motion estimation

The objective of motion refinement is to establish the precise
camera motion between two adjacent frames such that the
epipolar constraints are satisfied to subpixel accuracy. It is
unrealistic to expect the onboard inertial sensors to track the
camera orientation with such precision. It is therefore crucial
to be able to refine the motion parameters prior to recovering
the depth map.

The matched features provide a rich set of observations
to constrain the camera motion, even though the relationship
between the locations of the matched features and the cam-
era motion parameters is nonlinear. Let us assume that the
projection matrix of the camera (including the calibrated in-
ternal parameters) is ff, the location of feature ¢ at time ¢ is
(X!, Y Z8T in the camera frame of reference, its image lo-
cation at time ¢ represented in homogeneous coordinates is
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[zf,yt, 28]T, and the camera motion between time ¢ and time

t + 1 is composed of a translation T and rotation R (3x3
matrix). The projection of the feature at time ¢ is:

xt Xt
yl| =AY, (1)
2t VA

and the projection at time (¢ 4 1) is:
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Therefore, the feature motion in the image is:
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where U = ARA~' is a 3x3 matrix and V = AT is a 3-
vector. Let [c}, rt] = [z!/z¢, y!/z!] denote the actual column
and row location of feature ¢ in image coordinates at time t.
We then have the predicted feature locations at time ¢ + 1 as:
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where u;; and v; are elements of UandV, respectively.

There are two ways to optimize the camera motions in
the above equations. One is to reduce the two equations into
one by eliminating z!. We would then minimize the summed
deviation from the equation specifying a nonlinear relation be-
tween [c!, 7!] and [¢i ™!, #171]. Though this method is concise
and simple, it poses a problem in the context of least-squares
minimization in that the objective function does not have a
physical meaning.

The other approach to refine the motion estimate is to aug-
ment the parameters with depth estimates for each of the fea-
tures. There are two advantages to this approach. First, the ob-
jective function becomes the distance between the predicted
and observed feature locations, which is a meaningful mea-
sure for optimization. In addition, in the context of mapping
descent images, we have a good initial estimate of the depth
value from the spacecraft altimeter. Incorporating this infor-
mation will thus improve the optimization in general.

Let us say that the depth value of feature  at time ¢ is df and
the camera is pointing along the z-axis; the homogeneous co-
ordinates of the feature are [x%, y!, 21| = di[c!, rt, 1]t. There-
fore, the overall objective function we are minimizing is:

N
So(( =) (=), @
=1

where N is the number of features and é;“ and ff“ are

nonlinear functions of the camera motion and depth value d!

given by Eqgs. 4 and 5. We perform nonlinear minimization
using the Levenberg—Marquardt algorithm with the estimated
position as the starting point. Robustness is improved through
the use of robust statistics in the optimization.

The result of the optimization is a refined estimate of the
rotation R and translation 7" between the camera positions.
In the optimization, we represent the rotation using a quater-
nion. In order to resolve between translations and rotations,
which appear similar, a penalty term is added to the objective
function Eq. 6 that prefers motions close to the initial motion
estimate. This constrains the motion not to deviate far from the
orientation estimated by navigation sensors while allowing for
some deviation in order to fit the observed data. An additional
penalty term is added that forces the quaternion to have unit
length and, thus, correspond to a valid rotation matrix.

Equation 6 specifies the objective function for two adja-
cent images. A long sequence of descending images requires
a common scale reference in order to build consistent mul-
tiresolution depth maps. The key to achieving this is to track
features over more than two images. From Eq. 3 the depth
value of feature ¢ at time ¢ + 1 can be represented as

i+l ¢t
7 — 7 =

ditt | =0dl |t | + V. (7)
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Thus, the overall objective is to minimize the sum of Eq. 6
for all adjacent pairs while maintaining the consistent scale
reference by imposing the constraint in Eq. 7 for all features
tracked over more than two frames.

3 Depth map recovery

The second step of our method generates depth maps by per-
forming correlations between image pairs. In order to compute
the image correlation efficiently, we could rectify the images in
amanner similar to binocular stereo. Unfortunately, we cannot
simply rectify the images along scanlines because the epipolar
lines intersect near the center of the images. If we resample
the images along epipolar lines, we will oversample near the
image center and undersample near the image boundaries.

Alternative rectification methods have recently been pro-
posed that improve handling of these issues [9,10]. However,
these methods enlarge the images and resample unevenly. An-
other alternative is to not resample the images at all. Matches
can be found along the epipolar lines even if they are not hor-
izontal. This method, however, requires considerably more
computation time.

In order to avoid these problems and perform the correla-
tion efficiently, we adopt a slicing algorithm. The main idea
is to use a set of virtual planar surfaces slicing through the
terrain as shown in Fig. 3. A similar concept was used by
Collins [2] to perform matching between features extracted
from the images. See also [12].

The virtual planar surfaces are similar in concept to
horopter surfaces [1] in stereo. For every planar surface k,
if a terrain surface patch lies on the planar surface, then there
exists a projective warping ]3k between the two images for this
patch. If we designate the first image I1 (z, y) and the second
image I2(x,y), then for every virtual planar surface, we can
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Fig. 3. The terrain is sliced with virtual parallel planes

compute the sum of squared differences (SSD) as:

o+ W ytW

Cr(z,y) = Z Z (Il(m,n)—If(m,n))z, (8)

m=x—W n=y—W

where 2W + 1 is the size of the correlation window and
I (z,y) is a warped version of I5(x,%):

Ik(x y) = I (poo:v + Po1y + Po2 P1ox + P11y +p12)
2 P20T + P21y + P22’ P20 + P21y + P22

where p;; are elements of the 3x3 matrix 131:- Due to the
large resolution difference, an anti-aliasing resampling [5] or
a uniform downsampling of I5(z, y) is applied before the im-
age warping. In practice, if the camera heading directions are
almost perpendicular to the ground, a uniform downsampling
before warping is sufficient. Otherwise, a space-variant down-
sampling should be used to equalize the image resolutions.
The estimated depth value at each pixel is the depth of the
plane z;, whose corresponding SSD image pixel Cy(z,y) is
the smallest:
2(x,y) = 2, (10)

where

Cr(x,y) < Cj(z,y),j=1,..., M, an
and M is the number of planar surfaces. To further refine the
depth values, the underlying SSD curve can be interpolated

by a quadratic curve and the “subpixel” depth value computed
[15] as:

02(Crpr(z,y) — Cr—1(x,y))
Crt1(z,y) + Cr—1(z,y) — 2Ck(z, y()l)Z,)

z(x,y) = 2z + 3

where §z is the depth increment between adjacent planar sur-
faces. In order to improve the localization of this operation,
we compute the SSD between the windows with a Gaussian
modulation function so that the pixels closer to the center of
the window have more weight than the pixels at the edge of
the window. ~

The projective warping matrix P}, is derived from the pa-
rameters of the camera motion and the planar surfaces. For
an arbitrary point X in some reference frame, its projection is
expressed as Z = M (X — C), where C is the position of the
camera nodal point and M is the projection matrix. Note that
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C and M encapsulate the camera motion between the images,
since they are represented in a common reference frame. Let
61 and M 1 represent the higher camera, 62 and Mg represent
the lower camera in Fig. 3.' NTX + 2, = 0 represents the
set of planar surfaces. For any pixel in image 2 (i.e., the lower
camera), its location must lie on a 3D ray:

C2
X =sMy* | 72| +Co, (13)
1

where c; and 75 are, respectively, the column and row location
of the pixel and s is a positive scale factor. If the pixel is from a
point on the planar surface, then the following constraint must
be satisfied:

C2
sNTM;Y | ro | + NTCy + 2, = 0. (14)
1

Therefore, the scale factor s must be

NTC.
PO s k. (15)
NT M eg, 1o, 1]T

We can then reproject the point onto the first image using
Egs. 13 and 15:

1 C2

Y1 = Ml(X: — 51) = ﬁk re |, (16)
21 1

where ﬁk is a 3x3 matrix specifying the projective warping:
Py = My(Co—C)NT My = (NTCy+2) My Myt (17)

Note that the depth recovery is numerically unstable in
the vicinity of the epipoles, located near the center of the im-
age. Pixels near the epipoles usually have a small amount of
parallax, even with large camera motions. The SSD curves in
these areas are very flat, and, thus, accurate depth recovery
is difficult. These regions can be easily filtered, if desired, by
imposing a minimum curvature threshold at the minima of the
SSD curves.

4 Experiments

Figure 4a—c shows a synthetic set of nested descent images
(400x400 pixels). For this set of images, the terrain model
is composed of a slowly varying terrain surface overlaid with
rocks distributed according to a statistical model. The height
of the camera decreases from 25 m above the ground to 6 m
above the ground. The field of view of the camera is 70°.
Figures 4d,e show a visualization of the depth maps, with
the image draped over the terrain. The maps have root-mean-
square errors of 4.6cm and 9.7 cm, respectively. Note that the

! In the notation of the previous section, ]\/.71 = ff, 6_"1 = 0,
M = AR, and C)} = —R™'T. The change of notation is primarily
for convenience.
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Fig. 4a—e. Synthetic descent image sequence. a Image at 6m elevation. b Image at 12 m elevation. ¢ Image at 25m elevation. d Rendered
terrain map at 6 m elevation. e Rendered terrain map at 12 m elevation

e f g h

Fig. Sa-h. Descent sequence captured with a helicopter. a Elevation: 1085m. b Elevation: 590m. ¢ Elevation: 238 m. d Elevation: 128 m.
e Elevation: 55m. f Elevation: 32m. g Elevation: 15m. h Elevation: 8m

areas close to the focus of expansion (at the center of the
image) have larger error than the rest of the image, owing to the
geometrical instability at the focus of expansion. In both image
pairs, the general downward slope of the terrain from back to
front and left to right can be observed. In addition, individual
rocks can be distinguished, particularly in the lower-elevation
image pair. These techniques have been tested extensively on
similar synthetic images with similar results.

For these experiments, we generated our initial estimates
of the camera motion by perturbing the actual camera values by

arandom noise of magnitude 2°. This level of accuracy in the
orientation can be achieved by the onboard inertial navigation
system during an actual landing. The overall quality of the
recovered depth maps appears adequate for navigation in the
vicinity of the landing and long-range planning of goals far
from the landing site.

Our techniques were also tested using a set of descent
images collected in the desert area near Silver Lake, CA using
a helicopter. Figure 5 shows eight frames from this sequence.
The initial camera motions were estimated using control points
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on the ground. Several of the images contain significant lateral
motions due to the difficulty in maintaining the x-y position
of the helicopter during the data collection. Figure 6 shows the
images draped over the visualized terrain, and Fig. 7 shows
the same data without texture mapping.

Since these are real images captured using a moving heli-
copter, the focus of expansion for each image pair is not at the
center of the image (although it is reasonably close in Figs. 6b
and e). In Figs. 6f and g, the focus of expansion can be seen
above the center of the image, while it is near the bottom-right
corner in Figs. 6¢c and d. In Fig. 6a, the focus of expansion is
off of the image to the left. The instability can be seen in these
locations where the rendered map becomes wavy or choppy.
As the distance from the focus of expansion increases, the ter-
rain elevations become more accurate. In Fig. 6c, the lower
altitude image did not entirely overlap the higher altitude im-
age, resulting in the lack of elevation data in the lower-left
corner of the result for that image pair.

Fig. 6a—-g. Rendered terrain maps. a Elevation: 590m. b Elevation: 238 m.
c Elevation: 128 m. d Elevation: 55 m. e Elevation: 32m. f Elevation: 15m.
g Elevation: 8 m

For the images in this data set, the terrain slopes downward
from left to right, which can be observed in the rendered maps.
Some of the interesting terrain features include the channels in
Figs. 6c—e and the bushes visible in Fig. 6g. Note that the areas
in which the helicopter shadow is present yield good results,
despite the movement of the shadow. This can be attributed
to the robust methods that we use for both motion estimation
and template matching. Overall, this data set indicates that we
can robustly compute maps that are useful for navigation over
both small and large scales using real images, albeit under
somewhat different conditions than would be encountered by
an actual Mars lander.

While no descent images are currently available from other
planets, the three final Ranger missions to the moon (Ranger 7
in 1964, Ranger 8 in 1965, and Ranger 9 in 1965) transmitted
images on their descent to the surface. In fact, the mission
of these spacecraft was to return images while crashing into
the moon at flight velocity. Unfortunately, these images are
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difficult to work with, since the camera was uncalibrated and
the images were transmitted in analog form. Figure 8 shows
images from Ranger 7 and Ranger 9 and rendered terrain maps
that show qualitative results with respect to the shape of the
terrain. High-quality quantitative results are not possible with
these data. Nevertheless, we are able to extract interesting data
with respect to the slope of the terrain and certain depressions
caused by impact craters. For the Ranger 7 image, the focus
of expansion occurs at the upper-left corner of the image. For
the Ranger 9 image, the focus of expansion occurs just above
the large crater that is visible.

5 Summary
We have presented techniques for extracting depth maps from

a sequence of descent images, such as those that would be
acquired by a lander descending to a planetary surface. The

Fig. 7a-g. Rendered terrain maps without texture mapping. a Elevation: 590 m.
b Elevation: 238 m. ¢ Elevation: 128 m. d Elevation: 55 m. e Elevation: 32 m.
f Elevation: 15m. g Elevation: 8 m

method consists of two primary steps: motion estimation and
depth recovery. Motion estimation is performed by matching
features and minimizing a least-squares objective function us-
ing nonlinear methods. The depth map is then recovered us-
ing a novel technique where the terrain is sliced by virtual
planes, similar to horopter surfaces in stereo. Each plane can
be thought of as a vertical displacement. The plane yielding
the lowest SSD is selected as the depth for each pixel, and sub-
pixel estimation techniques are used to improve the estimate.
We have performed experiments with this method on synthetic
and real image sequences. The experiments have resulted in
maps that can be used for navigation and planning at a scale
roughly proportional to the distance from the landing site.
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Fig. 8a—d. Moon images from Ranger missions. a Moon image from Ranger 7. b Rendered terrain map. ¢ Moon image from Ranger 9.

d Rendered terrain map.

Acknowledgements. The research described in this paper was car-
ried out in part at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and
Space Administration. An earlier version of this work appeared in the
2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition [16].

References

1. Burt PJ, Wixson L, Salgian G (1995) Electronically directed
“focal’’ stereo. In: Proceedings of the international conference
on computer vision, pp 94-101

2. Collins RT (1996) A space-sweep approach to true multi-image
matching. In: Proceedings of the IEEE conference on computer
Vision and pattern recognition, pp 358-363

3. Forstner W (1994) A framework for low-level feature extraction.
In: Proceedings of the European conference on computer vision,
pp 383-394

4. Hanna KJ (1991) Direct multi-resolution estimation of ego-
motion and structure for motion. In: Proceedings of the IEEE
workshop on visual motion, pp 156-162

5. Heckbert P (1986) Survey of texture mapping. IEEE Computr
Graph Appl 6(11):56-67

6. Heeger DJ, Jepson AD (1992) Subspace methods for recovering
rigid motion: 1. Algorithm and implementation. Int J Comput
Vis 7(2):95-117

10.

11.

12.

13.

15.

16.

. Longuet-Higgins HC (1981) A computer algorithm for recon-

structing a scene from two projections. Nature 293:133—135

. Oliensis J, Genc Y (1999) Fast algorithms for projective multi-

frame structure from motion. In: Proceedings of the international
conference on computer vision, 1:536-543

. Pollefeys M, Koch R, Van Gool L (1999) A simple and efficient

rectification method for general motion. In: Proceedings of the
international conference on computer vision, 1:496-501

Roy S, Meunier J, Cox 1J (1997) Cylindrical rectification to
minimize epipolar distortion. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 393-399
Soatta S, Perona P (1998) Reducing “structure from motion”: a
general framework for dynamic vision, part 1: Modeling. IEEE
Trans Pattern Anal Mach Intell 20(9):933-942

Szeliski R, Golland P (1999) Stereo matching with transparency
and matting. Int J Comput Vis 32(1):45-61

Szeliski R, Kang SB (1994) Recovering 3d shape and motion
from image streams using non-linear least squares. J Vis Com-
mun Image Represent 5(1):10-28

. Tomasi C, Kanade T (1992) Shape and motion from image

streams under orthography: a factorization method. IntJ Comput
Vis 9(2):137-154

XiongY. Matthies LH (1997) Error analysis for a real-time stereo
system. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 1087-1093

Xiong Y, Olson CF, Matthies LH (2001) Computing depth maps
from descent imagery. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, 1:392-397



Yalin Xiong et al.: Computing depth maps from descent images

Yalin Xiong is Director of Engineering in RAPID division of KLA-
Tencor, specializing in image processing and computer vision al-
gorithms for semiconductor inspection equipments. Prior to joining
KLA-Tencor, he was a senior staff in Jet Propulsion Lab, Caltech
from 1998 to 2000, and senior engineer in Apple Computer from
1996 to 1998. Dr. Yalin Xiong got Ph.D. from the Robotics Insti-
tute of Carnegie Mellon University, and B.S. from the University of
Science and Technology of China.

Clark F. Olson received the B. S. degree
in computer engineering in 1989 and the
M.S. degree in electrical engineering in
1990, both from the University of Wash-
ington, Seattle. He received the Ph. D. de-
gree in computer science in 1994 from the
University of California, Berkeley. After
spending two years doing research at Cor-
nell University, he moved to the Jet Propul-
sion Laboratory, where he spent five years
working on computer vision techniques
for Mars rovers and other applications. Dr.
Olson joined the faculty at the University of Washington, Bothell in
2001. His research interestes include computer vision and mobile
robotics. He teaches classes on mathematical principles of comput-
ing, database systems, and computer vision. He continues to work
with NASA/JPL on computer vision techniques for Mars exploration.

Larry H. Matthies PhD, computer sci-
ence, Carnegie Mellon University, 1989;
Supervisor, Machine Vision Group, Jet
Propulsion Laboratory (JPL). Dr. Matthies
has 21 years experience in developing per-
ception systems for autonomous naviga-
tion of robotic ground and air vehicles.
He pioneered the development of real-time
stereo vision algorithms for range imag-
ing and accurate visual odometry in the
1980’s and early 1990’s. These algorithms
. will be used for obstacle detection onboard
the Mars Explorat10n Rovers (MER). The GESTALT system for ob-
stacle avoidance for the MER rovers was developed in his group;
this system is also currently the baseline for onboard obstacle de-
tection for the 2009 Mars Science Laboratory (MSL) mission. His
stereo vision-based range imaging algorithms were used for ground
operations by the Mars Pathfinder mission in 1997 to map terrain
with stereo imagery from the lander for planning daily operations
for the Sojourner rover. He initiated the development at JPL of com-
puter vision te s for autonomous safe landing and landing hazard
avoidance for missions to Mars, asteroids, and comets. His group
developed the Descent Image Motion Estimation System (DIMES)
that will be used to estimate horizontal velocity of the MER landers
during terminal descent. Algorithms developed in his group for on-
board crater recognition have been selected as the backup approach
to regional hazard avoidance for the MSL mission. He also conducts
research on terrain classification with a wide variety of sensors for
off-road navigation on Earth. He was awarded the NAS A Exceptional
Achievement Medal in 2001 for his contributions to computer vision
for space missions. He is an Adjunct Assistant Professor of Computer
Science at the University of Southern California.




