
SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

Clark F. Olson and Henry J. Lyons
Computing and Software Systems, University of Washington

Box 358534, 18115 Campus Way N.E., Bothell, WA 98011-8246, U.S.A.
cfolson@u.washington.edu, henry.j.lyons@gmail.com

Keywords: Projective clustering, Monte Carlo algorithm.

Abstract: We describe a new Monte Carlo algorithm for projective clustering that is both simple and efficient. Like
previous Monte Carlo algorithms, we perform trials that sample a small subset of the data points to determine
the dimensions in which the points are sufficiently close to form a cluster and then search the rest of the data
for data points that are part of the cluster. However, our algorithm differs from previous algorithms in the
method by which the dimensions of the cluster are determinedand the method for determining the points in
the cluster. This allows us to use smaller subsets of the datato determine the cluster dimensions and achieve
improved efficiency over previous algorithms. The complexity of our algorithm isO(nd1+logα/ logβ), where
n is the number of data points,d is the number of dimensions in the space, andα andβ are parameters that
specify which clusters should be found. To our knowledge, this is the lowest published complexity for an
algorithm that is able to place high bounds on the probability of success. We present experiments that show
that our algorithm outperforms previous algorithms on realand synthetic data.

1 INTRODUCTION

Data clustering is a technique for the unsupervised
classification of data points into (possibly overlap-
ping) sets that has many applications (Jain et al.,
1999). However, clustering in many dimensions of-
ten yields poor results, since clusters may form in
only a subset of the dimensions (Agrawal et al., 1998).
In fact, it has been shown that, under some assump-
tions, the ratio between the distance to the nearest
neighbor and the distance to the farthest neighbor ap-
proaches one as the dimensionality of the space in-
creases (Beyer et al., 1999). In such a situation, clus-
tering in the full space becomes nearly meaningless.

Projective clustering is a special case of the data
clustering problem in which the clusters of data points
are allowed to form in a subset of the dimensions of
the full space. As opposed to dimensionality reduc-
tion techniques (Dash et al., 2002; Ding et al., 2002),
the clusters are not constrained to form in the same
subset of dimensions. While most projective clus-
tering problems consider a many-dimensional space,
we can illustrate the problem using three dimensions.
Two projective clusters are present in Fig. 1(a), one in
thex andy dimensions and one in they andz dimen-
sions. Figure 1(b) shows the projection of the points
onto the x - y plane, where the first cluster is easy to

see.
More formally, the projective clustering problem

can be stated as follows. Given a set of pointsP
in a d-dimensional space, find all maximal sets of
pointsCi ⊂ P and corresponding sets of dimensions
Di ⊂ [1, ...,d] such that the point set is sufficiently
close in each of the dimensions to form a cluster. We
say that the pointscongregatein this dimension;clus-
ter will be used only as a noun. We also say that the
dimensions inDi are thecongregating dimensionsof
the cluster. For our purposes, we define this to be true
if they are within a widthw of each other:

∀p,q∈Ci ,∀ j ∈ Di , |p j −q j | ≤ w. (1)

Furthermore, to be reported, each cluster must surpass
some criteria with respect to the cardinalities ofCi and
Di :

µ(|Ci |, |Di |)≥ µ0. (2)
The clusters reported are maximal sets to prevent all
subsets of each cluster from being reported. Most al-
gorithms relax the requirement of reporting all max-
imal sets, since there are typically many overlapping
maximal sets that meet the above requirements. This
is necessary for an efficient algorithm, since it is pos-
sible for the number of such maximal sets to be quite
large.

Our contribution is a new algorithm for projective
clustering that is simple, robust and efficient. We call

45

(a) (b)

Figure 1: Projective cluster example. (a) Two projective clusters among outliers in a three-dimensional space. (b) The
projection of the points onto the x-y plane illustrates one projective cluster, but not the other (which lies in the y-z plane).

it SEPC, for Simple and Efficient Projective Cluster-
ing. Using a Monte Carlo algorithm, we find projec-
tive clusters with high probability. The complexity of
the algorithm has a linear dependence on the number
of data points and a polynomial dependence on the
number of dimensions in the space. The algorithm
does not require the number of output clusters as an
input, it is able to operate with clusters of arbitrary
size and dimensionality, and it is robust to outliers.
No assumptions are made about the distribution of
the clusters or outliers, except that the clusters must
have a diameter no larger than a user-defined con-
stant in any of the cluster dimensions. In addition,
the algorithm can be used either to partition the data
into disjoint clusters (with or without an outlier set)
or generate overlapping dense regions in the projec-
tive subspaces. Our algorithm generates tighter clus-
ters than previous Monte Carlo algorithms, such as
FastDOC (Procopiuc et al., 2002). The computational
complexity of our algorithm is also less dependent on
the cluster evaluation parameters and is lower overall.
Our experiments show that we are able to find projec-
tive clusters that are missed by FastDOC. The perfor-
mance of the algorithm on a real data set is superior
to previously reported results.

In Section 2, we review prior work on this prob-
lem. We then discuss our approach in Section 3. The
algorithm itself is described in Section 4, as well as
an analysis of the efficiency of the algorithm and op-
timizations. Our experimental results on random and
real data are presented in Section 5. Finally, our con-
clusions are given in Section 6.

2 PREVIOUS WORK

Considerable research has been performed on projec-
tive clustering. Parsons, Haque and Liu (2004) review
many techniques for this problem. The CLIQUE al-
gorithm of Agrawal, Gehrke, Gunopulos and Ragha-
van (1998, 2005) was likely the first algorithm to ad-
dress the projective clustering problem. The algo-
rithm uses a bottom-up strategy that initially finds
clusters in projections onto single dimensions of the
space. Clusters previously found ink-dimensional
spaces are used to find clusters in(k+1)-dimensional
spaces. Clusters are built with one additional dimen-
sional at each step, until no more dimensions can be
added. One drawback to the algorithm is that it is
exponential in the number of dimensions in the out-
put cluster. Other bottom-up algorithms include EN-
CLUS (Cheng et al., 1999) and MAFIA (Goil et al.,
1999; Nagesh et al., 2001).

Aggarwal, Wolf, Yu, Procopiuc and Park (1999)
developed the PROCLUS algorithm for projec-
tive clustering using a top-down strategy based on
medoids. The medoids are individual points from the
data set selected to serve as surrogate centers for the
clusters. After initializing the medoids, an iterative
hill-climbing approach is used to improve the set of
points used as medoids. A final refinement stage gen-
erates the final projective clusters. This algorithm re-
quires both the number of clusters and the average
number of dimensions as inputs. Additional methods
that use top-down strategies include ORCLUS (Ag-
garwal and Yu, 2000) (which considers non-axis par-
allel subspaces) and FINDIT (Woo et al., 2004).

Procopiuc, Jones, Agarwal and Murali (2002) de-
veloped the DOC and FastDOC algorithms for pro-

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

46

jective clustering. One of their contributions was a
definition of an optimal projective cluster, which has
the following properties:

1. It has a minimum densityα (a fraction of the num-
ber of points in the data set).

2. It has a width of no more thanw in each dimension
in which it congregates.

3. It has a width larger thanw in each dimension in
which it does not congregate.

4. Among clusters that satisfy the above criteria, it
maximizes a quality functionµ(|C|, |D|), where
|C| is the number of points in the cluster and|D|
is the number of dimensions in which the cluster
congregates.

While any function that is monotonically increasing
in each variable can be used as the quality function,
Procopiuc et al. useµ(|C|, |D|) = |C| · (1/β)|D|, where
0 < β < 1 is a parameter that determines the trade-
off between the number of points and the number of
dimensions in the optimal cluster. If a clusterC1 con-
gregates inf fewer dimensions thanC2, it must have
|C1| > |C2|/β f points to surpass the score forC2. An
optimal cluster must have at least 1/β as many points
as another cluster if it congregates in exactly one less
dimension. We use the same definition in this work.
Note, however, that the DOC algorithm is restricted
to β < 0.5, while our algorithm is not.

With the above definition for an optimal cluster,
Procopiuc et al. developed a Monte Carlo algorithm
for finding an optimal cluster with high probability.
Their algorithm uses two loops, the outer loop selects
a single seed point and the inner loop selects an addi-
tional set of points from the data called thediscrimi-
nating set. The seed point and all of the discriminat-
ing set must belong to the optimal cluster for the trial
to succeed. The dimensions in the cluster are deter-
mined by finding the dimensions in which all of the
points in the discriminating set are withinw of the
seed point (allowing an overall cluster width of 2w).
Given these dimensions, the cluster is estimated by
finding all points in the data set withinw of the seed
point in these dimensions.

For fixed α, β and ε (the arbitrarily low proba-
bility of failure), the DOC algorithm has complexity

O(nd
1+ log(α/2)

log2β), wheren is the number of points in the
data set andd is the number of dimensions. In order
to improve the speed of the algorithm, Procopiuc et al.
propose the FastDOC algorithm in which a heuristic
is used limiting the number of trials in each inner loop
to d2. This reduces the complexity of the algorithm to
O(nd3).

Yiu and Mamoulis (2005) describe the CFPC al-
gorithm. As in the DOC algorithm, an outer loop

is used that samples individual points from the data
set. However, they replace the inner loop from the
DOC algorithm with a technique adapted from mining
frequent itemsets to determine the cluster dimensions
and points (assuming that the sample point is from the
optimal cluster). No formal analysis of the computa-
tional complexity is given, but Yiu and Mamoulis re-
ported improved speeds in comparison to PROCLUS
and FastDOC. However, the speed of the method is
dependent on subsampling the data set to a small size
(1000 data points) before processing.

3 APPROACH

Our approach to the projective clustering problem is
a Monte Carlo algorithm inspired by the DOC algo-
rithm of Procopiuc et al. (2002). In each trial of the
algorithm, a small set of data points is sampled. Fol-
lowing Procopiuc et al., we will call this the discrimi-
nating set. Note, however, that (unlike DOC) we have
no outer loop where individual seed points are sam-
pled. A trial can succeed only if all of the points in the
discriminating set are from the same cluster, among
other conditions. Many trials are performed in order
to achieve a high probability of success. In Section 4
we develop probability guarantees for the number of
trials necessary. These guarantees hold for optimal
clusters with sufficient densityα as a percentage of
the points in the data set.

In each trial, the discriminating set is used to de-
termine the set of congregating dimensions for a hy-
pothesized projective cluster. This is performed by
selecting the dimensions in which the span of the dis-
criminating set is less than the desired cluster width
w. This requires only finding the minimum and max-
imum value in each of the dimensions. Note that this
is a considerable improvement over the DOC algo-
rithm, in which the width of the sheath used to de-
termine the congregating dimensions is 2w. The nar-
rower sheath helps prevent incorrect dimensions from
being included. This also allows us to use a larger
value forβ (the fraction of points necessary to remain
in a cluster to add another congregating dimension).
The DOC algorithm is limited to usingβ < 0.5. We
are not constrained, except thatβ can never exceed
one, for obvious reasons.

Given the hypothesized congregating dimensions,
we need to determine the points in the cluster. The
cluster points will not necessarily fall within the
bounds given by the discriminating set, since the dis-
criminating set will not generally include the extremal
points in all congregating dimensions of the cluster. If
the span of the discriminating set in cluster dimension

SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

47

(a) (b)

Figure 2: Comparison between the SEPC and DOC algorithms fordetermining cluster dimensions and cluster points using
a discriminating set. (a) The SEPC algorithm uses a sheath ofwidth w to determine if a discriminating set congregates in
a dimension. When the set congregates, a larger sheath with width betweenw and 2w is used to determine additional data
points that are added to the cluster. (b) The DOC and FastDOC algorithms use a sheath with width 2w both to determine if
the discriminating set congregates in a dimension and to findadditional data points that are added to the cluster.

i is di , we need to allow an additionalw−di on each
side of the span to ensure that any possible cluster
with width w is detected. See Fig. 2(a). This can al-
low clusters that are wider thanw, since the sheath for
adding points to the cluster is 2w−di. However, few
(if any) outliers will be included, since they must con-
gregate with the cluster in all of the congregating di-
mensions. In comparison, the DOC algorithm contin-
ues using a sheath with width 2w to determine which
points are included in the cluster. See Fig. 2(b).

The cluster found in each trial is given a score us-
ing the DOC metric and retained if the score is suffi-
ciently high. Typically, we retain only the top scoring
cluster over all of the trials. This cluster is removed
from the data and further clusters are found using ad-
ditional iterations of the algorithm in order to gener-
ate disjoint clusters1. The process continues until no
more clusters surpassing some criteria are found. Any
remaining points can be classified as outliers or added
to the cluster to which they are closest. If overlapping
clusters are desired, multiple clusters can be located
in a single iteration of the algorithm with a simple
modification. In this case, we store not just the best
cluster found, but all clusters of sufficient quality that
are qualitatively different.

If the highest scoring cluster found in an iteration
has density less thanα, but meets the score criterion,

1Reducing the size of the data set improves the ability
of the algorithm to find small clusters. If small clusters are
not desired, then the cluster density can be computed with
respect to the original number of points in the data set.

we report it, even if clusters exist with density larger
thanα. If such clusters are discarded, then no proba-
bility guarantees can be made. Consider a large clus-
ter with a density of exactlyα. If a subcluster exists
with one fewer point and one more dimension, then
this subcluster will achieve a greater score, unlessβ is
set arbitrarily close to one. In addition, this subclus-
ter will usually prevent the larger cluster from being
found. Unless the discriminating set contains the sin-
gle additional point in the larger cluster, the congre-
gating dimensions will be hypothesized to include the
additional dimension that the remaining points con-
gregate in and this will exclude the additional point
from the detected cluster. If the subcluster is dis-
carded as too sparse, then the larger cluster cannot be
detected with high probability. Note that this is true
not just for our algorithm, but for all similar Monte
Carlo algorithms. Instead of discarding the cluster,
we allow the smaller cluster to supersede the larger
cluster, since it has a higher score. Our probability
guarantees are such that, if an optimal cluster with
densityα exists in the data set, we will report itor a
higher scoring cluster with high probability.

4 ALGORITHM

The basic form of the SEPC algorithm is given in Fig-
ure 3. The input to the algorithm includes the set of
pointsP, the number of dimensionsd, the maximum
width of a clusterw, the number of trialsktrials, and

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

48

the cardinality of each discriminating sets. In each
trial, we randomly sample (without replacement)s
points from the data. Within the discriminating set,
the set of dimensions in which the points congregate
is determined (line 4). For each dimension, bounds
are determined on the span of the cluster (infinite
bounds are used for dimensions in which the cluster
does not congregate). The points in the cluster are de-
termined (line 10) by finding the intersection of the
point set with the Cartesian product of each of the di-
mension rangesr j . Finally, the cluster is saved if it is
the best found so far.

SEPC(P, d, w,ktrials, s):
1 Let µbest= 0.
2 For i = 1 toktrials:
3 SampleSi ⊂ P randomly, with|Si |= s.
4 Let Di = { j | ∀p,q∈ Si , |p j −q j | ≤ w}.
5 For j = 1 tod:
6 If j ∈ Di :
7 Let r j = [maxp∈Si p j −w, minp∈Si p j +w].
8 Else:
9 Let r j = [−∞, ∞].
10 LetCi = P∩∏1≤ j≤d r j .
11 If µ(|Ci |, |Di |)> µbest:
12 Let µbest= µ(|Ci |, |Di |), Cbest=Ci , Dbest= Di .
13 ReturnCbest,Dbest.

Figure 3: The basic SEPC algorithm for finding a projec-
tive cluster. This algorithm finds a single cluster and may
be iterated after removing the cluster (for disjoint cluster-
ing). To detect non-disjoint clusters, multiple clusters can
be found in a single iteration of the algorithm. In this case,
all clusters of sufficient quality should be saved in lines 11-
12, unless the clusters substantially overlap.

4.1 Number of tTrials

A crucial parameter to determine is the number of tri-
als that are sufficient to find a projective cluster with
high probability. We will assume that a cluster exists
containing at leastm= ⌈αn⌉ points, since we other-
wise make no claims about the likelihood of a clus-
ter being found. For a trial to succeed, we need for
two conditions to hold. First, the trial must select
only points within the projective cluster (allowing us
to find all of the dimensions in which the cluster is
formed). Second, the trial must not select only points
that randomly congregate in any dimension that is not
a congregating dimension of the full projective clus-
ter. For any fixeds, a lower bound can be placed on
the probability of both conditions holding:

Ptrial ≥

(

Cm
s

Cn
s

)(

1−
Cl

s

Cm
s

)d

, (3)

where l = ⌊βm⌋ and C j
k is the number of k-

combinations that can be chosen from a set of car-
dinality j. The first term of Eq. 3 is a lower bound
on probability of the first condition holding. The sec-
ond term is a lower bound on the probability of the
second condition holding, given that the first condi-
tion holds. This term is computed based on the fact
that, for an optimal cluster ofc points, no more than
⌊βc⌋ points in the cluster can be withinw of each
other in any dimension that is not a congregating di-
mension of the cluster (otherwise, this subset would
form a higher scoring projective cluster that includes
the dimension)2. The second term is taken to thedth
power, since the random clustering could occur in any
of thed dimensions (except for those that the projec-
tive cluster does congregate in).

For large data sets, Equation 3 is well approxi-
mated by:

Ptrial ≥ αs(1−βs)d. (4)
After ktrials iterations, we want the probability that

none of the trials succeed to be below some small con-
stantε (e.g., 10−2). This is achieved with:

(1−Ptrial)
ktrials ≤ ε, (5)

which yields:

ktrials ≥
logε

log(1−Ptrial)
. (6)

4.2 Discriminating Set Cardinality

The above equations are valid for discriminating sets
with arbitrary cardinality greater than one. However,
the number of trials varies greatly depending on the
cardinality of each discriminating set. If the cardinal-
ity is large, then it will be unlikely that the points in
the set will all be in the desired cluster. If the car-
dinality is small, then it is likely that the points will
congregate in (at least) one dimension in which the
cluster does not. The optimal value can be obtained
by computingktrials for a small number of values and
using the value that requires the fewest trials. We
use a heuristic to approximate the optimal value. The
heuristic sets the cardinality such that the probability
of the discriminating set congregating in even one of
the incorrect dimensions is bounded by 3/4. (The sec-
ond term in Eq. 3 usually dominates the computation
of ktrials.)

With this heuristic we have:
(

1−
Cl

s

Cm
s

)d

≥
1
4
, (7)

2Note that there may be more thanCl
s combinations of

such points, but only if the cluster contains more thanm
points. This probability still serves as a lower bound.

SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

49

which yields:

l !(m− s)!
m!(l − s)!

≤ 1−4
−1
d (8)

and
m−s

∑
i=l−s+1

logi −
m

∑
i=l+1

logi ≤ log(1−4
−1
d). (9)

l

∑
i=l−s+1

logi −
m

∑
i=m−s+1

logi ≤ log(1−4
−1
d). (10)

From this, we derive the following approximation to
the optimal value ofs:

sest ≈
log(1−4

−1
d)

logl − logm
(11)

=
log(1−4

−1
d)

log⌊β⌈αn⌉⌋− log⌈αn⌉
(12)

≈
log(1−4

−1
d)

logβ
(13)

≈
log(d−1 ln4)

logβ
=

log(d/ ln4)
log(1/β)

(14)

Table 1: Optimal and approximated values fors with α =
0.1, n= 100,000, and varying values ford andβ.

d ↓ β → 0.15 0.2 0.25 0.3 0.35
sopt 2 2 3 3 3

50 sest 1.9 2.2 2.6 3.0 3.4
sopt 2 3 3 3 4

100 sest 2.3 2.7 3.1 3.6 4.1
sopt 3 3 4 4 4

200 sest 2.6 3.1 3.6 4.1 4.7
sopt 3 4 4 4 5

400 sest 3.0 3.5 4.1 4.7 5.4

Table 1 compares the estimate for the optimal car-
dinality of the discriminating set with the true opti-
mum with respect to the number of trials as specified
by Eq. 6. For this comparison,α was held constant at
0.1 andn at 100,000. The levels ofd andβ were var-
ied (since these are the most influential in determin-
ing the optimal number of trials). Our approximation
(when rounded to the nearest whole number) overes-
timates the optimal number in some cases. Even in
these cases, the average percentage difference in the
number of trials is less than 30% from the optimal
value. Over all of the cases considered, the average
percentage difference from the optimal number of tri-
als is 4.42%.

Table 2 compares the cardinality of the discrimi-
nating set and required number of trials between the

Table 2: Comparison of discriminating set cardinality and
number of trials required in SEPC and DOC algorithms with
α = 0.1, n= 100,000, and varying values ford andβ. Note
that the cardinality for the DOC algorithm includes the seed
point and the number of trials includes all outer iterations
per seed point.

d Alg. β → 0.15 0.2 0.25 0.3 0.35

sopt 2 2 3 3 3

SEPC ktrials 1.4·103 3.5·103 1.0·104 1.8·104 4.1·104

50 s 5 7 8 11 14

DOC ktrials 4.4·106 1.7·109 3.5·10102.8·10142.3·1018

sopt 2 3 3 3 4

SEPC ktrials 6.5·103 1.0·104 2.2·104 7.1·104 2.1·105

100 s 6 7 9 12 16

DOC ktrials 8.9·107 1.7·109 7.1·10115.7·10159.1·1020

sopt 3 3 4 4 4

SEPC ktrials 9.0·103 2.3·104 1.0·105 2.3·105 9.4·105

200 s 6 8 10 13 18

DOC ktrials 8.9·107 3.5·10101.40·10131.1·10173.6·1023

sopt 3 4 4 4 5

SEPC ktrials 1.8·104 8.7·104 2.2·105 1.2·106 3.8·106

400 s 7 9 11 15 20

DOC ktrials 1.8·1097.1·10112.8·10144.5·10191.5·1026

SEPC algorithm and the DOC algorithm. For the
DOC algorithm, we use the total number of points
that are sampled in testing a cluster, thus including the
seed point. The number of trials for the DOC algo-
rithm includes both the inner iterations and the outer
iterations (i.e., the total number of trials performed
before a cluster is returned). This yields the following
equations for DOC (we use our notation rather than
that of Procopiuc et al. (2002)):

s(DOC) =

⌈

1+
log2d

log 1
2β

⌉

(15)

k(DOC)
trials =

⌈

2
α

⌉

⌈

(

2
α

)s−1

ln4

⌉

(16)

It can be seen in the table that the SEPC algorithm
requires at least 3 orders of magnitude less trials in
each of the cases considered and almost 20 orders
of magnitude less trials for the most complex case
considered. It should be noted that the FastDOC al-
gorithm uses a heuristic where the number of inner
iterations is limited tod2 (Procopiuc et al., 2002).
However, this removes any probability guarantees and
our experiments (Sec. 5) indicate that this results in
missed clusters.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

50

4.3 Efficiency

For fixedα, β, andd, the running time of the algo-
rithm is O(n), since the number of trials does not de-
pend onn. However, the running time has a more
interesting relationship withα, β, andd. The number
of trials is:

ktrials =

⌈

logε
log(1−αs(1−βs)d)

⌉

, (17)

with s≈ log(d/ ln4)/ log(1/β). Since ln(1−δ)<−δ
for 0< δ < 1, we have:

ktrials < 1+
ln1/ε

αs(1−βs)d (18)

Recall thats was chosen specifically to make(1−
βs)d ≥ 1/4. In fact, the bound is not tight, sinced in-
cludes the (unknown) number of dimensions in which
the cluster congregates. This yields:

ktrials < 1+
4ln1/ε

α⌈log(d/ ln4)/ log(1/β)⌉ (19)

< 1+4αlog(d/ ln4)/ log(β)−1 ln
1
ε

(20)

= 1+
4
α

(

d
ln4

)

logα
logβ

ln
1
ε

(21)

Equations 19-21 imply that the number of trials re-

quired is O(1
α d

logα
logβ log 1

ε). The complexity of the

overall algorithm isO(1
α nd

1+ logα
logβ log 1

ε), since each
trial in the algorithm requiresO(nd) time.

The complexity of the SEPC algorithm can
be contrasted with the DOC algorithm, which is

O(1
α nd1+ log(α/2)

log2β log 1
ε). With α = 0.1, β = 0.25 and

fixed ε, our algorithm isO(nd2.661), while the DOC
algorithm isO(nd5.322). The difference between the
exponents increases as the problem becomes more
difficult (decreasingα and/or increasingβ). For these
parameters, our algorithm also has a lower computa-
tional complexity than the FastDOC algorithm, which
is O(nd3) and, as we will see, much better cluster de-
tection performance.

4.4 Parameter Setting

Given the increase in the number of trials necessary as
β increases, it might be questioned why a larger value
is desirable. A larger value is necessary in some cases
to prevent subsets of a cluster from producing a larger
score than the “correct” cluster owing to random ac-
cumulation in one or more dimensions.

Consider a projective clustering problem in which
each dimension ranges over [0, 1]. When determin-
ing the points in a cluster, we use a sheath of width

v ≤ 2w in the dimensions in which the discriminat-
ing set congregates. (The DOC and FastDOC algo-
rithms usev= 2w.) A random outlier will fall within
this sheath (in a single dimension) with probabilityv.
Whenβ is less thanv, the inclusion of an incorrect di-
mension usually leads to a cluster with a better score
than the desired projective cluster, since it will include
an extra dimension (although fewer points). The frac-
tion of points in the smaller cluster that are captured
from the larger cluster is expected to bev (although
it varies around this fraction given random data). If
the larger cluster has scoreµ1, the smaller cluster is
expected to have a score of approximatelyv

β µ1. For
example, ifβ = 0.25 andv = 0.30, it is nearly cer-
tain that the inclusion on an incorrect dimension in
Di (the hypothesized set of dimensions in theith trial)
will result in an output cluster with one or more extra
dimensions and fewer points3.

It is worth noting that the presence of trials with
such extra dimensions is common. We sets such that
the probability of finding at least one incorrect dimen-
sion is no more than 3/4 in a discriminating set that is
entirely part of the optimal cluster. This is normally
acceptable, as long as we find at least one case with-
out such an incorrect dimension. However, ifβ is too
small, it will result in the cluster subset scoring higher
than the full projective cluster.

Procopiuc et al. (2002) noticed this effect in their
experiments. Their solution was to generate more out-
put clusters than were present in the input data in or-
der to find all of the cluster points, even though they
are broken into multiple output clusters.

Another heuristic that is useful in some cases is to
discard any cluster that does not surpass some mini-
mum cardinality. While this would remove the prob-
ability guarantee for finding clusters, it helps elimi-
nate clusters with incorrect dimensions, since they are
significantly smaller than the true clusters. In cases
where the larger cluster is found with frequency com-
parable to the smaller cluster, it is likely to be detected
even if the smaller cluster is also detected (and dis-
carded).

4.5 Optimizations

An optimization that is useful is to limit the number of
passes through the entire data set, particularly if it is
too large to fit in memory and accessing it from a disk
is time consuming. The idea here is to generate many
discriminating setsSi during a single pass through the

3In this case, we expect approximately 30% of the clus-
ter points to remain in the cluster with the extra dimension,
but the scoring function increases the score by a factor of
1/β = 4.

SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

51

data. After the discriminating sets are constructed,
they can be examined jointly in a single pass through
the data (and further discriminating sets can be gener-
ated during this pass). An additional parameter is re-
quired with this optimization,ksets, which is the num-
ber of discriminating sets to consider simultaneously.

In the FastDOC algorithm, Procopiuc et al. (2002)
propose to consider only one discriminating set for
each outer iteration of the algorithm. This discrimi-
nating set is chosen by finding the one that congre-
gates in the largest number of dimensions. We can
similarly consider only one of theksets discriminat-
ing sets each full pass through the data in the SEPC
algorithm. This optimization removes the probabil-
ity guarantees, since not every trial is fully evaluated,
but good results can be achieved since the discrim-
inating sets yielding many cluster dimensions often
yield high scoring clusters. The speedup achieved is
roughlyksets, since scanning the data set for potential
cluster points dominates the running time.

Although we could use a heuristic to limit the
number of trials as is done in FastDOC (Procopiuc
et al., 2002), we choose not to do this, since the num-
ber of trials required is much lower in the SEPC algo-
rithm and it would reduce the likelihood of finding a
projective cluster.

5 EXPERIMENTS

This section discusses our experiments on real and
synthetic data. Most experiments were run on a 2
GHz Intel Core Duo CPU with 2 GB RAM running
Windows Vista. We compare primarily against the
FastDOC algorithm, since previous experiments have
shown it to be superior to algorithms such as PRO-
CLUS and ORCLUS (when applied to clusters that
are in axis-aligned subpaces) (Procopiuc et al., 2002).

5.1 Random Data Generation

For synthetic data, the data sets were generated fol-
lowing the methodology originally described by Ag-
garwal et al. (1999) and used (with some variations)
by Procopiuc et al. (2002). Each data set is composed
of 100,000 points in 200 dimensions and each dimen-
sion has range [0, 100].

Clusters were generated with an average of 40 di-
mensions in which they congregate, but the actual
number of dimensions was varied as a Poisson ran-
dom variable. After generating the dimensions in
which the first cluster congregates, each remaining
cluster was generated such that half of the congre-
gating dimensions in each new cluster were the same

as congregating dimensions in the previously gener-
ated cluster. The remaining dimensions were selected
randomly. In the congregating dimensions, the points
were generated according to a normal distribution
with σ ∈ [2,4] (uniformly distributed). Cluster cen-
ters, outliers, and non-congregating dimensions were
uniformly distributed over [0, 100].

When multiple clusters were generated, the clus-
ter sizes were generated to be proportional to inde-
pendent exponential random variables. We use the
technique of Procopiuc et al. to enforce significant
variation in cluster size (Procopiuc et al., 2002). This
method divides the clusters into two sets and removes
points from clusters in one set while adding them to
the clusters in the other set (prior to computation of
the point locations).

5.2 Multiple Clusters (Random Data)

Our initial experiments were similar to those in pre-
vious work (Aggarwal et al., 1999; Procopiuc et al.,
2002) with 5 clusters totaling 95,000 points and 5,000
outliers. We tested our implementations of SEPC
and FastDOC, with the algorithms continuing to gen-
erate clusters until no clusters were found having a
score better than would be achieved with the mini-
mum number of dimensions (20 in these experiments)
and the minimum density (0.1). After each cluster
was found, the points in the cluster were removed
from the data before detecting another cluster. This is
a relatively easy problem in the sense that the optimal
cluster remaining in the data at any iteration rarely (if
ever) comes close to the minimum density that the al-
gorithms seek to allow (0.1).

The experiments of Procopiuc et al. usedw= 15
andβ = 0.25. We note that this can be problematic
in an algorithm that allows points to congregate in a
dimension over a range of 2w (as does FastDOC in all
cases and SEPC in the worst case). The reason is that
this allows 30% of the points in a dimension to con-
gregate at random around any cluster center. If only
above 25% of the points are required to form a higher
scoring cluster, then the optimal clusters will always
include extra dimensions in which the points are in
fact uniformly distributed. Ironically, FastDOC does
not usually find these clusters (even if they meet the
definition of an optimal cluster), since the number of
trials performed is insufficient to find small clusters.
We use two sets of parameters (w= 10,β = 0.25) and
(w= 15,β = 0.35) in which this problem is unlikely.
With the first set of parameters, we restrict the stan-
dard deviation of the points in the congregating di-
mensions toσ = 0.2. Ten experiments were run for
each set of parameters, with 2000 outer iterations in

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

52

each experiment.
Once clusters were found, each point in the data

set was classified as belonging to one of the clusters
or to the outlier set. We allowed nearly identical clus-
ters to merge after all clusters were extracted to allow
for cases where a subcluster with an additional dimen-
sions was detected along with (or instead of) the full
cluster. A one-to-one correspondence between the de-
tected clusters and the input clusters was then formed
and the fraction of correctly classified points was cal-
culated. If the number of clusters was uneven, all
points in the extra cluster(s) were considered to be
classified incorrectly.

For the first set of parameters (w= 10,β = 0.25),
SEPC classified over 99.99% of the points correctly in
every experiment4. All of the incorrect classifications
occurred because cluster points were classified as out-
liers owing to points that were unusually far from the
cluster center. (No constraint was made during data
generation enforcing a maximum radius.)

FastDOC classified 95.5% of the points correctly,
on average. Most of the incorrectly classified points
were cluster points that were classified as outliers.
This occurred more frequently for FastDOC, since
it forces the cluster center to be at the location of a
seed point, which is not necessarily at the true cen-
ter of the cluster. Additional errors occurred owing
to misclassification between clusters, and some small
clusters that were missed entirely (clusters as small as
747 points were observed). In this data, the SEPC al-
gorithm required 31.3 minutes, on average, while the
FastDOC algorithm required 107.5 minutes, on aver-
age.

For the second set of parameters (w = 15,β =
0.35), SEPC classified 99.96% of the points cor-
rectly. Most misclassifications were the result of clus-
ter points being classified as outliers. FastDOC per-
formed poorly in this case, detecting only 44.0% of
the clusters and classifying 67.6% of the points cor-
rectly (typically the larger clusters were detected).
Most failures occurred because several small clusters
were not found, since a discriminating set of 17 points
is required in FastDOC withβ = 0.35 andd = 200.
Too few trials were performed in order to find valid
discriminating sets for these clusters. FastDOC re-
quired 54.8 minutes, on average, compared to 130.8
minutes for the SEPC algorithm. Some of the differ-
ence in running time can be attributed to the clusters
missed by FastDOC, since each experiment ended as
soon as an iteration was unable to find a cluster.

FastDOC performed better on this data set with
β = 0.25 than withβ = 0.35. However, the perfor-

4Only 8 errors were made over the 106 points in all of
the experiments.

Figure 4: Performance comparison between SEPC and
FastDOC for data sets containing a single cluster.

mance was still worse than SEPC. FastDOC achieved
a 95.5% success rate in this case, although it did not
find the clusters that met the definition of an optimal
cluster, since these had more congregating dimen-
sions and fewer points than the input clusters. The
average running time increased to 102.1 minutes in
this case, since more iterations of the algorithm were
performed.

In none of these experiments was an outlier ever
classified as part of one of the detected clusters, even
with relaxed criteria for adding points to clusters.
This is to be expected, since uniformly distributed
outliers are captured by clusters with very low prob-
ability. (A cluster with 20 dimensions that captures
30% of the points in each dimension would cap-
ture a random outlier with probability 0.320= 3.49×
10−11.)

5.3 Single Clusters (Random Data)

Based our analysis, we hypothesized that the SEPC
algorithm would succeed in cases where the FastDOC
algorithm would fail owing to the FastDOC heuris-
tic that the number of inner iterations was limited to
d2 in order to speed up the algorithm. These failures
should occur in cases where the clusters are close to
the minimum densityα, since reducing the number
of trials significantly would make it unlikely that any
trial would find a valid discriminating set.

To test our hypothesis, we ran a set of experiments
using data sets with a single cluster and a high frac-
tion of outliers. In these experiments, each data set
had one clusterC1 with between 10,000 and 30,000
points that congregated inD1 = 40 dimensions. Each
cluster size was tried 1,000 times with both SEPC
and FastDOC, with the following algorithm param-
eters: α = 0.1, β = 0.25, andw = 15. An experi-
ment was counted as a success if the detected clus-

SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

53

ter (Cbest) met the following criteria:|Cbest| ≥ 7000
, |Dbest∩D1| ≥ 36. (Since the clusters have a nor-
mal distribution withσ ∈ [2,4] in each of the cluster
dimensions, a significant number will not fall within
the cluster width ofw= 15 in each congregating di-
mension.)

Figure 4 shows the results of these experiments.
It can be observed that SEPC is much more effective
at detecting small clusters. Some failures occurred
for clusters comprising less than 15% of the data set
owing, in part, to clusters that exceeded the maximum
width w. FastDOC failed to detect the small clusters,
since the number of trials was not sufficient to ensure
a high probability of success. In fact, the FastDOC
algorithm had failures up to clusters comprising 30%
of the data set.

The observed success rates for FastDOC are con-
sistent with the theoretical probability. For a cluster
containing 20% of the data set, a trial with a seed
point and a discriminating set of 9 points will have
a probability of 1.02×10−7 of sampling points that
are all within the cluster. Over 20 seed points and
40,000 discriminating sets per seed point, the proba-
bility of at least one combination of a seed point and
a discriminating set being entirely from the cluster is
7.8%. (For a cluster, containing 25% of the data set,
the probability rises to 48.7%.)

For each data point, the SEPC algorithm ran in
fewer seconds than the FastDOC algorithm averaging
8 seconds per experiment as compared to 40 seconds
for FastDOC. The SEPC running times increased with
the cluster size (note thatα was held constant in the
algorithm). The reason is that more full scans of the
data set were required as the cluster size increased.
The full DOC algorithm was not tested, since it would
require greater than 1013 trials for these parameters.

5.4 Image Segmentation Data

Our final set of experiments used the SEPC algo-
rithm to perform clustering in a data set consisting
of 3× 3 pixel regions from images that were ran-
domly selected from a database of outdoor images
(Asuncion and Newman, 2007). Each region in the
data set is classified as one of the following classes:
Brickface (B), Sky (S), Foliage (F), Cement (C), Win-
dow (W), Path (P), and Grass (G). This data set has
19 attributes (dimensions) and 2,100 points (300 of
each class). Yiu and Mamoulis used this data set
to test FastDOC and other projective clustering tech-
niques (Yiu and Mamoulis, 2005). For their algorithm
(CFPC) and FastDOC, they usedα = 0.13,β = 0.25,
and w = 0.25. Like Yiu and Mamoulis, we pre-
processed the data to be in the range [0, 1] using min-

Table 3: Confusion matrix for classifying pixel regions us-
ing the SEPC algorithm. Results are shown for a represen-
tative experiment with 80.7% success rate. (The average
success rate with these parameters over all experiments was
80.5%.)

Input C3 C4 C5 C6 C7 C1 C2

B 251 0 2 4 43 0 0
S 0 300 0 0 0 0 0
F 16 0 217 35 31 1 0
C 49 0 1 222 10 18 0
W 109 0 67 35 89 0 0
P 0 0 0 35 0 265 0
G 0 0 0 1 2 0 297

Table 4: Comparison of SEPC classification results. All
results except for SEPC are from Yiu and Mamoulis. SEPC
1 is the result of our algorithm without training. SEPC 2 is
the result using a small training set to determine the clusters.

Technique Accuracy
SEPC 77.3%
CFPC 69.3%

FastDOC 64.1%
PROCLUS 62.1%

KMED 60.2%

max normalization. We useβ = 0.25 andw = 0.19
for the SEPC algorithm.5 The parameters were tested
over 100 independent experiments. For each experi-
ment, seven clusters were detected in the data. Bipar-
tite matching between the detected clusters and the
correct clusters was performed. Over the 100 trials,
77.3% of the data points were assigned to the correct
cluster.

Table 3 shows a confusion matrix for a represen-
tative experiment. This experiment achieved 78.1%
success. The results are perfect on the Sky class and
very good on the Grass class. The worst performance
is on the Window class with only 89 of 300 points
clustered together. This is consistent with the results
found by Yiu and Mamoulis and this group appears
to be the most difficult to classify based on the given
attributes.

Table 4 compares the SEPC results to the results
published by Yiu and Mamoulis (2005). Our algo-
rithm achieves a higher accuracy than any of the re-
sults reported in (Yiu and Mamoulis, 2005) by a sig-
nificant margin.

We also tested the SEPC algorithm in a super-
vised training mode, where a 210 point training set

5We expect SEPC to perform worse with the parame-
ters tuned by Yiu and Mamoulis (2005) and CFPC to per-
form worse with the parameters we use. We compare SEPC
against the best results reported by Yiu and Mamoulis.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

54

was used to determine the cluster dimensions and lo-
cations and a 2100 point testing set (disjoint from the
training set) was used for classification. In this exper-
iment, 74.8% of the points were classified correctly.
This demonstrates that the algorithm is able to deter-
mine the cluster properties from a small set of exam-
ples and apply them to previously unknown points.
The performance is lower than the unsupervised ex-
periments owing to the smaller set of points used to
determine the clusters.

6 CONCLUSIONS

We have presented a new algorithm called SEPC
for locating projective clusters using a Monte Carlo
method. The algorithm is straightforward to imple-
ment and has low complexity (linear in the number of
data points and low-order polynomial in the number
of dimensions). In addition, the algorithm does not re-
quire the number of clusters or the number of cluster
dimensions as input and does not make assumptions
about the distribution of cluster points (other than that
the clusters have bounded diameter). The algorithm is
widely applicable to projective clustering problems,
including the ability to find both disjoint and non-
disjoint clusters. The performance of the SEPC al-
gorithm surpasses previously reported results on both
synthetic and real data.

REFERENCES

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., and
Park, J. S. (1999). Fast algorithms for projected clus-
tering. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages
61–72.

Aggarwal, C. C. and Yu, P. S. (2000). Finding generalized
projected clusters in high dimensional spaces. InPro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 70–81.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(1998). Automatic subspace clustering of high dimen-
sional data for data mining applications. InProceed-
ings of the ACM SIGMOD International Conference
on Management of Data, pages 94–105.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(2005). Automatic subspace clustering of high dimen-
sional data.Data Mining and Knowledge Discovery,
11:5–33.

Asuncion, A. and Newman, D. (2007). UCI ma-
chine learning repository. University of California,
Irvine, School of Information and Computer Sciences,
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U.
(1999). When is“nearest neighbor” meaningful? In
Proceedings of the 7th International Conference on
Database Theory, pages 217–235.

Cheng, C. H., Fu, A. W., and Zhang, Y. (1999). Entropy-
based subspace clustering for mining numerical data.
In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 84–93.

Dash, M., Choi, K., Scheuermann, P., and Liu, H. (2002).
Feature selection for clustering - a filter solution. In
Proceedings of the IEEE International Conference on
Data Mining, pages 115–122.

Ding, C., He, X., Zha, H., and Simon, H. D. (2002). Adap-
tive dimension reduction for clustering high dimen-
sional data. InProceedings of the IEEE International
Conference on Data Mining, pages 147–154.

Goil, S., Nagesh, H., and Choudhary, A. (1999). MAFIA:
Efficient and scalable subspace clustering for very
large data sets. Technical Report No. CPDC-TR-
9906-010, Northwestern University.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data
clustering: A review. ACM Computing Surveys,
31(3):264–323.

Nagesh, H., Goil, S., and Choudhary, A. (2001). Adaptive
grids for clustering massive data sets. InProceedings
of the SIAM International Conference on Data Min-
ing.

Parsons, L., Haque, E., and Liu, H. (2004). Subspace clus-
tering for high dimensional data: A review.SIGKDD
Explorations, 6(1):90–105.

Procopiuc, C. M., Jones, M., Agarwal, P. K., and Murali,
T. M. (2002). A Monte Carlo algorithm for fast pro-
jective clustering. InProceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 418–427.

Woo, K.-G., Lee, J.-H., and Lee, Y.-J. (2004). FINDIT: A
fast and intelligent subspace clustering algorithm us-
ing dimension voting.Information and Software Tech-
nology, 46(4):255–271.

Yiu, M. L. and Mamoulis, N. (2005). Iterative projected
clustering by subspace mining.IEEE Transactions on
Knowledge and Data Engineering, 17(2):176–189.

SIMPLE AND EFFICIENT PROJECTIVE CLUSTERING

55

