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Abstract. Clustering of high-dimensional data is an important problem in many appli-
cation areas, including image classification, genetic analysis, and collaborative filtering.
However, it is common for clusters to form in different subsets of the dimensions. We
present a randomized algorithm for subspace and projected clustering that is both
simple and efficient. The complexity of the algorithm is linear in the number of data
points and low-order polynomial in the number of dimensions. We present the results
of a thorough evaluation of the algorithm using the OpenSubspace framework. Our al-
gorithm outperforms competing subspace and projected clustering algorithms on both
synthetic and real world data sets.
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1. Introduction

Clustering is used in many applications for the unsupervised classification of data
points (objects) into subsets that are similar within each subset and dissimilar
between subsets (Jain, Murty and Flynn, 1999). These applications increasingly
rely on data points in high-dimensional spaces. Examples include image clas-
sification, genetic analysis, and collaborative filtering. When this is the case,
clusters often form in a subset of the dimensions of the full space (Agrawal,
Gehrke, Gunopulos and Raghavan, 1998) and conventional algorithms, such as
k-means clustering (Hartigan, 1975), perform poorly. This has led to the study
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of subspace clustering1 (overlapping clusters) and projected clustering (disjoint
clusters) (Kriegel, Kröger and Zimek, 2009). Algorithms for these problems work
in dimensional subsets.

The curse of dimensionality is a difficult problem to overcome. It has been
shown that, under certain conditions, the ratio between the distance to the
nearest neighbor and the distance to the farthest neighbor approaches one as
the dimensionality of the space increases (Beyer, Goldstein, Ramakrishnan and
Shaft, 1999). One solution is to use a dimensionality reduction technique, such as
principal components analysis (PCA) (Hotelling, 1933). This projects the entire
data set into fewer dimensions, which might then be used for clustering using
conventional techniques (Dash, Choi, Scheuermann and Liu, 2002; Ding, He, Zha
and Simon, 2002). However, this produces a single subspace, whereas in many
applications the clusters exist in different subspaces of the full feature space.
Thus, the use of PCA may prevent the detection of interesting clusters in the
data set.

Subspace and projected clustering algorithms provide a more robust solution
to this problem. These methods seek to determine both the clusters of similar ob-
jects and the associated subspaces in which they are similar. Unlike conventional
clustering algorithms, some (or many) dimensions can be treated as irrelevant
to each of the clusters. Unlike dimensionality reduction techniques, the clusters
are not constrained to form in the same subset of dimensions.

The problem can be illustrated in three dimensions. See Fig. 1. Two subspace
clusters are present, one in the x and y dimensions and one in the y and z
dimensions. The projections of the points onto subspaces spanned by two axes
are also shown, emphasizing the clusters present in the subspaces.

We formalize the subspace clustering problem as follows. Given a set of points
P in a d-dimensional space, find all maximal sets of points Ci ⊂ P and corre-
sponding sets of dimensions Di ⊂ {1, ..., d} such that the point set is sufficiently
close in each of the dimensions to form a cluster. We say that the points congre-
gate in these dimensions; cluster will be used only as a noun. We also say that
the dimensions in Di are the congregating dimensions of the cluster. We define
this to be true if they are within a width w of each other:

∀p, q ∈ Ci, ∀j ∈ Di, |pj − qj | ≤ w. (1)

Furthermore, to be reported, each cluster must surpass some criteria with respect
to the cardinalities of Ci and Di:

µ(|Ci|, |Di|) ≥ µ0. (2)

The clusters reported are maximal sets to prevent all subsets of each cluster from
being reported. Most algorithms relax the requirement of reporting all maximal
sets, since there are typically many overlapping maximal sets that meet the above
requirements. This is necessary for an efficient algorithm, since it is possible for
the number of such maximal sets to be large.

We present a new algorithm to solve the subspace clustering problem that
is simple, robust, and efficient. The algorithm is called SEPC, for Simple and
Efficient Projected Clustering. Using a Monte Carlo algorithm, we find subspace

1 The term subspace clustering has multiple (related) usages in the computing literature.
In the data mining and knowledge discovery communities, subspace clustering usually refers
to detection of clusters of data points that are mutually close to each other in a (still high-
dimensional) subset of the dimensions of the full problem space.
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Fig. 1. Example of two subspace clusters and projections onto subspaces. The
blue cluster is visible when projected onto the x-y plane. The green cluster is
visible when projected onto the y-z plane.

clusters with high probability for most data sets. The complexity of the algorithm
has a linear dependence on the number of data points and a polynomial depen-
dence on the number of dimensions in the space. The algorithm does not require
the number of output clusters as an input, it is able to operate with clusters of
arbitrary size and dimensionality, and it is robust to outliers. No assumptions are
made about the distribution of the clusters or outliers, except that the clusters
must have a diameter no larger than a user-defined constant in any of the cluster
dimensions. In addition, the algorithm can be used either to partition the data
into disjoint clusters (with or without an outlier set) or generate overlapping
dense regions in the subspaces. Our algorithm generates tighter clusters than
previous Monte Carlo algorithms, such as FastDOC (Procopiuc, Jones, Agarwal
and Murali, 2002). The computational complexity of our algorithm is also lower
and less dependent on the cluster evaluation parameters.

We evaluate the algorithm using the OpenSubspace framework (Müller, Gün-
neman, Assent and Seidl, 2009; Müller, Assent, Günnemann, Gerwert, Han-
nen, Jansen and Seidl, 2011). A thorough evaluation with both synthetic and
real-world data sets demonstrates the superiority of SEPC over competing ap-
proaches.

Our preliminary work on this algorithm has previously been presented in
conferences (Olson and Lyons, 2010; Hunn and Olson, 2013). In this paper, we
expand upon those works with new and improved explanation, discussion, and
analysis of the algorithm, including a proof of the algorithm’s computational
complexity.
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In Section 2, we review related work on this problem. We then discuss our
algorithm, including a detailed analysis, in Section 3. Experimental results on
real and synthetic data are presented in Section 4. Finally, our conclusions are
given in Section 5.

2. Related Work

We are concerned with subspace clustering in the data mining and knowledge
discovery usage of the term, where clusters of data points are detected that are
mutually close to each other in a (still high-dimensional) subset of the dimensions
of the full problem space (Agrawal et al., 1998; Cheng, Fu and Zhang, 1999; Goil,
Nagesh and Choudhary, 1999; Parsons, Haque and Liu, 2004; Kriegel, Kroger,
Renz and Wurst, 2005; Patrikainen and Meila, 2006; Müller et al., 2009; Akse-
hirli, Goethals, Müller and Vreeken, 2013; Aksehirli, Goethals and Müller, 2015).
These techniques often, but not always, require axis-parallel subspaces.

Extensive reviews of early work in subspace and projected clustering have
been performed by Parsons, Haque and Liu (2004) and Kriegel, Kröger, and
Zimek (2009). We provide a brief overview of some historical algorithms and
those closely related to our work.

The CLIQUE algorithm of Agrawal, Gehrke, Gunopulos and Raghavan (1998;
2005) was likely the first algorithm to address the subspace clustering problem.
The algorithm uses a bottom-up strategy that initially finds clusters in pro-
jections onto single dimensions of the space (discretized into short intervals).
Clusters previously found in k-dimensional spaces are used to find clusters in
(k + 1)-dimensional spaces. Clusters are built with one additional dimension at
each step, until no more dimensions can be added. One drawback to the algo-
rithm is that it is exponential in the number of dimensions in the output cluster.
Other bottom-up algorithms include ENCLUS (Cheng et al., 1999), MAFIA
(Goil et al., 1999; Nagesh, Goil and Choudhary, 2001), and P3C (Moise, Sander
and Ester, 2006).

Aggarwal, Wolf, Yu, Procopiuc and Park (1999) developed the PROCLUS
algorithm for subspace clustering using a top-down strategy based on medoids.
The medoids are individual points from the data set selected to serve as surrogate
centers for the clusters. After initializing the medoids using sampling, an iterative
hill-climbing approach is used to improve the set of points used as medoids. A
refinement stage generates the final subspace clusters. This algorithm requires
both the number of clusters and the average number of dimensions as inputs.
Additional methods that use top-down strategies include ORCLUS (Aggarwal
and Yu, 2000) (which considers non-axis parallel subspaces) and FINDIT (Woo,
Lee and Lee, 2004).

Procopiuc, Jones, Agarwal and Murali (2002) developed the DOC and Fast-
DOC algorithms for subspace clustering. One of their contributions was a defi-
nition of an optimal subspace cluster (see Section 3). Procopiuc et al. developed
a Monte Carlo algorithm for finding an optimal cluster. Their algorithm uses
two loops, the outer loop selects a single seed point and the inner loop selects
an additional set of points from the data called the discriminating set. The seed
point and all of the discriminating set must belong to the optimal cluster for
the trial to succeed. The dimensions in the cluster are determined by finding the
dimensions in which all of the points in the discriminating set are within w of
the seed point (allowing an overall cluster width of 2w). Given these dimensions,
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the cluster is estimated by finding all points in the data set within w of the seed
point in these dimensions.

Yiu and Mamoulis describe the MineClus (Yiu and Mamoulis, 2003) and
CFPC (Yiu and Mamoulis, 2005) algorithms. As in the DOC algorithm, an
outer loop is used that samples individual points from the data set. However,
they replace the inner loop from the DOC algorithm with a technique adapted
from mining frequent itemsets to determine the cluster dimensions and points
(assuming that the sample point is from the optimal cluster). No formal analysis
of the computational complexity is given, but Yiu and Mamoulis reported im-
proved speeds in comparison to PROCLUS and FastDOC. However, the speed
of the method is dependent on subsampling the data set before processing.

Recent work on this problem includes development of the CartiClus algorithm
(Aksehirli et al., 2013) and the related CLON algorithm (Aksehirli et al., 2015).
CartiClus transforms each data point into multiple sets consisting of its nearest
neighbors in different views of the data. Performing frequent itemset mining on
these sets and merging similar results yields the clustering algorithm. CLON
uses ordered neighborhoods, also consisting of nearest neighbors in views of the
data. Clusters are detected using a bottom-up strategy based on the fact that
lower-dimensional projections of clusters are supersets of the clusters found in
high-dimensional projections.

In the computer vision and machine learning communities, subspace clus-
tering usually refers to a different, but related problem. This problem is the
detection of points that belong to a union of low-dimensional linear or affine sub-
spaces embedded in a high-dimensional space (Elhamifar and Vidal, 2009; Dyer,
Sankaranarayanan and Baraniuk, 2013; Wang and Xu, 2013; Wang, Xu and
Leng, 2013). These techniques generally require disjoint subspaces, but do not
usually require axis-parallel subspaces. While this is related to the problem we
solve, algorithms in one category do not generally solve problems in the other
category. For example, the sparse subspace clustering work of Elhamifar and
Vidal (2009) is applied to the problem of motion segmentation, where each
cluster of trajectories lies in a 3-D affine subspace. Recent work on this prob-
lem has examined subspaces with rank at least as high as 15 (Hu, Feng and
Zhou, 2015). This is also an active area of current research (Park, Carama-
nis and Sanghavi, 2014; Soltanolkotabi, Elhamifar and Candès, 2014; Vidal and
Favaro, 2014; Hu et al., 2015).

3. Simple and Efficient Subspace Clustering

3.1. Preliminaries

We use the definition of an optimal cluster from Procopiuc, Jones, Agarwal and
Murali (2002). An optimal cluster has the following properties:

1. It has a minimum density α (a fraction of the number of points in the data
set).

2. It has a width of no more than w in each dimension in which it congregates.

3. It has a width larger than w in each dimension in which it does not congregate.

4. Among clusters that satisfy the above criteria, it maximizes a quality function
µ(|C|, |D|), where |C| is the number of points in the cluster and |D| is the
number of dimensions in which the cluster congregates.
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While any function that is monotonically increasing in each variable can be used
as the quality function, Procopiuc et al. use µ(|C|, |D|) = |C| · (1/β)|D|, where
0 < β < 1 is a parameter that determines the trade-off between the number
of points and the number of dimensions in the optimal cluster. If a cluster C1

congregates in f fewer dimensions than C2, it must have |C1| > |C2|/β
f points

to surpass the score for C2. An optimal cluster must have at least 1/β as many
points as another cluster if it congregates in exactly one less dimension.

We solve the subspace clustering problem using a Monte Carlo algorithm.
In each trial of the algorithm, a small set of data points is sampled. Following
Procopiuc et al. (2002), we call this the discriminating set. A trial can succeed
only if all of the points in the discriminating set are from the same cluster, among
other conditions. Many trials are performed in order to achieve a high likelihood
of success. In Section 3.5, we examine the number of trials necessary.

Note that, in contrast to the DOC and FastDOC algorithms, we have no
outer loop in which individual seed points are sampled. We use different methods
to determine which points and dimensions are part of a cluster. The overall
algorithm is similar in many ways to DOC, but yields large improvements in
computational complexity and experimental results owing to the changes. The
new algorithm analysis is also of interest. We point out complications that affect
both algorithms that were not presented previously.

The base algorithm finds a single cluster. To find multiple clusters, it can
be either iterated or modified to detect multiple clusters simultaneously (over
multiple trials). The number of clusters in the data set is not assumed to be
known in advance. The total number of clusters found is generally limited by a
threshold on the scoring function, but the algorithm can be trivially modified to
find the k best clusters if the number of clusters is known.

3.2. Approach

In each trial, the discriminating set is used to determine the set of congregating
dimensions for a hypothetical subspace cluster by selecting the dimensions in
which the span of the discriminating set is less than the desired cluster width
w. This requires only finding the minimum and maximum value in each of the
dimensions among the points in the discriminating set. Note that this is an
improvement over the DOC algorithm, in which the width of the sheath used
to determine the congregating dimensions is 2w. The narrower sheath is a key
reason for the improvement in the algorithm. A sheath width that is half as
wide is much less likely to capture all of the points in the discriminating set in
any dimension that the full cluster does not congregate in and this likelihood
is crucial to the analysis of the computational complexity of the algorithm. To
use such a narrow sheath, the DOC algorithm would need to find a seed point
that was in the middle of the cluster in each of the congregating dimensions.
However, this is not known in advance.

The narrower sheath also allows us to use a larger value for β (the fraction
of points necessary to remain in a cluster to add another congregating dimen-
sion). The DOC algorithm is limited to using β < 0.5 because of the width of the
sheath. With a sheath width of 2w, it is impossible to guarantee that the fraction
of points in the full cluster that lies within the sheath in any non-congregating
dimension is less than 2β. (Otherwise, this dimension would need to be a congre-
gating dimension.) When β is 0.5 (or larger) the entire cluster can fit within the
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Fig. 2. Comparison between the SEPC and DOC algorithms for determining
cluster dimensions and cluster points using a discriminating set. Blue points are
in the cluster. Red points are random. Light blue points form the discriminating
set. The SEPC algorithm uses a sheath of width w to determine if a discriminat-
ing set congregates in a dimension. When the set congregates, a larger sheath
with width 2w − ŵi is used to determine additional data points that are added
to the cluster. Figure 3 shows a similar example for the DOC algorithm.

sheath in a non-congregating dimension. This would make the cluster impossible
to find. In contrast, the SEPC algorithm is only restricted by the upper limit of
β < 1.

We next determine the points in the hypothetical cluster, given the congre-
gating dimensions. Note that the cluster points will not necessarily fall within the
bounds given by the discriminating set, since the discriminating set will not gen-
erally include the extremal points in all congregating dimensions of the cluster.
If the width of the discriminating set in cluster dimension i is ŵi, the full cluster
might extend beyond this sheath in either direction by w−ŵi, since the full clus-
ter may have width w. Allowing this extra width on either side yields a larger
sheath with width 2w − ŵi. It may range from w for a discriminating set that
spans the maximum possible width in the dimension to 2w for a discriminating
set where every point has the same value in the dimension. See Fig. 2. In compar-
ison, the DOC algorithm continues using a sheath with width 2w to determine
which points are included in the cluster. See Fig. 3. The only consequence of a
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Fig. 3. Comparison between the SEPC and DOC algorithms for determining
cluster dimensions and cluster points using a discriminating set. Blue points are
in the cluster. Red points are random. Light blue points form the discriminating
set. The DOC seed point is brown. The DOC and FastDOC algorithms use a
sheath with width 2w both to determine if the discriminating set congregates
in a dimension and to find additional data points that are added to the cluster.
Figure 2 shows a similar example for our algorithm.

sheath larger than w in this step is that it allows clusters that are wider than
w, since the sheath for adding points to the cluster is larger. However, few (if
any) such outliers will be included, since they must congregate with the cluster
in all of the congregating dimensions. Our narrower sheath width for finding the
cluster points does not factor into the analysis for the computational complexity
or optimal discriminating set cardinality (unlike the one used to determine the
congregating dimensions) and results in only minor additional improvement over
the DOC algorithm by reducing the possibility of outliers in the cluster.

The hypothetical cluster detected in each trial is given a score using the
DOC metric and retained if the score is sufficiently high. When performing dis-
joint (projected) clustering, we retain only the top scoring cluster over all of the
trials. This cluster is removed from the data and further clusters are found using
additional iterations of the algorithm.2 The process continues until no more clus-

2 Reducing the size of the data set improves the ability of the algorithm to find small clusters.
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ters surpassing some criteria are found. Any remaining points can be classified as
outliers or added to the cluster to which they are closest. If overlapping clusters
are desired, multiple clusters can be located in a single iteration of the algorithm
with a simple modification. In this case, we store not just the best cluster found,
but all clusters of sufficient quality that are qualitatively different.

If the highest scoring cluster found in an iteration has density less than α, but
meets the score criterion, we must report it, even if clusters exist with density
larger than α. If such clusters are discarded, then the algorithm analysis may
fail. Consider a large cluster with a density of exactly α. If a subcluster exists
with one fewer point and one more dimension, then this subcluster will achieve a
greater score, unless β is set arbitrarily close to one. In addition, this subcluster
will usually prevent the larger cluster from being found, since any discriminating
set that does not contain the single additional point in the larger cluster will
generate a set of congregating dimensions that includes the additional dimension
and excludes the additional point from the detected cluster. If the subcluster
is discarded owing to the density less than α, then the larger cluster will be
missed, even though it meets the necessary conditions, unless a discriminating
set is chosen with the additional point. This can be made arbitrarily unlikely
by increasing the size of the cluster and, thus, the analysis does not hold for
this optimal cluster, unless we allow the higher scoring, yet smaller, cluster to
supersede it. Note that this is true not just for our algorithm, but for all similar
Monte Carlo algorithms.3 Instead of discarding the cluster, we allow the smaller
cluster to supersede the larger cluster, since it has a higher score. Our objective
will thus be to find an optimal cluster with density of at least α (if one exists)
or a higher scoring cluster.

3.3. Algorithm Details

The SEPC algorithm is given in Algorithm 1. The input to the algorithm in-
cludes the set of points P , the number of dimensions d, the maximum width of a
cluster w, the number of trials ktrials, the cardinality of each discriminating set
s, and the cluster quality function µ(). In each trial, we randomly sample (with-
out replacement) s points from the data. Within the discriminating set, the set
of dimensions in which the points congregate is determined (line 4). For each
dimension, bounds are determined on the span of the cluster (infinite bounds
are used for dimensions in which the cluster does not congregate). The points
in the cluster are determined (line 12) by finding the intersection of the point
set with the Cartesian product of each of the dimension ranges rj . Finally, the
cluster is saved if it is the best found so far. This algorithm finds a single cluster
and may be iterated after removing the cluster (for disjoint clustering). To detect
non-disjoint clusters, multiple clusters can be found in a single iteration of the
algorithm. In this case, all clusters of sufficient quality should be saved in lines
13-17, unless the clusters substantially overlap.

If small clusters are not desired, then the cluster density can be computed with respect to the
original number of points in the data set.
3 Procopiuc et al. (2002) sidestep this by requiring α to be such that there is no smaller α′

value that allows a cluster with a higher score. However, this cannot enforced.
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Algorithm 1 SEPC(P, d, w, ktrials, s, µ())

1: µbest ← 0
2: for i = 1 to ktrials do
3: Sample Si ⊂ P randomly, with |Si| = s.
4: Di ← {j | ∀p, q ∈ Si, |pj − qj | ≤ w}
5: for j = 1 to d do
6: if j ∈ Di then
7: rj ← [maxp∈Si

pj − w, minp∈Si
pj + w]

8: else
9: rj ← [−∞, ∞]

10: end if
11: end for
12: Ci ← P ∩

∏

1≤j≤d rj
13: if µ(|Ci|, |Di|) > µbest then
14: µbest ← µ(|Ci|, |Di|)
15: Cbest ← Ci

16: Dbest ← Di

17: end if
18: end for
19: return Cbest, Dbest

3.4. Overlapping Clusters

Allowing overlapping clusters is problematic if we do not remove duplicate clus-
ters. Since points are not removed from consideration when they are assigned to
clusters, the algorithm needs to check that each newly found cluster is unique
and has not been previously discovered. When a new cluster is discovered, it
is compared to existing found clusters. However, using a strict test for equality
will result in a large number of similar clusters being discovered. To address this
problem, we loosen the criteria for equality between clusters.

Our test for cluster equality uses both the set of objects in each cluster and
the subspaces that the clusters span. This allows us to differentiate clusters
that overlap significantly in objects, but not in the subspace spanned. Formally,
given two clusters (Ci, Di) and (Cj , Dj), we say that they are equivalent if |Ci ∩
Cj |/min(|Ci|, |Cj |) ≥ γc and |Di ∩ Dj |/min(|Di|, |Dj |) ≥ γd, where γc and γd
are user-specified tolerances between zero and one.

If a newly hypothesized cluster is determined to be redundant with respect
to an existing cluster, then we discard it if its quality is lower than the existing
cluster. If a newly hypothesized cluster is sufficiently unique (or of higher quality
than redundant existing clusters) then we retain it. In this case, all existing
clusters that are determined to be redundant with respect to the new cluster are
removed from the clustering results. Figure 4 shows the process used by SEPC
to discover overlapping clusters in a data set.

3.5. Number of Trials

We want to set the number of trials in the SEPC algorithm such that it is highly
likely that we find a subspace cluster should one exist. Theoretical guarantees
are difficult to make, since it is possible to construct complex data sets with
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Fig. 4. Flowchart for finding overlapping clusters with SEPC.

undesirable properties. For example, if all of the possible discriminating sets for
a cluster congregate in at least one dimension in which the full cluster does not,
then the sampling strategy will always detect the cluster with one or more extra
dimension and find a smaller, suboptimal cluster. However, this can only happen
if the probabilities of each cluster subset congregating in each extra dimension
are negatively correlated; that is, knowing that a subset does not congregate in
one dimension must make it more likely that it does in another dimension. This
would be an unusual data set.

For the following analysis, we will assume that the probabilities are, at worst,
independent; positive correlation would improve matters. However, this does
mean that degenerate data sets exist where a suboptimal cluster would be de-
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tected instead of the optimal cluster. Furthermore, our randomized algorithm
has a non-zero probability of never sampling a suitable discriminating set even
when this is not the case. Of course, these issues also apply to other Monte
Carlo algorithms, such as DOC and FastDOC. This independence is implicitly
assumed by Procopiuc et al. (2002). Extensive testing (Sec. 4) indicates that our
methodology outperforms other algorithms.

Assume that a cluster exists containing at least m = ⌈αn⌉ points, since we
otherwise make no claims about the likelihood of a cluster being found. For a trial
to succeed, we need for two conditions to hold. First, the trial must select only
points within the subspace cluster (allowing us to find all of the dimensions in
which the cluster is formed). Second, the trial must not select only points that
randomly congregate in any dimension that is not a congregating dimension
of the full subspace cluster, since this would result in an incorrect dimension
being included in the trial. For any fixed s, a lower bound can be placed on the
probability of both conditions holding:

Ptrial ≥

(

Cm
s

Cn
s

)(

1−
Cl

s

Cm
s

)d

, (3)

where l = ⌊βm⌋ and Cj
k is the number of k-combinations that can be chosen from

a set of cardinality j. The first term of (3) is a lower bound on probability of the
first condition holding. The second term is a lower bound on the probability of
the second condition holding, given that the first condition holds. This term is
computed based on the fact that, for an optimal cluster of c points, no more than
⌊βc⌋ points in the cluster can be within w of each other in any dimension that is
not a congregating dimension of the cluster (otherwise, this subset would form a
higher scoring subspace cluster that includes the dimension).4 The second term
is taken to the dth power, since the random clustering could occur in any of the d
dimensions (except for those that the subspace cluster does congregate in). This
is where we make use of the assumption that the probabilities are independent
(or positively correlated). The bound is not tight, since it includes all of the
dimensions, rather than the (as yet unknown) dimensions in which the cluster
does not congregate.

For large data sets, (3) is well approximated by:

Ptrial ≥ αs(1− βs)d. (4)

After ktrials iterations, we want the probability that none of the trials succeed
to be below some small constant ǫ (e.g., 10−2). This is achieved with:

(1− Ptrial)
ktrials ≤ ǫ, (5)

which yields:

ktrials =

⌈

log ǫ

log(1− Ptrial)

⌉

. (6)

4 Note that there may be more than Cl
s combinations of such points, but only if the cluster

contains more than m points. This probability still serves as a lower bound.
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3.6. Discriminating Set Cardinality

The above analysis on the number of trials is valid for discriminating sets with ar-
bitrary cardinality greater than one. However, the number of trials varies greatly
depending on the cardinality of each discriminating set. If the cardinality is large,
then it will be unlikely that the points in the set will all be in the desired cluster.
If the cardinality is small, then it is likely that the points will congregate in (at
least) one dimension in which the cluster does not. The optimal value for the
cardinality of the discriminating set can be easily obtained by computing ktrials
for a small number of values and using the value that requires the fewest trials.

While the optimal value can be determined explicitly by testing values, we
have also developed a heuristic to approximate the optimal value, which is useful
in our analysis of the algorithm computational complexity. Our heuristic sets the
cardinality such that the probability of the discriminating set congregating in
even one of the incorrect dimensions is roughly 3/4. (The second term in (3)
usually dominates the computation of ktrials.)

With this heuristic we have:
(

1−
Cl

s

Cm
s

)d

≈
1

4
, (7)

which yields:

l!(m− s)!

m!(l − s)!
≈ 1− 4

−1
d (8)

and

m−s
∑

i=l−s+1

log i−

m
∑

i=l+1

log i ≈ log(1− 4
−1
d ). (9)

l
∑

i=l−s+1

log i−

m
∑

i=m−s+1

log i ≈ log(1− 4
−1
d ). (10)

From this, we derive the following approximation to the optimal value of s:

sest ≈
log(1− 4

−1
d )

log l − logm
(11)

=
log(1− 4

−1
d )

log⌊β⌈αn⌉⌋ − log⌈αn⌉
(12)

≈
log(1− 4

−1
d )

log β
(13)

≈
log(d−1 ln 4)

log β
=

log(d/ ln 4)

log(1/β)
(14)

This approximation (when rounded to the nearest whole number) overesti-
mates the optimal cardinality in some cases (Olson and Lyons, 2010), but the
average percentage difference in the number of trials is less than 30% from the
optimal value in all cases tested and the average percentage difference from the
optimal number of trials is 4.42%. As expected, the cardinality of the discrimi-
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(a) (b)

Fig. 5. Scalability with number of dimensions and β. (a) Estimated values for
discriminating set cardinality s with α = 0.1, n = 100, 000, and varying values
for d and β. (b) Number of trials required with α = 0.1, ǫ = 0.01, n = 100, 000,
and varying values for d and β.

nating set is logarithmic in the number of dimensions. It grows roughly linearly
with β for low values of β before growing much faster as β nears one.

Figure 5a shows the estimate for the optimal cardinality of the discriminating
set with respect to the number of trials as specified by (6). For this comparison,
α was held constant at 0.1 and n at 100,000. The levels of d and β were varied
(since these are the most influential in determining the optimal number of trials).
Figure 5b shows the total number of trials necessary in the SEPC algorithm to
detect a cluster with high probability. Here the growth is polynomial in both β
and the number of dimensions.

3.7. Computational Complexity

For fixed α, β, and d, the running time of the algorithm is O(n), since the number
of trials does not depend on n. However, the running time has a more interesting
relationship with α, β, and d.

Lemma 1. With s = ⌈log(d/ ln 4)/ log(1/β)⌉ and d > 3, (1− βs)d ≥ 1/10.

Proof. This is equivalent to proving d ln(1−βs) ≥ − ln 10. Using ln(1+x) ≥ x
1+x

for x > −1, we derive

d ln(1− βs) ≥
−dβs

1− βs
(15)

Noting that βlog(d/ ln 4)/ log(1/β) = (ln 4)/d, we arrive at

d ln(1− βs) ≥
d

1− d/ ln 4
. (16)
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Since d
1−d/ ln 4 is monotonically increasing with d (for d > ln 4), the minimum

value for an integer d > 3 is obtained at d = 4:

d ln(1− βs) ≥
4

1− 4/ ln 4
> −2.12 > − ln 10 (17)

Theorem 1. With s = ⌈log(d/ ln 4)/ log(1/β)⌉ and d > 3, the number of trials
performed by SEPC satisfies:

ktrials ≤ 1 +
10

α

(

d

ln 4

)

log α
log β

ln
1

ǫ
(18)

Proof. From (6), we have:

ktrials =

⌈

log ǫ

log(1− αs(1− βs)d)

⌉

. (19)

Using the fact that ln(1 + x) ≤ x for x > −1, we obtain:

ktrials ≤ 1 +
ln 1/ǫ

αs(1− βs)d
. (20)

Using Lemma 1,

ktrials ≤ 1 +
10 ln 1/ǫ

α⌈log(d/ ln 4)/ log(1/β)⌉
. (21)

ktrials ≤ 1 + 10α− log(d/ ln 4)/ log(1/β)−1 ln 1/ǫ (22)

With some manipulation, this equation is equivalent to:

ktrials ≤ 1 +
10

α

(

d

ln 4

)

log α
log β

ln
1

ǫ
(23)

This proof implies that the number of trials required is O( 1
αd

log α
log β log 1

ǫ ). The

complexity of the overall algorithm is O( 1
αnd

1+ log α
log β log 1

ǫ ), since each trial in the
algorithm requires O(nd) time.

The complexity of the SEPC algorithm can be contrasted with the DOC

algorithm, which is O( 1
αnd

1+
log(α/2)
log 2β log 1

ǫ ). With α = 0.1, β = 0.25 and fixed

ǫ, our algorithm is O(nd2.661), while the DOC algorithm is O(nd5.322). SEPC
has a lower computational complexity for any setting of the parameters. The
difference between the exponents increases as the problem becomes more difficult
(decreasing α and/or increasing β). SEPC requires three orders of magnitude less
trials that DOC even for simple problems (d = 50, α = 0.1, β = 0.15) and over
twenty orders of magnitude less trials for more complicated settings (d = 400,
α = 0.1, β = 0.35) (Olson and Lyons, 2010).

For many parameters, SEPC also has a lower computational complexity than
the FastDOC algorithm, which is O(nd3) when the number of trials is limited to
d2. In cases where FastDOC has a lower computational complexity, it is because
the number of trials is limited in such a way that clusters are often missed, as
we have previously demonstrated (Olson and Lyons, 2010).
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3.8. Parameter Setting

The SEPC algorithm has three important parameters, w, α and β. Less im-
portant is ǫ, for which we use 0.01 in all cases. The values of ktrials and s are
computed from these parameters (and the known number of dimensions in the
data set). The maximum cluster width and minimum cluster cardinality (a func-
tion of α) are common clustering algorithm parameters. These parameters can
be chosen either using knowledge of the data set or empirically through testing
on representative data. Techniques for automatic estimation of such parameters
have also been examined (Medapati, Lin and Sherrell, 2013).

The β parameter is less intuitive, representing a trade-off between the number
of points in the cluster and the number of dimensions in the cluster. However,
every subspace clustering algorithm must (at least implicitly) estimate this trade-
off. Given two clusters, A and B, with A congregating in δ more dimensions than
B. A will score higher than B if ||A|| > βδ||B||. We have found values between
0.2 and 0.35 to be most useful. Once again, prior knowledge and empirical testing
can improve upon these estimates for a specific data set.

Given the increase in the number of trials necessary as β increases, it might
be questioned why a larger value is desirable. A larger value is necessary in
some cases to prevent subsets of a cluster from producing a larger score than
the “correct” cluster owing to random accumulation in one or more dimensions.
Consider a subspace clustering problem in which each dimension ranges over [0,
1]. When determining the points in a cluster, we use a sheath of width v ≤ 2w
in the dimensions in which the discriminating set congregates. (The DOC and
FastDOC algorithms use v = 2w.) A random outlier will fall within this sheath
(in a single dimension) with probability v. When β is less than v, the inclusion
of an incorrect dimension usually leads to a cluster with a better score than the
desired subspace cluster, since it will include an extra dimension (although fewer
points). The fraction of points in the smaller cluster that are captured from the
larger cluster is expected to be v (although it varies around this fraction given
random data). If the larger cluster has score µ1, the smaller cluster is expected
to have a score of approximately v

βµ1.

Procopiuc et al. (2002) noticed this effect in their experiments. Their solution
was to generate more output clusters than were present in the input data in
order to find all of the cluster points, even though they are broken into multiple
output clusters. This problem can be solved using other techniques. Two simple
ones are increasing s and/or increasing β. The first would make it less likely that
incorrect dimensions are included in each trial. The second would make incorrect
dimensions less likely to matter, since the scoring function would weight the
number of cluster points higher and the number of dimensions lower. However,
both of these changes increase the number of trials necessary to find a subspace
cluster.

3.9. Optimizations

One optimization that is useful is to limit the number of passes through the
entire data set, particularly if it is too large to fit in memory and accessing it
from a disk is time consuming. The idea here is to generate many discriminat-
ing sets Si during a single pass through the data. After the discriminating sets
are constructed, they can be examined jointly in a single pass through the data
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(and further discriminating sets can be generated during this pass). An addi-
tional parameter is required with this optimization, ksets, which is the number
of discriminating sets to consider simultaneously.

In the FastDOC algorithm, Procopiuc et al. (2002) propose to consider only
one discriminating set for each outer iteration of the algorithm. This discrimi-
nating set is chosen by finding the one that congregates in the largest number
of dimensions. We can similarly consider only one of the ksets discriminating
sets each full pass through the data in the SEPC algorithm. This optimization
reduces the likelihood of finding an optimal cluster, since not every trial is fully
evaluated, but good results can be achieved since the discriminating sets yielding
many cluster dimensions often yield high scoring clusters. The speedup achieved
is roughly ksets, since scanning the data set for potential cluster points dominates
the running time. We do not use this optimization in the following experiments.

Although we could use a heuristic to limit the number of trials as is done in
FastDOC (Procopiuc et al., 2002), we choose not to do this, since our algorithm
is less computationally complex and can handle a much wider range of parameter
values.

4. Experiments

In previous work, we demonstrated that SEPC has superior performance to DOC
and FastDOC on both synthetic and real data sets (Olson and Lyons, 2010). Here,
we describe a thorough evaluation of the SEPC algorithm using OpenSubspace
(Müller et al., 2009; Müller et al., 2011). This open source framework contains im-
plementations of several subspace clustering algorithms and tools for evaluating
them. We have compared these implementations with our own implementation
of the SEPC algorithm.

4.1. Metrics

Clustering metrics in OpenSubspace are divided into two classes (Müller et al.,
2009). The first class is purely object-based. These metrics ignore the congre-
gating dimensions of clusters in evaluating cluster quality. Instead, they rely
entirely on how objects have been allocated to clusters compared to the correct
allocation. This approach works well when clusters are disjoint. However, in some
instances, it is advantageous to allow points to belong to multiple clusters that
span different subspaces. In such cases, this class of metrics will yield misleading
results. For example, the synthetic data sets provided with OpenSubspace have
clusters that are subsets of other clusters, but that congregate in additional di-
mensions. This causes problems for object-based metrics, since the assignment
of points to clusters is not unique. The second class of metrics uses information
on both the objects and the congregating dimensions. Metrics in this class, such
as clustering error (CE) (Patrikainen and Meila, 2006), yield more useful results
when the clusters overlap.

Following the terminology of Müller et al. (2009), we use found cluster to refer
to a cluster returned as part of the results of running a clustering algorithm on
a given data set. In contrast, a hidden cluster is known a priori (but not to
the clustering algorithm). In the case of synthetic data sets both the objects
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and subspace of hidden clusters are known, however, for real world data, we are
typically limited to information about object membership in hidden clusters.

4.1.1. Clustering Error

Müller et al. (2009) formulate the Clustering Error (CE) metric (Patrikainen
and Meila, 2006) such that it accounts for both cluster membership and cluster
congregating dimensions. This allows clusters with the same points, but disjoint
dimensions to be considered disjoint. Each object is partitioned into sub-objects
(one for each dimension). An optimal one-to-one mapping is performed between
found clusters and hidden clusters. If the number of found and hidden clusters
is not the same, some clusters will not be matched. (This addresses a problem
common to many subspace clustering quality metrics where many found clusters
are allowed to match the same hidden cluster.)

The CE score then takes the ratio of the number sub-objects that are not
in the correct found cluster to the total number of sub-objects in the hidden
clusters. Let U be the number of sub-objects that are contained in the union of
the found clusters and hidden clusters. Let I be the number of sub-objects in the
hidden clusters that are correctly matched in the one-to-one mapping between
found and hidden clusters. The CE score is:

CE =
U − I

U
(24)

A CE score of zero is ideal. Our plots show 1− CE so that the best scores
are larger values. One drawback to using CE in this formulation is that the
congregating dimensions are often unknown in real world data sets. In these
cases, we use the F1 score instead.

4.1.2. F1

The F1 score (Witten and Frank, 1999; Müller et al., 2009) is an object-based
metric computed with respect to each hidden cluster. Found clusters are matched
to the best overlapping hidden cluster. The F1 score for each hidden cluster is
computed as the harmonic mean of the recall (fraction of the hidden cluster
contained in the matching found clusters) and precision (fraction of the match-
ing found clusters contained in the hidden cluster). The overall F1 score is the
average of the F1 scores for each hidden cluster. Let the n hidden clusters be
{H1, ..., Hn}. We then have:

F1 =
1

n

n
∑

i=1

2 · recall(Hi) · precision(Hi)

recall(Hi) + precision(Hi)
(25)

Problems can arise with the F1 score when there are overlapping hidden
clusters that span different subspaces. OpenSubspace maps each found cluster to
the hidden cluster it contains the largest fraction of (not the hidden cluster that
most overlaps it). This allows small hidden clusters to be matched with large
found clusters, even though the found cluster is much larger than the hidden
cluster (and may have more overlap with a different hidden cluster). This can
result in a bias towards matching smaller hidden clusters. However, we use this
metric only when the congregating dimensions for the data set are not available.
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4.2. Comparison

We have performed experiments similar to those of Müller et al. (2009) using
the SEPC algorithm and several competing algorithms. Each experiment was
conducted with many different parameter settings for each algorithm in an at-
tempt to obtain the optimal performance. In addition, each run of an algorithm
was limited to 30 minutes. The following algorithms, as implemented in Open-
Subspace, were used in this comparison: CLIQUE (Agrawal et al., 1998), PRO-
CLUS (Aggarwal, Wolf, Yu, Procopiuc and Park, 1999), FastDOC (Procopiuc
et al., 2002), MineClus (Yiu and Mamoulis, 2003), FIRES (Kriegel et al., 2005),
P3C (Moise et al., 2006), and STATPC (Moise and Sander, 2008). In addition,
we compare against CLON (Aksehirli et al., 2015), for which we wrote a wrapper
to the code made available by its developers.5 The experiments were run on ma-
chines with 1.8GHz Dual-Core AMD Opteron 2210 processors and 2GB memory
running Red Hat Linux 5.9 (except CLON, which was added later). With some
parameter settings, algorithms did not finish within a 30 minute time limit. Tri-
als with these settings were discarded. Otherwise, the best performing trial was
recorded. Note that DOC (Procopiuc et al., 2002) is not included. In cases where
it was able to finish within the time limit, the results were nearly the same as
FastDOC.

4.2.1. Synthetic Data

OpenSubspace is packaged with three synthetic data sets, each intended to ex-
plore a different aspect of algorithm performance. These data sets enable eval-
uation over increasing dimensionality (number of attributes), over increasing
dataset size (number of objects), and over increasing amounts of noise (irrelevant
objects). Additionally, all of the data sets contain overlapping hidden clusters
(clusters that share objects, but span different subspaces). We applied SEPC in
non-disjoint mode.

We use clustering error (CE) to examine the relative quality of the cluster-
ing results generated on these synthetic data by each algorithm. This measure
penalizes redundancy (multiple found clusters covering the same hidden clus-
ter) and allows us to evaluate the ability to discover clusters with overlapping
objects. Algorithms that generate disjoint clusters cannot achieve a perfect CE
score when overlapping clusters are present.

To evaluate the scalability of algorithms as the dimensionality of a data set
increases, OpenSubspace includes data sets with dimensions varying from 5 to 75.
Each data set includes ten subspace clusters that span 50%, 60%, and 80% of the
full feature space. Figure 6a shows the results of our evaluations of each algorithm
on the dimension-based data sets. Our results were similar to those of Müller
et al. (2009), who observed the best CE results for the cell-based approaches,
particularly FastDOC and MineClus. In our evaluation, FastDOC and MineClus
scored a CE value of approximately 0.8 across all dimensionalities. However, as
can be seen in Fig. 6a, SEPC exceeded these results. CLON (Aksehirli et al.,
2015) did not fare well with respect to the CE measure. This is because large
clusters were output as multiple smaller clusters for all parameter settings tested.

OpenSubspace also includes a set of synthetic data where the number of

5 https://gitlab.com/adrem/carti-clon
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(a) (b)

(c) (d)

Fig. 6. Algorithm performance under varying conditions. (a) Clustering error
versus number of dimensions. (b) Clustering error versus number of object. (c)
Clustering error versus percent outliers. (d) Run time versus number of dimen-
sions.

objects in each cluster varies, but the number of dimensions is constant. All of
these data sets contain 20-dimensional objects, but they vary in size from roughly
1500 points up to 5500 points. We used these data sets to evaluate algorithm
performance over increasing data set size. The best results for FastDOC and
MineClus varied between CE values of 0.85 and 0.9. SEPC exceeded these results
with a CE value of at least 0.95 and achieved a CE value of 0.99 for the data set
containing 3500 data points. See Fig. 6b.

For noise-based experiments, OpenSubspace includes data sets where the
percentage of noise objects increases from 10% noise up to 70% noise. These
data sets were built by adding noise to the 20-dimensional data set from the
scalability experiments. For noise-based experiments, Müller et al. reported CE
results for FastDOC and MineClus of about 0.79 to 0.89 (Müller et al., 2009).
We saw similar results in our evaluation. In can be observed in Fig. 6c that the
FastDOC and MineClus results exhibit a slight downward trend as the amount
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of noise in the data set increases. In contrast, the CE results for SEPC are
consistent ranging from 0.95 to 0.97, with no degradation in performance with
increasing amounts of noise. The high CE scores achieved by SEPC across all
data sets indicate that the algorithm effectively discovers overlapping clusters.

We also examined the running times for the algorithm6 on each data set.
For some algorithms, parameter settings significantly affect running time. We
continued to use the parameter settings that yielded the optimal CE results. See
Fig. 6d. We note that SEPC is faster than P3C, STATPC, FIRES, and FastDOC
on all data sets. CLIQUE and PROCLUS are the fastest algorithms across all
data sets. However, they also score among the lowest CE values. MineClus, which
surpasses FastDOC for the second best cluster error performance, fairs relatively
well here, with a lower run time than SEPC.

4.2.2. Real Data

In addition to synthetic data, we used the real world data packaged with Open-
Subspace to evaluate SEPC against other subspace clustering algorithms. These
publicly available data sets from the UCI archive (Lichman, 2013) have typically
been used in classification tasks and have class labels. The class labels are as-
sumed to describe natural clusters in the data. However, no information about
the subspaces of the clusters is known, so metrics that use the cluster subspace
are not applicable. For these experiments, we use the F1 score. Since all of the
clusters in the real world data sets are disjoint, SEPC was run in disjoint mode
for these experiments.

Fig. 7 summarizes the F1 results obtained by each algorithm for each of the
seven real world data sets. SEPC yielded the highest F1 score on four out of the
seven data sets and the highest average score.

5. Conclusion

We have described a new algorithm called SEPC for locating subspace and pro-
jected clusters using Monte Carlo sampling. The algorithm is straightforward to
implement and has low complexity (linear in the number of data points and low-
order polynomial in the number of dimensions). In addition, the algorithm does
not require the number of clusters or the number of cluster dimensions as input
and does not make assumptions about the distribution of cluster points (other
than that the clusters have bounded diameter). The algorithm is widely appli-
cable to subspace clustering problems, including the ability to find both disjoint
and non-disjoint clusters. The performance of the SEPC algorithm surpasses
previous algorithms on both synthetic and real data.

Interesting future work exists in two areas. First, the detection of subspace
clusters with arbitrarily oriented axes (rather than parallel to the attributes
axes) is useful, since attributes may be correlated. Also, soft subspace clustering,
where the cluster membership is probabilistic may yield improvements over hard
assignment.

6 CLON is not included in this comparison, since it was run on a different computer.
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Fig. 7. Comparison of algorithms on real world data sets using the F1 measure.

References

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C. and Park, J. S. (1999), Fast algorithms
for projected clustering, in ‘Proceedings of the ACM SIGMOD International Conference
on Management of Data’, pp. 61–72.

Aggarwal, C. C. and Yu, P. S. (2000), Finding generalized projected clusters in high dimensional
spaces, in ‘Proceedings of the ACM SIGMOD International Conference on Management of
Data’, pp. 70–81.

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998), Automatic subspace clus-
tering of high dimensional data for data mining applications, in ‘Proceedings of the ACM
SIGMOD International Conference on Management of Data’, pp. 94–105.

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (2005), ‘Automatic subspace clus-
tering of high dimensional data’, Data Mining and Knowledge Discovery 11, 5–33.

Aksehirli, E., Goethals, B. and Müller, E. (2015), Efficient cluster detection by ordered neigh-
borhoods, in ‘Proceedings of the 17th International Conference on Big Data Analytics and
Knowledge Discovery’, Vol. 9263 of Lecture Notes in Computer Science, pp. 15–27.

Aksehirli, E., Goethals, B., Müller, E. and Vreeken, J. (2013), Cartification: A neighborhood
preserving transformation for mining high dimensional data, in ‘Proceedings of the 13th
IEEE International Conference on Data Mining’, pp. 937–942.

Beyer, K., Goldstein, J., Ramakrishnan, R. and Shaft, U. (1999), When is ‘nearest neighbor’
meaningful?, in ‘Proceedings of the 7th International Conference on Database Theory’,
pp. 217–235.

Cheng, C. H., Fu, A. W. and Zhang, Y. (1999), Entropy-based subspace clustering for min-
ing numerical data, in ‘Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining’, pp. 84–93.

Dash, M., Choi, K., Scheuermann, P. and Liu, H. (2002), Feature selection for clustering -
A filter solution, in ‘Proceedings of the IEEE International Conference on Data Mining’,
pp. 115–122.

Ding, C., He, X., Zha, H. and Simon, H. D. (2002), Adaptive dimension reduction for clustering



Efficient Monte Carlo Clustering in Subspaces 23

high dimensional data, in ‘Proceedings of the IEEE International Conference on Data
Mining’, pp. 147–154.

Dyer, E. L., Sankaranarayanan, A. C. and Baraniuk, R. G. (2013), ‘Greedy feature selection
for subspace clustering’, Journal of Machine Learning Research 14(1), 2487–2517.

Elhamifar, E. and Vidal, R. (2009), Sparse subspace clustering, in ‘Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition’.

Goil, S., Nagesh, H. and Choudhary, A. (1999), MAFIA: Efficient and scalable subspace clus-
tering for very large data sets, Technical Report No. CPDC-TR-9906-010, Northwestern
University.

Hartigan, J. A. (1975), Clustering Algorithms, John Wiley and Sons.
Hotelling, H. (1933), ‘Analysis of a complex of statistical variables into principal components’,

Journal of Educational Psychology 24, 498–520.
Hu, H., Feng, J. and Zhou, J. (2015), ‘Exploiting unsupervised and supervised constraints for

subspace clustering’, IEEE Transactions on Pattern Analysis and Machine Intelligence
37(8), 1542–1557.

Hunn, D. C. and Olson, C. F. (2013), Evaluation of Monte Carlo subspace clustering with
OpenSubspace, in ‘Proceedings of the International Conference on Data Mining (DMIN13)’.

Jain, A. K., Murty, M. N. and Flynn, P. J. (1999), ‘Data clustering: A review’, ACM Computing
Surveys 31(3), 264–323.

Kriegel, H.-P., Kroger, P., Renz, M. and Wurst, S. (2005), A generic framework for efficient sub-
space clustering of high-dimensional data, in ‘Proceedings of the Fifth IEEE International
Conference on Data Mining’, pp. 250–257.
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