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Abstract

This paper analyses the improvements that can be gained in the generalized Hough transform method for recognizing objects through the
use of imperfect perceptual grouping techniques. In particular, we consider simple grouping techniques that determine pairs of points that are
likely to belong to the same object using a criterion based on connectedness in the image edge map. It is shown that such imperfect grouping
techniques can considerably improve both the efficiency and accuracy of object recognition. Experiments are described that demonstrate the
improvements in performance.q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Object recognition methods for complex problems have
been plagued by both poor speed and a high incidence of
false alarms. The primary source of both of these problems
is clutter in the image. Such image clutter not only requires
considerable computation to process, but also yields false
positive instances of the objects that are sought. Solutions to
these problems have been only partially successful. Two
methods that have been useful are perceptual grouping
and indexing. Grouping methods (e.g. [1–7]) attempt to
determine which features in an image belong to the same
object, while indexing methods (e.g. [8–12]) determine
which sets of model features may have projected to various
sets of image features. These methods can be powerful when
they are used together [9].

Several studies have analysed the power of indexing, by
itself, as a means to reduce the search space for object
recognition [8,9,12–14]. It has been demonstrated that,
when object recognition is attempted using image features
that contain a localization error, indexing systems index, on
average, a constant fraction of all of the possible matches for
a particular set of image features. Thus, while such indexing
systems can yield a large constant speedup, they do not

reduce the computational complexity of recognition in the
presence of localization error.

Perceptual grouping, on the other hand, can reduce the
computational complexity of object recognition. Grimson
[15] has shown that the expected complexity of a particular
constrained search system for object recognition is expo-
nential in the problem size if we have spurious features,
but it is low-order polynomial if the data is known to belong
to a single object model. However, the requirement that all
of the data belong to a single object implies the need for a
perfect grouping system, unless we limit ourselves to very
simple problems. This paper demonstrates that even simple,
imperfect grouping techniques can both improve the
computational complexity of object recognition using the
generalized Hough transform [16] and improve the accuracy
of recognition by decreasing the false alarm rate.

We first review an efficient variation of the generalized
Hough transform that uses feature points to recognize three-
dimensional objects from a single view in two-dimensional
images [17]. This technique first divides the recognition
problem into many small subproblems that must be
examined. Randomization is used to limit the number of
subproblems that must be examined. Finally, each subpro-
blem is solved using efficient multi-dimensional histogram-
ming techniques. The complexity of this method isO(mn3),
wherem is the number of feature points in the model andn is
the number of feature points in the image.

We next discuss a simple perceptual grouping mechanism
that is used in conjunction with this generalized Hough
transform variation to further improve the performance of
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object recognition. Many cues have been used to perform
perceptual grouping of image features. Some examples
include parallelism, proximity, colinearity, connectivity,
convexity, symmetry and closure. In this paper, we consider
a simple grouping mechanism that locates pairs of points
that are likely to belong to the same object. While
proximity, or even color and texture, can provide such infor-
mation, we concentrate on the use of connectivity of the
feature points in the image edge map.

The computational complexity of recognition using these
techniques is then examined. It is shown that, under general
assumptions about the performance of the grouping
mechanism, the complexity of recognition using the
generalized Hough transform is reduced toO(mn2). Further,
an analysis of the rate at which false positives are found by
these techniques, based on previous work [17–20] using a
Bose–Einstein occupancy model, indicates that per-
formance is considerably improved. We also discuss experi-
ments, where these techniques have been applied to real
images, that support these results. Finally, we summarize
the contributions of this work. A preliminary version of this
work appeared in the 1995 International Symposium on
Computer Vision [21].

2. Recognition framework

Variants of the generalized Hough transform [16] have
been applied to many object recognition problems (e.g.
[22–29]) and these techniques have sometimes been called
pose clusteringin this context. The key idea in these appli-
cations is that, when many sets of matches between image
features and object model features are mapped into the
space of object positions that bring them into alignment, a
cluster forms at the correct position of the object, if it
appears in the image.

For each problem, there is some minimum number of
matches between image features and object model features
such that there exist only a finite number of object positions
that bring the matches into alignment (under the assumption
that there is no localization error and the points are in
general position). Most recognition systems based on the
generalized Hough transform examine each possible match-
ing between image features and object model features of the
appropriate cardinality, map them into the pose space, and

then perform some clustering procedure (usually multi-
dimensional histogramming) to determine likely object
positions. A verification stage often follows for each of
the clusters that is found.

For the case of recognizing three-dimensional objects in
two-dimensional images using feature points, the number of
matches that are required to constrain the position of the
object to a finite set in the errorless case is three [30,31].
If all of the matches between three object model feature
points and three image feature points are considered, then
O(m3n3) poses must be computed, wherem is the number of
model points andn is the number of image points.

Previous work [17] has shown that, if a geometrically
precise clustering operation is used that determines the
object positions that bring some number of matches between
model points and image points into alignment up to some
error criterion (e.g. [32,33]), then object recognition tech-
niques based on clustering of poses can achieve the optimal
accuracy for feature matching based on this criterion.
Suboptimal algorithms based on multi-dimensional
histogramming techniques are usually used for efficiency
reasons. This work also demonstrated that the complexity
of such pose clustering techniques can be reduced toO(mn3)
and the memory usage improved through the use of decom-
position and randomization techniques, if an arbitrarily
small chance of failure is allowed. We summarize this
method here.

The premise for the decomposition of the problem into
many smaller subproblems is the following observation. If
we map all of the sets of three matches between object
model points and image points that share some pair of
matches into the parameter space and locate a model posi-
tion that bringsx ¹ 2 of them into alignment up to some
error criterion for the individual matches, then this is
equivalent to findingx individual matches that are brought
into alignment by the position up to the error criterion [17].
Each subproblem that we examine thus considers only those
triples of matches that share some pair of matches between
points in the object model and in the image. If enough initial
pairs of matches are examined, then we can locate all of the
objects in the image with a small chance of failure.

Fig. 1 gives the new algorithm. Each iteration through the
main loop selects a pair ofdistinguished points, n1 andn2,
that must belong to the object model for the iteration to
succeed. Each of the 2m(m ¹ 1) permutations of possibly

Fig. 1. Efficient pose clustering algorithm.
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matching model points,m1 and m2, are considered as
matches for the distinguished points. For each such pair of
possible matches, we form all of the sets of three point
matches between the object and the image that contain the
pair of matches, and determine the poses that bring each
triple of matches into alignment. The clusters among these
poses are then determined and output.

If each possible pair of distinguished points is considered,
then this algorithm has essentially the same performance as
the conventional pose clustering method and requires
O(m3n3) time. Randomization can be used to reduce the
number of pairs of distinguished points that must be
examined while maintaining a low rate of failure. If

n2

ðfmÞ2 ln 1
d

such pairs are examined, wheref is the minimum
fraction of the object model feature points that we require to
appear in the image to recognize it reliably, then a rate of
failure below d is achieved [17]. Approximately
n2ðn¹ 2Þðm¹ 2Þ

f 2 ln 1
d

poses are computed overall using this
method.

The overall time required by the algorithm isO(mn3),
since the clustering step is performed in linear time using
recursive histogramming techniques.

Further, an error analysis [17] based on work by Grimson
and Huttenlocher [18–20] determined an estimate of the
probability that a bin in the pose space will yield a false
positive of sizet as a result of the random accumulation of
feature points. Ifb is the average fraction of pose space that
brings a model point into alignment with an image point up
to some error criterion, then this estimate is:

p <
bmn

1þ bmn

� �t

: (1)

If a threshold offm on the number of consistent matches is
used to determined whether an object hypothesis has been
found, then the maximum number of image feature points
that can be tolerated with a false alarm rate no greater thang

is:

nmax <
f

bln
1
g

: (2)

3. A simple grouping mechanism

Grouping image features into sets that are likely to belong
to the same object can considerably improve the efficiency
of object recognition and reduce the rate at which false
positives are found. It is possible for such techniques to
not only distinguish sets of points that are likely to belong
to the same object, but also to reduce the amount of search
that is necessary in matching points between an object
model and points in the image that are known to be from
the object, by producing only certain subsets of the points
among all possibilities. See [34] for a review of perceptual
grouping techniques.

Perceptual grouping techniques have been integrated into
several recognition systems (e.g. [2,35,36]) and have cer-
tainly contributed to the performance of these systems. How-
ever, the improvements that have been gained through
grouping have not been fully quantified. One goal of our
work is to quantify the improvements that can be gained,
both in efficiency and in the rate that false positives are
observed, through the use of perceptual grouping techniques.

We briefly mention here some results that exist in this
area. Grimson [15] has shown that the expected complexity
of a constrained search system for object recognition is
exponential in the number of image features, in general,
but when the data is known to belong to a single object,
the expected complexity becomes a low-order polynomial.
Clemens and Jacobs [9] analyse the speedup that can be
achieved by indexing techniques alone and by indexing
combined with grouping. They argue that indexing is useful
only when combined with grouping techniques, owing to the
combinatorial explosion in the total number of possible
image groups as the size of the groups is increased. Davies
[37] analyses the appropriate cardinality for the sets of
image features that are mapped into the parameter space
in the Hough transform. This analysis indicates that when
grouping can be used effectively, the sets should be just
large enough to constrain the possible positions of the
model being sought to a finite set.

We analyse a simple grouping mechanism that deter-
mines pairs of feature points that are likely to belong to
the same object. The criterion that is used to determine
whether two feature points should be grouped, is whether
they are connected in the image edge map2. Since the
objects examined in our experiments are largely polyhedral,
we use the additional heuristic that the edges connecting the
feature points should be straight. A second heuristic, requir-
ing that the points be some minimum distance apart in the
image to form a group, is used for two reasons. First, this
excluded many unmodeled groups that were formed as a
result of areas of high texture. Second, groups that are
close together produce unstable results in the pose
estimation process, and are thus less likely to be useful.

Of course, this grouping mechanism does not yield
perfect results. Pairs of points that are not modeled as
relevant object groups will be found and pairs of points
that belong to completely different objects may be found
owing to occluding contours and other image phenomena.
This is acceptable, since we use a recognition method that
does not require perfect grouping. These imperfect grouping
techniques still lead to considerable improvement in the
performance of recognition.

The first step in our grouping mechanism is to determine
the feature points in the image. This is accomplished
through the use of a fast interest operator to detect corner
points present in the image [38]. Next, the image edges are

2 We use the term connected loosely. A method is used that allows small
gaps between coincident edges to be bridged.
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detected using a variant of the Canny edge detector [39].
The straight lines present in the edge map are determined
using efficient Hough transform techniques [40]. Finally,
pairs of corners that lie close to a straight line in the
image are determined and stored.

Fig. 2 shows an example of this grouping process applied
to an image of a stapler. In this case, 38 groups were found,
incorporating 34 of the 63 image feature points.

4. Computational complexity

We shall now consider the computational complexity of
object recognition using the generalized Hough transform
variant described earlier, combined with the simple per-
ceptual grouping mechanism from the previous section.
Rather than examining arbitrary pairs of image points as
the distinguished points and arbitrary pairs of model points
to match them, we consider as the distinguished points only
those pairs of points that have been grouped together. We
consider only those pairs of model points that are similarly
joined by an object edge as their possible matches.

The number of groups that are found by perceptual group-
ing systems is typically linear in the number of features. For
our grouping techniques based on connectivity in the image
edge map, we are guaranteed to find no more than a linear
number of such groups if the edges form polygonal shapes
in the image. Let us thus say that we havea in image
groups andamm model groups. (For trihedral objects, we
havea i < 3/2 andam < 3/2.)

Now, we can determine the number of iterations of the
algorithm that are necessary to achieve a low rate of failure.
If f is the fraction of the model points that appear in the
image, then the expected fraction of the total number of

model groups that appear in the image is no less thanf2.
The actual fraction should, in fact, be larger thanf2, since
the pairs of points that are grouped are more likely to be
either both occluded or unoccluded than random pairs of
points. So, we expect at leastf2ammmodel groups to appear
among thea in image groups. The probability that a single
iteration will fail to examine a group from the model is thus
no more than 1¹ f 2amm

ai n
. The probability thatk iterations will

all be unsuccessful is:

p # 1¹
f 2amm

ain

� �k

: (3)

We can set this probability to be less than some arbitrarily
small constantd and solve for the number of iterations
necessary to achieve this accuracy:

1¹
f 2amm

ain

� �k

# d, (4)

k $
lnd

ln 1¹
f 2amm

ain

� �,
ain

f 2amm
ln

1
d
: (5)

For each iteration, we consider each of the model groups as
a possible match for the image group and for each such
match, we determine and cluster the poses corresponding
to all matches between three image points and three
model points that match the image group to the model
group. The total number of poses computed is approxi-
mately ai nðn¹ 2Þðm¹ 2Þ

f 2 ln 1
d

a speedup of approximatelyn
ai

over the method that did not use perceptual grouping. The
complexity of the algorithm isO(mn2).

Fig. 2. Example of the grouping process. (a) Corners found in the image; (b) edges detected in the image; (c) lines detected in the edge image using Hough
transform techniques; and (d) groups detected in the image.
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5. Rate of false positives

The previous section demonstrated that the computational
complexity of object recognition using the generalized
Hough transform can be reduced through the use of
imperfect perceptual grouping techniques. We shall now
see that the use of such techniques can also reduce the
rate at which false positive instances of objects are
found.

We compute an estimate of this false alarm rate, building
on previous work [17–20] that has used the Bose–Einstein
occupancy model (see e.g. [41]) to estimate the probability
that a position in the pose space brings a large number of
feature matches into alignment for various recognition
problems. The previous analysis can be modified for the
case at hand by considering the probability that a position
in the pose space is both consistent with a match between
pairs of grouped features and consistent with sufficient
additional matches to result in false positive.

In order to simplify the analysis, we assume that the
locations of the individual model and image features can
be modeled as being independent. In this case, the prob-
ability, Pfp(t), that a false positive of sizet occurs for
some position in the pose space can be estimated as the
product of the probability,Pg, that the pose brings one of
the model groups into alignment with one of the image
groups, and the probability,Pr(t ¹ 2), that the pose brings
t ¹ 2 additional model feature points into alignment with
image feature points.

Pfp(t) ¼ Pg·Pr(t ¹ 2): (6)

Let’s first considerPg. We approximate the distribution of
the transformed model features in the image (over the space
of possible model positions) as being uniform. That is, we
model the probability that a model point is projected to any
point in the image as a constant regardless of which point it
is in the image. Points outside of the image are neglected.
This implies that the probability,P1, that a pose brings a pair
of model features into alignment with a random pair of
image features to within an error ofe in an image that is
W pixels wide andH pixels high is:

P1 ¼
pe2

WH

� �2

: (7)

If we havea in image groups andamm model groups, then

Pg can be approximated as follows:

Pg < (1¹ (1¹ P1)amaimn) ,
amaimnp2e4

W2H2 : (8)

Now, we must consider,Pr(t ¹ 2), the probability thatt ¹ 2
additional matches are brought into alignment by the pose.
Previous work [17] has indicated that this can be
approximated by

Pr(x) <
bmn

1þ bmn

� �x

, (9)

whereb < pe2/WH is the average fraction of the pose space
that aligns a single model point with a single image point
andx ¼ t ¹ 2 is the size of the false positive. We thus have:

Pr(t ¹ 2) <
mn

WH

pe2 þ mn

0B@
1CA

t ¹ 2

: (10)

Substituting in Eq. (6) yields:

Pfp(t) <
mn

WH

pe2 þ mn

0B@
1CA

t ¹ 2

amaimnp2e4

W2H2 : (11)

A comparison of the estimated probability of a false positive
with the parametersm ¼ 30,n ¼ 150 andWH ¼ 65536 for
the case with no grouping (Eq. (1)) and for the case with
grouping (Eq. (11)) can be found in Table 1. The probability
of a false positive is much lower when grouping is used.
False positives occur approximately 230 times more
frequently when grouping is not used fore ¼ 3 and
approximately 49 times more frequently fore ¼ 5.

6. Experiments

A recognition system using these techniques has been
implemented on a SPARCstationy20. The basic algorithm
is similar to the one given in Fig. 1. The only differences are
that instead of choosing two random image points on line 3
of the algorithm, we choose a random pair of image points
that have been grouped, and instead of considering all
possible matching pairs of model points on line 4 of the
algorithm, we examine only the pairs of object model points
that have been grouped a priori. This grouping of the model
points was done offline, by hand, for these experiments, by
pairing the feature points that were connected by an edge in

Table 1
Estimated probability of a false positive for cases with no grouping and with grouping. Parameters used:m ¼ 30, n ¼ 150,WH ¼ 65536,a i ¼ am ¼ 1.5

No grouping Grouping
f e ¼ 3 e ¼ 5 e ¼ 3 e ¼ 5

1.0 3.863 10¹6 6.083 10¹3 1.673 10¹8 1.243 10¹4

0.75 8.743 10¹5 2.183 10¹2 3.773 10¹7 4.453 10¹4

0.50 1.973 10¹3 7.803 10¹2 8.503 10¹6 1.593 10¹3
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the object model. The method that is used to determine the
poses in line 6 of the algorithm is the technique of
Huttenlocher and Ullman [31], which uses the weak-
perspective approximation to the perspective projection.
The clusters among the poses are detected using recursive
histogramming techniques [17].

This system was tested on several of the same images as
the original pose clustering system to verify the improved
performance. For example, Fig. 3 shows the recognized
position of the stapler from Fig. 2. Fig. 4 gives an additional
example of the recognition process. Each object that appears
in the images is correctly recognized.

The system required between 61 and 100 s per object in
these examples, depending on the complexity of the object
model and the image, which is an tremendous improvement
over the previous implementation. However, this improve-
ment is not solely a result of the grouping. Not only was a
faster CPU used, but the implementation of the clustering
method was considerably improved. A true measure on the

performance improvement yielded by grouping is the
number of poses that are computed and clustered in each
case. Table 2 gives these numbers for the objects recognized
in Fig. 4. When the grouping techniques are used to improve
the performance, the number of poses that are computed and
clustered is reduced to less than 1% of the number of poses
that are computed and clustered when grouping is not used
in this image.

No significant false positives were found when the group-
ing techniques were used. Some instances occurred where a
pair of distinguished points from the model produced
hypotheses that included several correct and incorrect
feature matches, but the same groups produced superior
matches involving predominantly correct matches in each
case.

7. Summary

This paper has examined the benefits that perceptual
grouping techniques can yield in the object recognition
process. While it is known that perfect grouping techniques
can reduce the computational complexity of recognition
tasks, the benefits of imperfect grouping techniques have
not been quantified in detail previously. We have taken a
step in this direction by quantifying the benefits that can be
obtained in performing object recognition using the general-
ized Hough transform through the use of imperfect grouping
techniques.

It has been demonstrated that even very simple, imperfect
grouping techniques can yield a considerable improvement
in the both the speed and accuracy of object recognition. We
have concentrated on grouping techniques that determine

Fig. 3. Recognized position of the stapler.

Fig. 4. Recognition of two-dimensional figures. (a) Corners found in the image; (b) edges detected in the image; (c) groups formed in the image; and (d)
recognized positions of the figures.
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pairs of points that are likely to belong to the same model by
examining which feature points are connected by edges in
the image edge map.

Our analysis shows that the computational complexity of
recognition using a variant of the generalized Hough trans-
form is reduced fromO(mn3) to O(mn2) through the use of
these grouping techniques. Further, the use of these tech-
niques considerably reduces the probability of detecting a
false positive object instance. Finally, we have implemented
a recognition system that uses these techniques and per-
formed experiments with this system that have supported
the analysis and the conclusions that we reached.
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