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Abstract. We examine the use of complementary descriptors for key-
point recognition in digital images. The descriptors combine multiple
types of information, including shape, color, and texture. We first review
several keypoint descriptors and propose new descriptors that use nor-
malized brightness/color spatial histograms. Individual and combined
descriptors are compared on a standard data set that varies blur, view-
point, zoom, rotation, brightness, and compression. Results indicate that
substantially improved results can be achieved without greatly increasing
keypoint descriptor length, but that the best results combine information
from complementary descriptors.

1 Introduction

We investigate the use of complementary descriptors for keypoint recognition.
These keypoints combine multiple unrelated keypoint descriptors to form a
longer descriptor that is better able to discriminate between correct and incorrect
matches.

Historically, the most popular keypoint descriptors have used image gradi-
ents to encode shape information in the local region around keypoint. Lowe’s
SIFT descriptor [1] has been highly influential and has spawned many compet-
ing descriptors, including HOG [2], GLOH [3], SURF [4], BRIEF [5], and ORB [6].
These descriptors are based on pixel intensities (grayscale images).

Color has been incorporated into keypoint descriptors in several ways. One
possibility is to run SIFT on each color channel in some color space and stack
the results into a longer descriptor. Bosch et al. [7] use the HSV color space.
Van de Sande et al. [8] additionally consider RGB and an opponent color space.
However, these methods are still based on gradients and thus focus on shape,
not color.

Less work has examined the use of color information directly. Van de Weijer
and Schmid [9] use a hue histogram (without location information) stacked with
the SIFT descriptor. Luke et al. [10] stack SIFT with a separate SIFT-like descrip-
tor that replaces gradient orientation with pixel hue and gradient magnitude with
pixel saturation. Olson and Zhang [11] instead use histograms of normalized col-
ors in the grid cells of the keypoint neighborhood. Other color descriptors were
considered by van de Sande et al. [8], but were found to have lower performance.

Texture descriptors have been developed by Lazebnik et al. [12]. Their
descriptors are rotationally invariant based on the distance from the keypoint
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center (and not the orientation). We consider additional descriptors that make
use of the computed keypoint orientation in a manner similar to SIFT. Both
techniques can be additionally extended to color images by stacking the descrip-
tors for each color channel.

Given this rich set of descriptors that use differing image cues, we exam-
ine the use of combinations of descriptors in order to improve precision/recall
performance. We use a straightforward method of combining the descriptors,
concatenating the vectors and then taking the Euclidean distance between the
concatenated vectors. In the context of multi-class object classification, Gehler
and Nowozin [13] found that such simple methods yield equivalent results to
more complicated combination methods, but with much faster results.

Previous work has combined descriptors in a similar fashion. Zhang et al. [14]
concatenate the SPIN, SIFT, and RIFT descriptors to generate more effective
combinations. Van de Sande et al. [8] found that even by combining a highly
correlated set of descriptors (SIFT, OpponentSIFT, rgSIFT, C-SIFT, and RGB-
SIFT), all of which rely on gradient (shape) information, a significant improve-
ment in mean average precision is possible. In contrast, we combine highly differ-
ing descriptors using information from multiple modalities (shape, color, texture).
Bo, Ren, and Fox [15] also concatenate their kernel descriptors for gradient, color,
and shape into a single encompassing descriptor that outperforms the individual
components.

Our experiments using the Oxford affine covariant regions data set [3,16]
demonstrate techniques comparable and superior in performance to SIFT that
do not use gradients and that combinations of descriptors outperform any sin-
gle descriptor. The disadvantage of this technique is the additional computa-
tion time and space required. This yields a trade-off in selecting an appropriate
descriptor/combination. Fortunately, much of the computation is parallelizable.

The next section describes the descriptors that we consider in this work.
Section 3 describes the keypoint recognition process and metrics. Section 4
details our experiments and results. Finally, Sect. 5 gives our conclusions and
observations.

2 Descriptors

We examine several keypoint descriptors that encode shape, texture, and color
information.

2.1 SIFT

The Scale-Invariant Feature Transform (SIFT) descriptor was described by
Lowe [1]. We use the OpenCV contributed implementation based on the code
of Hess [17]. The technique generates histograms of the gradient orientation
(weighted by the gradient magnitude) in a 4× 4 grid around the keypoint cen-
ter rotated to the keypoint orientation and scaled to the keypoint size. With
eight magnitude bins, the SIFT technique yields a 128-dimensional descriptor
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for each keypoint. The SIFT descriptor and a variation called GLOH were found
to be the best performing local descriptors by Mikolajczyk and Schmid [16] when
compared to several grayscale descriptors.

2.2 RGB-SIFT

RGB-SIFT is the concatenation of the SIFT descriptors computed separately
for three RGB channels, yielding a 384-dimensional descriptor. This descriptor
was considered in the study by van de Sande, Gevers, and Snoek [8] and found
to be among the top performers. Since normalization is performed separately on
each channel, this descriptor is invariant not only to illumination intensity and
shift, but also illumination color.

2.3 OpponentSIFT

OpponentSIFT is similar to RGB-SIFT, except that the color channels are first
transformed into an opponent color space [8]:
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In order to prevent channels with little signal from becoming magnified, we
first concatenate the channel descriptors and then normalize the values together.
This yields significant improvements in our experiments.

Like RGB-SIFT, this yields a 384-dimensional descriptor and was one of the
top performing descriptors in the study by van de Sande, Gevers, and Snoek [8].

2.4 SPIN and CSPIN

SPIN is a texture descriptor introduced by Lazebnik, Schmid, and Ponce [12].
Unlike other descriptors described here, it does not require the keypoint orien-
tation; it is invariant to orientation based on its construction using concentric
circular bins. We use 8 circular bins with 16 intensity bins each (unlike the
10 × 10 histogram in the original work) to yield a 128 dimensional descriptor.
This circular descriptor is scaled to use the same image area as the other (square)
descriptors.

CSPIN is our simple generalization of SPIN to color images by stacking the
SPIN descriptors for each color channel.

2.5 HoNI: Histograms of Normalized Intensities

The HoNI descriptor uses the same rotated and scaled 4 × 4 grid as SIFT, but
instead of gradient orientations, the histogram values are normalized image
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intensities. Like in the SIFT descriptor, the histogram votes are Gaussian-
weighted according to their distance from the keypoint center and spread
among spatially adjacent cells. The intensities are normalized such that aver-
age weighted intensity within the keypoint boundary is 127.5 and the standard
deviation of the intensities is 64. This provides invariance to affine intensity
changes (bias and gain). The intensity histograms have 8 buckets per grid cell,
yielding a 128-dimensional descriptor. To our knowledge, this descriptor has not
been previously studied, although it is similar to the SPIN descriptor [12] on a
square grid and the HoNC descriptor [11] without color information.

Color HoNI (CHoNI) is an extension that stacks HoNI descriptors for each
color channel.

2.6 HoNC: Histograms of Normalized Colors

Similar to HoNI, the HoNC descriptor [11] uses a 4 × 4 SIFT-like grid, but for
each grid cell a simple 8-bin (2 × 2 × 2) color histogram is computed. The
average color intensity is normalized to 127.5 (over all three color channels, not
each channel separately) and the average standard deviation of the color channels
is normalized to 48. This yields invariance to changes in illumination intensity,
but not changes in illumination color. Since the color histograms have 8 buckets
per grid cell, this also yields a 128-dimensional descriptor.

2.7 HoWH: Histograms of Weighted Hues

Luke, Keller, and Chamorro-Martinez [10] have suggested stacking the SIFT
descriptor with a similar descriptor that replaces the gradient orientation and
magnitude at each pixel with the hue and saturation. We consider here a version
that is not (necessarily) stacked with the SIFT descriptor. Since hue is a circular
value (like gradient orientation) and the saturation describes the strength of the
hue (similar to gradient magnitude), a similarly structured descriptor results.
This descriptor has the drawback that it will not work on grayscale images (or
others with low saturation), since all grays have undefined hue. As suggested by
van de Weijer and Schmid for their hue-based descriptor [9], when combining
this descriptor with others, we weight it 60% as much as other descriptors, and
this improves the performance.

2.8 CNN3: Deep Convolutional Descriptor

Simo-Serra et al. [18] developed a descriptor learned using a deep convolu-
tional neural network. The input to the network is a 64× 64 grayscale image
patch. The network generates a 128-dimensional descriptor similar to SIFT and
related descriptors. This descriptor was demonstrated to be superior to SIFT
and recently developed competitors, including DAISY [19] and a state-of-the-art
learned descriptor [20].

This technique doesn’t fit clearly into the class of shape descriptors or texture
descriptors, but it undoubtedly uses both shape and texture cues. While it is
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not invariant to any illumination changes (intensity, shift, or color), it is resilient
to such changes and works well in practice. Interestingly, it generates descriptor
vectors that are more correlated than the other methods (they have a smaller
average angle between them). This is important when combining them with other
methods. The vectors require lengthening for them to have equivalent weight in
the combined score. We use an empirically determined scale factor of 5. This
allows combinations of the descriptors to outperform individual descriptors.

2.9 Summary

In addition to the descriptors discussed below, we considered SURF [4], rgSIFT
[8], and C-SIFT [8,21,22] descriptors. However, these performed poorly in our
previous work [11] and are not included here.

Table 1 summarizes the characteristics of the descriptors. We classify SIFT,
RGB-SIFT, and OpponentSIFT as shape descriptors, since they are primarily
based on gradient orientations. We classify SPIN, CSPIN, HoNI, and CHoNI as
texture descriptors, since they are based on spatial relationships of intensity or
individual color channels. We classify HoWH and HoNC as color descriptors,
since they do not separate the color channels in constructing the descriptor.
CNN3 incorporates both shape and texture information.

3 Keypoint Recognition

In order to recognize keypoints between images, we first detect the keypoints in
the images using the SURF keypoint detector [4]. We have found this detector
to be fast and to generate good features for matching.1 When the detector finds

Table 1. Characteristics of descriptors.

Illumination

Name Size Type Invariance

SIFT 128 shape intensity + shift

RGB-SIFT 384 shape (color) intensity + shift + color

OpponentSIFT 384 shape (color) intensity + shift

CNN3 128 shape/texture none

SPIN 128 texture intensity + shift

CSPIN 384 texture (color) intensity + shift + color

HoNI 128 texture intensity + shift

CHoNI 384 texture (color) intensity + shift + color

HoNC 128 color intensity + shift

HoWH 128 color intensity + shift

1 Note that this is the SURF keypoint detector, not the descriptor, which has not
performed well in our experiments [11].
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more than 1000 keypoints, only the top 1000 are retained for each image in
order to maintain efficiency and relevance. Descriptors for each keypoint are
constructed using the techniques described above. Individual descriptors may
be used, but we also consider combinations of descriptors that are concatenated
(i.e., stacked) into longer descriptors. When combined, each individual descriptor
vector is scaled to have the same length, regardless of size (except as noted above
for HoWH and CNN3).

The best match for each keypoint in the reference image is found in the
target image using the Euclidean distance between the keypoint descriptors.
Matches are considered correct if the projection of the keypoint location into
the other image (using a known homography) lies within the computed size of
the corresponding keypoint (and in reverse).

We measure the matching performance of each descriptor using the mean
average precision as follows. The precision and recall are defined as:

precision =
# correct matches detected
# total matches detected

(2)

recall =
# correct matches detected

# keypoints possible to detect
(3)

In computing the recall, we exclude from the denominator those keypoints from
the reference image that do not appear in the target image (because they have
moved outside the boundaries of the image). We do not exclude keypoints that
appear in the target image, but that are missed by the keypoint detector. As
the threshold on descriptor distance varies, the number of matches changes and
the precision versus recall can be plotted. The average precision is the average
of the precision over the interval r ∈ [0, 1] (the area under the curve). The mean
average precision computes the mean over multiple plots. The maximum value
is one and the minimum is zero. Figure 1 shows an example plot of precision
versus recall for one image pair.

We ran experiments with each descriptor and many combinations of descrip-
tors on the Oxford affine covariant regions data set2 that models variations in
viewpoint, rotation, zoom, lighting, blur, and compression. All six images (five
pairs with the same reference image) of each of the eight data subsets were used.
Some pairs are difficult to match, with no combination of descriptors achieving
an average precision above 0.05. Others are straightforward, with most tech-
niques performing well. This tends to compress the MAP differences between
descriptors.

4 Results

We tested every possible combination of five (or less) descriptors from the set
described in Sect. 2 using the process from Sect. 3. Table 2 shows the top per-
forming combinations sorted first by the number of descriptors (or equivalently
the descriptor norm) and then by the maximum average precision.
2 http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html.

http://www.robots.ox.ac.uk/~vgg/data/data-aff.html
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Table 2. Top descriptor combinations by number of descriptors (vector norm).

Number Descriptors Size MAP

1 CHoNI 384 .5330

1 CNN3 128 .5267

1 OpponentSIFT 384 .5237

1 RGBSIFT 384 .5185

1 HoNI 128 .5139

1 SIFT 128 .5136

1 HoNC 128 .5043

1 CSPIN 384 .4951

1 SPIN 128 .4403

1 HoWH 128 .3206

2 CNN3+CHoNI 512 .5704

2 CNN3+HoNC 256 .5668

2 CNN3+CSPIN 512 .5650

2 CHoNI+OpponentSIFT 768 .5621

2 CNN3+HoNI 256 .5604

2 CHoNI+RGBSIFT 768 .5599

2 CHoNI+SIFT 512 .5589

2 CNN3+OpponentSIFT 512 .5577

2 HoNC+OpponentSIFT 512 .5550

2 HoNI+OpponentSIFT 512 .5550

3 CNN3+CHoNI+OpponentSIFT 896 .5781

3 CNN3+CHoNI+HoWH 640 .5770

3 CNN3+CHoNI+RGBSIFT 896 .5765

3 CNN3+CHoNI+SIFT 640 .5758

3 CNN3+HoNC+OpponentSIFT 640 .5733

3 CNN3+CSPIN+OpponentSIFT 896 .5728

3 CNN3+CSPIN+HoNC 640 .5727

3 CNN3+HoNC+RGBSIFT 640 .5725

3 CNN3+CHoNI+CSPIN 896 .5724

3 CNN3+HoNI+OpponentSIFT 640 .5722

4 CNN3+CHoNI+HoWH+OpponentSIFT 1024 .5848

4 CNN3+CHoNI+HoWH+RGBSIFT 1024 .5842

4 CNN3+CHoNI+HoWH+SIFT 768 .5839

4 CNN3+CSPIN+HoWH+OpponentSIFT 1024 .5826

4 CNN3+CSPIN+HoWH+RGBSIFT 1024 .5823

4 CNN3+HoNI+HoWH+OpponentSIFT 768 .5818

4 CNN3+CSPIN+HoWH+SIFT 768 .5813

4 CNN3+HoNI+HoWH+RGBSIFT 768 .5810

4 CNN3+CSPIN+HoNC+OpponentSIFT 768 .5804

5 CNN3+CHoNI+HoWH+CSPIN+OpponentSIFT 1408 .5857

5 CNN3+CHoNI+HoWH+CSPIN+RGBSIFT 1408 .5855

5 CNN3+HoNC+HoWH+CSPIN+OpponentSIFT 1152 .5854

5 CNN3+HoNC+HoWH+CSPIN+RGBSIFT 1152 .5854

5 CNN3+HoNC+HoWH+CSPIN+SIFT 896 .5849
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Fig. 1. Example precision/recall plot from the first pair of “bark” images in the Oxford
data set.

For individual descriptors, three shape/texture descriptors that incorporate
all color channels performed well, with CHoNI surpassing OpponentSIFT and
RGB-SIFT. CNN3 was, by far, the strongest descriptor that did not include
color information. SIFT is near the middle of these uncombined descriptors.
Surprisingly, even a simple histogram of normalized intensities (HoNI) performed
equivalently. It is clear that using SIFT as the only baseline for comparison to
new descriptors is no longer sufficient to demonstrate the state-of-the-art.

Thirty-three pairs of descriptors (when stacked together) surpassed the best
individual descriptor. The top three combined CNN3 with a descriptor that
incorporates color. CHoNI also performed well when combined with the shape
descriptors.

When triples of descriptors are considered, fifteen combinations surpassed the
best pair. Most of these combine a descriptor from each type (shape, color, tex-
ture). All of the top performers combined CNN3, CHoNI, and another descriptor.
CNN3 was included in the top twelve combinations.

Nineteen quadruples of descriptors surpassed the top triple. The top perform-
ers all combined CNN3, a shape-based descriptor, a color-based descriptor, and
a texture-based descriptor. This demonstrates that the complementarity of the
descriptors is important to improved keypoint recognition performance. While
HoWH was a poor performer by itself, it is included in most of the top quadru-
ples, indicating that it includes information that is not redundant with the other
descriptors.
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Only five quintuples were able to (barely) surpass the best performing
quadruple. We have reached the limit of this set of descriptors. To improve
performance beyond this point, we would require additional descriptors that
incorporate information unused by the current set.

Another way of looking at the descriptor combinations is with respect to
the number of elements in the descriptor vector (a minimum of 128 for the
smallest vectors used in this work). Table 3 shows the results. The top five for
each vector size are shown, unless fewer surpass previous (smaller) vectors. From

Table 3. Top performing descriptor combinations by number of elements (vector size).

Size Descriptors Number MAP

128 CNN3 1 .5267

128 HoNI 1 .5139

128 SIFT 1 .5136

128 HoNC 1 .5043

128 SPIN 1 .4403

256 CNN3+HoNC 2 .5658

256 CNN3+HoNI 2 .5604

256 HoNC+SIFT 2 .5522

256 CNN3+SIFT 2 .5518

256 HoNI+SIFT 2 .5506

384 CNN3+HoNC+SIFT 3 .5715

384 CNN3+HoNI+HoWH 3 .5711

384 CNN3+HoNI+SIFT 3 .5694

384 CNN3+HoNC+SPIN 3 .5684

384 CNN3+HoWH+SIFT 3 .5675

512 CNN3+HoWH+HoNI+SIFT 4 .5800

512 CNN3+HoWH+HoNC+SIFT 4 .5779

512 CNN3+HoWH+SPIN+SIFT 4 .5776

512 CNN3+HoNC+SPIN+SIFT 4 .5763

512 CNN3+HoWH+HoNC+SPIN 4 .5738

640 CNN3+HoNC+HoWH+SPIN+SIFT 5 .5827

640 CNN3+HoNI+HoWH+SPIN+SIFT 5 .5801

768 CNN3+CHoNI+HoWH+SIFT 4 .5839

896 CNN3+HoNC+HoWH+CSPIN+SIFT 5 .5849

1152 CNN3+HoNC+HoWH+CSPIN+OpponentSIFT 5 .5854

1152 CNN3+HoNC+HoWH+CSPIN+RGBSIFT 5 .5854

1408 CNN3+CHoNI+HoWH+CSPIN+OpponentSIFT 5 .5857

1408 CNN3+CHoNI+HoWH+CSPIN+RGBSIFT 5 .5855
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Fig. 2. Matching examples. The top matches detected using CNN3+HoNC+SIFT on
four example pairs. The top pair shows the 100 best matches. The other pairs show
the 200 best matches.
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this perspective, CNN3, HoNI, SIFT, and HoNC are the top short descriptors.
Even at size 256 (shorter than RGBSIFT, OpponentSIFT, CHoNI and CSPIN),
we are able to achieve significant improvements by combining CNN3 and/or
SIFT with other short descriptors (CNN3+HoNC performs best).

At 384 elements, we improve noticeably on the longer single descriptors
by combining three shorter descriptors. The top performers generally combine
CNN3 with a color descriptor and a shape or texture descriptor (one excep-
tion combines CNN3 with both a shape and texture descriptor). Combining four
short descriptors yields some additional gains (mostly CNN3 combined with a
short descriptor of each type). Beyond that, the gains are even smaller, with the
best overall descriptor (CNN3+CHoNI+HoWH+CSPIN+OpponentSIFT) best-
ing the top 512-element vector only .5857 to .5800. This suggests that descriptors
with size between 256 and 512 elements achieve the best trade-off between vector
size (i.e., computation time) and performance.

Overall, CNN3 comes out a big winner, participating in most of the top
combinations. The drawback to CNN3 is that it requires significantly higher
computational expense when compared to SIFT or similar descriptors. A GPU
implementation can improve this, but it is still not competitive with the speed
of SIFT [18].

Figure 2 shows four examples of the use of a combination of descriptors. These
examples combine CNN3, HoNC, and SIFT, which comprise the top performing
descriptor with 384 elements. Despite changes in scale, perspective, and illumi-
nation, the descriptor combination finds a large number of correct matches, with
very few mismatches.

5 Conclusions

We have demonstrated that improved recall/precision results can be achieved by
stacking multiple keypoint descriptors. In particular, a combination of descrip-
tors that use shape, color, and texture information significantly improve upon
those that use a single modality (or even two). We believe that this will prove
true not just for the descriptors studied here, but also more generally. This would
imply that nearly every previously published descriptor could benefit through a
combination with additional complementary descriptors.
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