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Abstract. We describe techniques for registering images from sequences
of aerial images captured of the same terrain on different days. The tech-
niques are robust to changes in weather, including variable lighting con-
ditions, shadows, and sparse intervening clouds. The primary underlying
technique is robust feature matching between images, which is performed
using both robust template matching and SIFT-like feature matching.
Outlier rejection is performed in multiple stages to remove incorrect
matches. With the remaining matches, we can compute homographies
between images or use non-linear optimization to update the external
camera parameters. We give results on real aerial image sequences.

1 Introduction

Persistent, high resolution aerial imagery can provide substantial scene detail
over wide areas. Sensor platforms such as Angel Fire, Constant Hawk and AR-
GUS that dwell over an area give wide area coverage at high resolution. Both
Angel Fire and ARGUS serve these images at low latency to multiple ground
users at update rates sufficient for real time situational awareness. To increase
the utility of these persistent surveillance platforms to ground users, there is a
need to align the imagery to existing databases (road, city, waterway maps, etc.)
and to fuse the data from multiple platforms servicing the same area, possibly
of different modalities.

One of the simplest ways to accomplish this is to use onboard Inertial Navi-
gation Sensors (INS) and GPS to geo-register the collected imagery to a terrain
map (either a pre-existing Digital Elevation Map, or one generated from the
collected imagery). Requested portions of the image product can then be served
directly to ground users from the aerial platform thus eliminating the need to
send the full image stream (requiring greater than 100 Mbits/second over lim-
ited bandwidth) to the ground for further processing. A well registered image
stream also improves the efficiency of the image compression routines allowing
for higher quality imagery (or more coverage) to be passed directly to the user.
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Image analysts need information much more than they need raw data, and
utility grows at each level of information that is successfully and reliably ex-
tracted. Fusion of data from multiple sensors has long been known as an effective
way of highlighting and interpreting significant events while reducing false in-
dications. Often the challenge, however, is ensuring proper association between
data items collected from dissimilar sensors. In other words, you need to line im-
ages up before you can find out where information coincides. The value of even
simple pixel-level image fusion has been shown for well over a decade. Targets
pop out and images become easy to interpret [1]. Pixel level fusion, however,
depends upon lining up images to a very high level of precision, a task that is
difficult enough when the sensors are mounted on the same platform.

Although very precise INS/GPS sensors exist, the challenge of localizing a
fraction of square meter (the typical pixel size on the ground) from more than
a mile away is extremely high, even frame to frame on the same image. Further,
future persistent surveillance platforms will come in all size classes (Shadow,
Scan Eagle, Predator, etc.) precluding the use of the best INS sensors due to
size/power constraints. Biases in the INS/GPS pointing systems also introduce
misalignments that can result in substantial ground errors.

Ideally, the data products collected onboard should be referenced to a stan-
dard, conical map to align the locally produced imagery prior to dissemination.
This would provide a unified view of the data products collected across time
(prior flights of the same sensor), platforms (multiple views of the same ground),
and modalities (different sensors, wavelengths, resolution, etc.) providing a ro-
bust, easy to manipulate view of a scene for exploitation by image analysts or
automated recognition algorithms.

Given these constraints, we are interested in a problem where persistent
surveillance of a site is performed on multiple days and it is desirable to align
the imagery from the current day with the previously acquired data in real-time.
This requires the computation of an offset in the external camera parameters
over some initial set of images that can be propagated to future images allow-
ing precise registration of the future images with minimal processing. In this
scenario, we have high resolution data (the captured images are 4872×3248,
although we perform most processing at 1218×812). In general, our scenario al-
lows us to assume that the images are captured at roughly the same elevation,
since this is typical with the surveillance flights (and we can rescale according to
the estimated altitude, if necessary). Similarly, since the aircraft circles a par-
ticular area of interest, we can extract images from the previous sequence from
approximately the same viewpoint.

To accomplish the registration, we use a feature matching strategy with careful
outlier rejection. We then optimize the offset in the external camera parameters
using multiple images in each sequence in order to determine a precise rela-
tive positioning between the sequences and allow real-time alignment. We can
also use these techniques to align multiple sequences with a single previously
generated map.
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2 Previous Work

There has been extensive work on image registration [2,3,4], including work on
aerial images [5,6,7,8] and aerial image sequences [9,10,11].

A common strategy has been feature detection and matching, followed by a
process to optimize the alignment of features. Zheng and Chellapa [5] described
such a technique for finding the homography aligning the ground planes for
the registration of oblique aerial images. Tuo et al. [6] perform registration af-
ter modifying the images to fit a specified brightness histogram. Features are
then detected and aligned. Yasein and Agathoklis [7] solve only for a similarity
transformation, but use an iterative optimization where the points are weighted
according to the current residual.

Xiong and Quek [8] perform registration up to similarity transformations with-
out explicitly finding correspondences. After detecting features in both images,
an orientation is computed for each feature and all possible correspondences are
mapped into a histogram according to the orientation differences. The peak in
the histogram is chosen as the rotation between the images. Scale is determined
through the use of angle histograms computed with multiple image patch sizes
and selecting the histogram with the highest peak. Niranjan et al. [9] build upon
the work of Xiong and Quek in order to register images in an image sequence
up to a homography.

Lin et al. [10] concentrate on registering consecutive aerial images from an
image sequence. They use a reference image (such as a map image) in order to
eliminate errors that accumulate from local methods. Their two-step process first
performs registration between images and then uses this as an initial estimate for
registration with the reference image. Wu and Luo [11] also examine registration
in an aerial image sequence. In their technique, the movement of the camera
is predicted from previous results in the sequence. This information is used to
rank possible correspondences. A variation of RANSAC [12] is used to validate
correspondences and to refine the motion estimate.

3 Feature Matching

In order to register images from different sequences (and from the same se-
quence), we match features or landmarks identified in the images. Two methods
are used for feature matching that may be used independently or in combination.
In both methods, we select a set of discrete features to be matched in one or
more of the images.

Given our mission scenario, we work under the assumption that the images are
captured from roughly the same altitude and that we can find images captured
with roughly the same camera axis from the two image sequences. This allows us
to neglect major scale and orientation differences in the feature matching process
and gains us robustness to false positives that might occur between features of
different scales or orientations. The techniques are able to handle variation of
up to 15 degrees or 15% scale change. In cases where these assumptions are not
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warranted, we can easily replace the techniques with those invariant to scale and
rotation changes. This is expected to be rare, since the INS provides us with data
that can be used to warp the images into roughly the same scale and rotation.

3.1 Feature Selection

Features are selected in images using a two step process. First, each pixel in the
image is assigned a score based on the second moment matrix computed in a
neighborhood around each pixel:

∑ ∑ [
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y

]
(1)

Following Shi and Tomasi [13] we use the smallest eigenvalue of this matrix as a
measure of how easy the feature is to track. (If the larger eigenvalue is low, this
indicates a featureless region. If the larger eigenvalue is high, but the smaller
eigenvalue is low, this indicates a linear edge.)

Given the scores, we select features from rectangular subimages in order to
distribute the features over the entire image. Features are selected greedily start-
ing with the largest scores and discarding those that are too close to previously
selected features. The current implementation uses 16 subimages in a 4×4 grid
with 16 features selected in each for a total of 256 features.

3.2 Robust Template Matching

Of the two feature matching techniques we use, template matching using gradi-
ent or entropy images is the more robust, but also more time consuming, unless
multiresolution search techniques are used. The technique is based previous work
for aligning entropy images [14]. We first compute a new representation of each
image, replacing each pixel with either a local measure of either the image gra-
dient or entropy.

Feature matches are detected using normalized correlation between the tem-
plates encompassing the detected features and the search image. We look for
matches over the entire search image efficiently using the Fast Fourier Trans-
form (FFT) to implement normalized correlation. This allows each template to
be processed in O(n log n) time, where n is the number of pixels in the search im-
age. In order to improve the speed, a multi-resolution search option is included.

Featureless regions in the search image are undesirable and lead to poor qual-
ity matches, so we discount template windows in the search image with below
average root-mean-square (RMS) intensity (in the gradient or entropy image)
using the following function:

S(r, c) =

{
NC(r,c), if w(r, c) ≥ w
2w(r,c)·NC(r,c)

w(r,c)+w , if w(r, c) < w
(2)

where NC(r, c) is the normalized correlation of the template with the window
centered at (r, c), w(r, c) is the RMS intensity of the window, and w is the average
window intensity over the search image.
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3.3 SIFT-Like Feature Matching

We also use a method based on the SIFT technique [15]. However, we do not
employ the scale and rotation invariance aspects of SIFT, since the images are
already (or can be transformed to be) at roughly the same scale and rotation.

Feature extraction is first performed on both images using the technique de-
scribed above. Each feature is characterized using the SIFT method as a vector
with 128 entries representing a histogram of gradients in the feature neighbor-
hood at various positions and orientations. Features are compared using nor-
malized correlation and the best match is tentatively accepted if the normalized
correlation exceeds 0.75.

One disadvantage to this technique is that, even if the same feature is located
in both images, it may be localized at slightly different locations. To correct this,
we refine each feature match using a brute-force search that considers positive
and negative displacements in row and column of up to two pixels.

3.4 Comparison

Over a test set consisting of 108 image pairs, the entropy techniques averaged
119.3 inliers found, while the gradient techniques averaged 116.6 inliers and the
SIFT-based techniques averaged 79.7 inliers. The entropy and gradient tech-
niques required approximately 22 seconds working on 1024×812 images1 using
a multi-resolution search, including file I/O, feature detection, matching, and
refinement. The SIFT-based techniques required approximately 30 seconds, but
were able to work on the full 1218×812 images. When the multi-resolution search
is not used, the average number of inliers increases to 143.1 for entropy match-
ing and 140.4 for gradient matching, but the computation time increases to 350
seconds. Figure 1 shows examples of features extracted and matched using aerial
images.

4 Outlier Rejection

We use a multiple step process to reject outliers in the detected feature matches.
The first step is designed to reject gross outliers using sampling. The second
step (which is iterated) computes a homography between the points and discards
those with larger residuals. Both steps are very efficient and require a fraction
of the time used for feature matching.

4.1 Gross Outlier Rejection

Gross outliers are detected using a variation of the RUDR strategy for model fit-
ting [16]. In this strategy, trials are used that hypothesize sets of correct matches
that are one match less than the number sufficient to calculate the model pa-
rameters. The parameters are estimated by combining the hypothesized matches
1 The images were reduced from 1218 columns to 1024 in order to quarter the time

required by the FFT.
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(a) (b)

Fig. 1. Feature selection and matching. (a) Features selected in first image. (b) Best
matches found in second image. Outlier rejection has not been performed at this stage.

with each possible remaining match and detecting clusters among the estimated
parameters. A trial is expected to succeed whenever the hypothesized set of
matches contains no outliers.

To reject gross outliers, we use a simple model of the motion that allows only
similarity transformations between the images (rotation, translation, and scale).
For this model, two matches are sufficient to solve for the model parameters.
Therefore, each trial fixes one match and considers it in combination with all of
the other matches. Since the number of matches is not large, we perform a trial
for each match, rather than using random sampling as previously described [16].

In our scenario, the clustering in each trial is relatively simple, since the
images have roughly the same scale and orientation. We can simply eliminate
those matches that produce a rotation estimate that varies significantly from
zero or a scale estimate that varies significantly from one. (Our experiments
allow 15% scale change and 15◦ rotation.) The trial with the largest set of inliers
(that is, the fewest eliminated matches) is selected and the remaining matches
are not considered further.

4.2 Careful Outlier Rejection

The matches that survive the previous step are examined more carefully for
further outliers. In this step, we solve for the homography that best aligns the
matches using a least-squares criterion and compute the residual for each match.
Any match with residual greater than twice the median residual is eliminated.
This is iterated until one of the following conditions hold:

1. No outliers are found.
2. The median residual falls below a threshold (1.0).
3. The number of matches falls below a threshold (20).

Note that the third condition was never met in our experiments, but is present
in the implementation to ensure that sufficient matches remain to perform the
optimization. Figure 2 shows the matches from Fig. 1 with outliers removed.
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(a) (b)

Fig. 2. Features after outlier rejection. (a) Features selected with rejected matches
excluded. (b) Best matches found in second image with rejected matches excluded.

5 Nonlinear Parameter Optimization

Given the matches computed between the images sequences, we can now per-
form a nonlinear optimization step to refine the motion between the sequences.
Our goal is to compute a single six degree-of-freedom (DOF) transformation be-
tween the two sequences, under the assumption that the relative errors within
each sequence are small. However, only five parameters can be extracted with-
out additional information, owing to the scale ambiguity. We set the scale by
requiring the average depth of the points from the camera to agree with the
elevation specified by the INS for the first image. This allows us to optimize the
six motion parameters without ambiguity.

As in previous work [17], our optimization uses a state vector that includes not
only the motion parameters, but also the elevation of each feature point matched.
(Initially, each point is estimated to be on a flat ground plane.) With this for-
mulation, we can use an objective function based on the distance between the
predicted feature location (according to the estimated motion) and the matched
feature location. The objective function is augmented with a penalty term that
enforces the scale constraint. Overall, this yields a state vector with m + 6 vari-
ables to optimize, where m is the number of distinct features matched, and an
objective function with 2n + 1 constraints, where n is the number of feature
matches between the sequences. The values of m and n are not necessarily the
same, since a feature may be matched in multiple images of a sequence.

We optimize the objective function using the Levenberg-Marquardt method
with lmfit, a public domain software package based on MINPACK routines [18].

6 Results

Figure 3 shows three registration results using these techniques. In each case, an
image has been warped into the frame of an image from a previous sequence. The
images are merged by taking the average of the pixel values after the warping
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Fig. 3. Registration results. Pairs of images are merged by taking the average of the
pixel values after warping the second image into the frame of the first image.
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has been performed. Locations outside of the image are left as white. (Areas
covered by only one image are lightly illustrated.)

The first example shows the relatively straightforward example that has been
used to illustrate the components of the system in Figures 1 and 2. It can be
observed that the registration is good, since there is little blurring in the averaged
pixels and the landmarks (such as roads) align well. The second example shows
a scene with buildings and that has increased warping between the images. The
left side of these images is dark owing to occlusion.

The final example shows a more complex case, where clouds occluded the
terrain in one of the sequences and a data box produced distractors that did not
move with the terrain. Furthermore, the overlap between the images is reduced
in this case. Despite these issues, our algorithm was able to correctly register
the images. In practice, our operational scenario will yield images with greater
overlap and less rotation than in this example.

7 Summary

The registration of aerial image sequences is important in persistent surveillance
applications in order to accurately fuse current images with previously collected
data. We have described techniques for the robust registration of such image
sequences. We first match landmarks between the sequences by selecting inter-
esting image features and using robust matching techniques. Outlier rejection is
performed carefully in order to extract a set of high quality matches. Finally, the
external camera parameters are refined using nonlinear optimization. Results on
real images sequences indicate that the method is effective.
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