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Abstract. In model-based object recognition and pose estimation, it
is common for the set of extracted image features to be much larger
than the set of object model features owing to clutter in the image.
However, another class of recognition problems has a large model, but
only a portion of the object is visible in the image, in which a small
set of features can be extracted, most of which are salient. In this case,
reducing the effective complexity of the object model is more important
than the image clutter. We describe techniques to accomplish this by
sampling the space of object positions. A subset of the object model is
considered for each sampled pose. This reduces the complexity of the
method from cubic to linear in the number of extracted features. We
have integrated this technique into a system for recognizing craters on
planetary bodies that operates in real-time.

1 Introduction

One of the failings of model-based object recognition is that the combinatorics of
feature matching often do not allow efficient algorithms. For three-dimensional
object recognition using point features, three feature matches between the model
and the image are necessary to determine the object pose. Unless the features
are so distinctive that matching is easy, this usually implies a computational
complexity that is (at least) cubic the number of features (see, for example,
[1,2,3]). Techniques using complex features [4,5,6], grouping [7,8,9], and virtual
points [2] have been able to reduce this complexity in some cases, but no general
method exists for such complexity reduction. Indexing can also be used to speed
up recognition [10,11,12]. However, under the assumption that each feature set
indexes a constant fraction of the database (owing to error and uncertainty),
indexing provides a constant speedup, rather than a lower complexity [10,13].

We describe a method that improves the computational complexity for some
cases. This method is valid for cases where the object model is large, but only
part of it is visible in any image and at least a constant fraction of the features in
the image can be expected to arise from the model. An example that is explored
in this paper is the recognition of crater patterns on the surface of a planet.

The basic idea in this work is to (non-randomly) sample viewpoints of the
model such that one of the sampled viewpoints is guaranteed to contain the
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model features viewed in any image of the object. We combine this technique
with an efficient model-based object recognition algorithm [3]. When the number
of samples can be constrained to be linear in the number of model features and
the number of salient features in each sample can be bounded, this yields an
algorithm with computational complexity that is linear in both the number of
image features and the number of model features.

Our pose sampling algorithm samples from a three degree-of-freedom space
to determine sets of features that might be visible in order to solve full six
degree-of-freedom object recognition. We do not need to sample from the full
six dimensions, since the rotation around the camera axis does not change the
features likely to be visible and out-of-plane rotations can usually be combined
with translations in two degrees-of-freedom. Special cases may require sampling
from more (or less) complex spaces. The set of samples is determined by propa-
gating the pose covariance matrix (which allow an arbitrarily large search space)
into the image space using the partial derivatives of the image coordinates with
respect to the pose parameters.

We can apply similar ideas to problems where the roles of the image and
model are reversed. For example, if a fraction of model is expected to appear
in the image, and the image can be divided into (possibly overlapping) sets of
features that can be examined separately to locate the model, then examination
of these image sets can reduce the complexity of the recognition process.

Section 2 discusses previous research. Section 3 describes the pose sampling
idea in more detail. We use this method in conjunction with efficient pose cluster-
ing, This combination of techniques is analyzed in Section 4. The methodology is
applied to crater matching in Section 5 and the paper is concluded in Section 6.

2 Related Work

Our approach has a similar underlying philosophy to aspect graphs [14,15], where
a finite set of qualitatively different views of an object are determined for use in
recognizing the object. This work is different in several important ways. We do
not attempt to enumerate all of the quantitatively different views. It is sufficient
to sample the pose space finely enough that one of the samples has significant
overlap with the input image. In addition, we can compute this set of samples
(or views) efficiently at run-time, rather than using a precomputed list of the
possible aspects. Finally, we concentrate on recognizing objects using discrete
features that can be represented as points, rather than line drawings, as is typical
in aspect graph methods.

Several other view-based object recognition methods have been proposed.
Appearance-based methods using object views (for example, [16,17]) and those
using linear combinations of views [18] operate under the assumption that an
object can be represented using a finite set of views of the object. We use a
similar assumption, but explicitly construct a set of views to cover the possible
feature sets that could be visible.
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Greenspan [19] uses a sampling technique for recognizing objects in range
data. In this approach, the samples are taken within the framework of a tree
search. The samples consist of locations in the sensed data that are hypothesized
to arise from the presence of the object. Branches of the tree are pruned when
the hypotheses become infeasible.

Peters [20] builds a static structure for view-based recognition using ideas
from biological vision. The system learns an object representation from a set of
input views. A subset of the views is selected to represent the overall appearance
by analyzing which views are similar.

3 Pose Sampling

Our methodology samples from the space of poses of the camera, since each
sample corresponds to a reduced set of model features that are visible from that
camera position. For each sampled pose, the set of model features most likely to
be detected are determined and used in a feature matching process. Not every
sample from the pose space will produce correct results. However, we can cover
the pose space with samples in such a way that all portions of the model that
may be visible are considered in the matching process. Success, thus, should
occur during one of the trials, if it would have occurred when considering the
complete set of model features at the same time.

It is important to note that, even when we are considering a full six degree-of-
freedom pose space, we do not need to sample from all six. Rotation around the
camera axis will not change the features most likely to be visible in the image.
Similarly, out-of-plane rotation and translation cause similar changes in set of
the features that are likely to be visible (for moderate rotations). Therefore,
unless we are considering large out-of-plane rotations, we can sample from a
three-dimensional pose space (translations) to cover the necessary sets of model
features to ensure recognition.

For most objects, three degrees-of-freedom are sufficient. If large rotations
are possible, then we should instead sample the viewing sphere (2 degrees-of-
freedom) and the distance from the object. For very large objects (or those for
which the distance from the camera is very small), it may not be acceptable to
conflate out-of-plane rotation and translation in the sampling. In this case, a five
degree-of-freedom space must be sampled.

We define a grid for sampling in the translational pose space by considering
the transverse motion (x and y in the camera reference frame) separately from
the forward motion (z), since forward motion has a very different effect on the
image than motion perpendicular to the viewing direction.

Knowledge about the camera position is represented by a pose estimate p
(combining a translation t for the position and a quaternion q for the orientation)
and a covariance matrix C in the camera reference frame. While any bounding
volume in the pose space could be used, the covariance representation lends itself
well to analysis. It allows an arbitrarily large ellipsoidal search space. While our
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pose representation has seven parameters (three for the translation and four for
the quaternion), only six are independent.

For the z component of our sampling grid, we bound the samples such that a
fixed fraction of the variance is enclosed (for example, three standard deviations
around the pose estimate). Within this region, samples are selected such that
neighboring samples represent a scale change by a fixed value, such as

√
2.

Each sampled z-coordinate (in the camera frame of reference), yields a new
position estimate (according to the covariances with this z value) and we are
left with a 6 × 6 covariance matrix in the remaining parameters. For each of
these distances, we propagate the covariance matrix into the image space by
determining a bounding ellipse for the image location of the object point at
the center of the image for the input pose estimate. From this ellipse, we can
determine the range over which to sample the transverse translations.

Let p̂ be the vector [0 p]. This allows us to use quaternion multiplication to
rotate the vector. We can convert a point in the global frame of reference into
the camera frame using:

p′ = qp̂q∗ + t. (1)

For a camera with focal length f , the image coordinates of a point are:
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We now wish to determine how far the covariance matrix allows the location
at the center of the image (according to the input pose estimate) to move within
a reasonable probability. This variation is then accommodated by appropriate
sampling from the camera translations. We can propagate the covariance matrix
into the image coordinates using linearization by computing the partial deriva-
tives (Jacobian) of the image coordinates with respect to the pose (Eq. 2). These
partial derivatives are given in Eq. (3). The error covariance in the image space is
Ci = JCpJ

T , where Cp is the covariance matrix of the remaining six parameters
in the camera reference frame.
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The eigenvalues and eigenvectors of this covariance matrix indicate the shape
of the area to sample from, with the eigenvectors being the axes of an ellipse and
the square roots of the eigenvalues being the semi-axis lengths. We must now
determine the spacing of the samples within these boundaries. Our strategy is
to space the samples in a uniform grid aligned with the axes of the bounding
ellipse such that the images that would be captured from neighboring samples
overlap by 50 percent. This implies that, if the features are evenly distributed
across the input image, one of the samples will contain a majority of the image
features, even in the worst alignment with the sampling grid.

4 Efficient Pose Clustering

Our pose sampling technique has been combined with an efficient object recog-
nition technique [3]. This method uses random sampling within the set of image
features in order to develop a pose clustering algorithm that requires O(mn3)
computation time, where m is the number of features in the model and n is the
number of features in the image.

In previous analysis, it was assumed that some fraction of the model features
must appear in the image in order for recognition to succeed. For the type of
problem that we consider here, the model is large and the image covers a small
portion of it. In addition, the image features are distinctive, with a significant
fraction of them arising from the object model. Under these circumstances, the
roles of the image and model are reversed in the analysis. We assume that at
least some constant fraction of the image features arise from the model in order
for recognition to succeed, but that only a small portion of the model may appear
in the image. The number of model features that must appear in the image for
recognition to succeed is not dependent on the size of the model. Following the
analysis of [3], this implies a complexity of O(m3n) rather than O(mn3), since
it is the image features that must be sampled, rather than the model features.
Overall, O(m2) pairs of model features are sampled and each requires O(mn)
time prior to the application of the new pose sampling techniques.

The combination of pose sampling with this technique implies that the pose
clustering technique must be applied multiple times (once for each of the sam-
pled poses). This still results in improved efficiency, since the number of model
features examined for each sampled pose is much smaller and the algorithm is
cubic in this number.

The key to efficient operation is being able to set an upper bound on the num-
ber of model features that are examined for each pose. If this can be achieved,
then the complexity for each of the sampled poses is reduced to O(n), since
the cubic portion is now limited by a constant. However, most sampled poses
will not succeed and we must examine several of them. Since the number of
model features that is examined for each pose is constant, we must examine
O(m) samples in order to ensure that we have considered the entire model. The
overall complexity will therefore be O(mn), if we can bound the number of model
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features examined in each pose sample by a constant and if the number of pose
samples that are examined is O(m).

We ensure that the number of model features examined for each sampled
pose is constant by selecting only those that best meet predefined criteria (i.e.,
those most likely to be present and detected in the image given the sampled
pose). Note also that the number of sampled poses in which each model feature
is considered does not grow with the size of the model. This combined with the
fact that each sample examines at least a constant number of model features
(otherwise it can be discarded) implies that we examine O(m) total samples.

To maintain O(mn) efficiency, we must take care in the process by which the
model features are selected for each sampled pose. Either the selection must
be performed offline or an efficient algorithm for selecting them must be used
online. Alternatively, each model feature can be considered for examination on-
line for each sampled pose, but the algorithm becomes O(m2 +mn) in this case.
In practice, this works well, since the constant on this term is small.

5 Crater Matching

We have applied pose sampling to the problem of recognizing a pattern of craters
on a planet (or planetoid) as seen by a spacecraft orbiting (or descending to) the
planet. In this application, we are able to simplify the problem, since the altitude
of the spacecraft is well known from other sensors. This allows us to reduce the
number of degrees-of-freedom in the space of poses that must be sampled from
three to two. In addition, we have shown that many crater match sets can be
eliminated efficiently using radius and orientation information [21].

For each pose that is sampled, we extract a set of the craters in the model
that are most likely to be visible from that pose by examining those that are
expected to be within the image boundaries and those that are of an appropriate
size to be detected in the image. A set with bounded cardinality is extracted by
ranking the craters according to these criteria.

Our first experiment used a crater model of the Eros asteroid that was ex-
tracted from images using a combination of manual and automatic processing at
the Jet Propulsion Laboratory. See Fig. 1. Recognition was performed using a
set of images collected by the Near Earth Asteroid Rendezvous (NEAR) mission
[22]. Three images from this set can be seen in Fig. 1. Craters were first detected
in these images using the method of Cheng et al. [23]. Results of the crater
detection are shown in Fig. 1 (left column). The extracted craters, the crater
model, and an inaccurate pose estimate were then input to the recognition algo-
rithm described in this work. Figure 1 (right column) shows the locations where
the visible craters in the model would appear according to the computed pose.
The close alignment of the rendered craters with the craters visible in the image
indicates that accurate pose estimation is achieved.

Our techniques found the same poses as detected in previous work [21] on
this data with improved efficiency. With pose sampling, recognition required an
average of 0.13 seconds on a Sun BladeTM 100 with a 500 MHz processor, a
speedup of 10.2 over the case with no sampling.



Pose Sampling for Efficient Model-Based Recognition 787

Fig. 1. Recognition of crater patterns on the Eros asteroid using images from the Near
Earth Asteroid Rendezvous (NEAR) mission. (top) Rendering of a model of the craters
on the Eros asteroid. (left) Craters extracted from NEAR images. (right) Recognized
pose of crater model. Correctly matched craters are white. Unmatched craters are
rendered in black according to the computed pose.
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Fig. 2. Crater catalog extracted from Mars Odyssey data. Image courtesy of
NASA/JPL/ASU.

Our second experiment examined an image of Mars captured by the THEMIS
instrument [24] on the Mars Odyssey Orbiter [25]. The image shown in Fig. 2
shows a portion of the Mars surface with many craters. Crater detection [23]
was applied to this image to create the crater model used in this experiment.
Since the images in which recognition was performed for this experiment were
resampled from the same image in which the crater detection was performed,
these experiments are not satisfying as a measure of the efficacy of the recogni-
tion. However, our primary aim here is to demonstrate the improved efficiency
of recognition, which these experiments are able to do.

Recognition experiments were performed with 280 image samples that cover
the image in Fig 2. For examples in this set, we limited the number of features
to the 10 strongest craters detected in the image and the 40 most likely craters
to be visible for each pose. The correct qualitative result was found in each case,
indicating that the sampling does not cause us to miss correct results that would
be found without sampling. Four examples of the recognition results can be seen
in Fig. 3. In addition, the pose sampling techniques resulted in a speedup by a
factor of 9.02 with each image requiring 24.8 seconds on average with no input
pose estimate. Experiments with the data set validate that the running time
increases linearly with the number of features in the object model.

6 Summary

We have examined a new technique to improve the efficiency of model-based
recognition for problems where the image covers a fraction of the object model,
such as occurs in crater recognition on planetary bodies. Using this technique, we
(non-randomly) sample from the space of poses of the object. For each pose, we
extract the features that are mostly likely to be both visible and detected in the
image and use these in an object recognition strategy based on pose clustering.
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Fig. 3. Recognition examples using Mars Odyssey data. (Correctly matched craters
are white. Unmatched craters are rendered in black according to the computed pose.)

When the samples are chosen appropriately, this results in a robust recognition
algorithm that is much more efficient than examining all of the model features at
once. A similar technique is applicable if the object is a small part of the image
and the image can be divided into regions within which the object can appear.
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